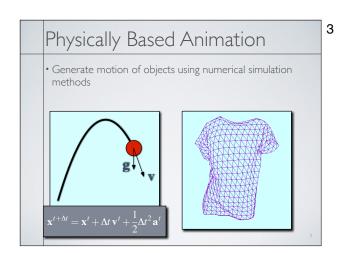
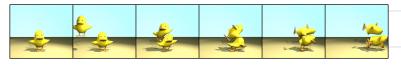
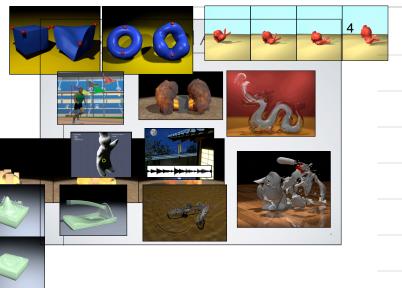
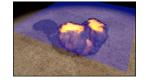
CS-184: Computer Graphics Lecture #21: Integration Basics Prof. James O'Brien University of California, Berkeley	
Today	2
Introduction to Simulation Basic particle systems Time integration (simple version)	









Particle Systems • Single particles are very simple • Large groups can produce interesting effects • Supplement basic ballistic rules • Collaions • Interactions • Porce fields • Springs • Others...

Particle Systems	7
Single particles are very simple Large groups can produce interesting effects Supplement basic ballistic rules	
Collisions Interactions Force fields Springs Others	
Feldman, Klingner, O'Brien, SIGGRAPH 2005	

Basic Particles • Basic governing equation • f is a sum of a number of things • Gravity: constant downward force proportional to mass • Simple drag: force proportional to negative velocity • Particle interactions: particles mutually attract and/or repell • Beware $O(n^2)$ complexity! • Force fields • Wind forces • User interaction

9 Basic Particles • Properties other than position • Color • Temp • Age • Differential equations also needed to govern these properties Collisions and other constrains directly modify position and/or velocity 10 Particle Rules Multiple Burst Bryan E. Feldman, James F. O'Brien, and Okan Arikan. "Animating Suspended Particle Explosions". In Proceedings of ACM SIGGRAPH 2003, pages 708–715, August 2003.

Integration

- Euler's Method
- Simple
- Commonly used
- Very inaccurate
- Most often goes unstable

$$\mathbf{x}^{t+\Delta t} = \mathbf{x}^t + \Delta t \, \mathbf{\dot{x}}^t$$

$$\mathbf{\dot{x}}^{t+\Delta t} = \mathbf{\dot{x}}^t + \Delta t \, \mathbf{\ddot{x}}^t$$

Integration

- For now let's pretend
- $\boldsymbol{f} = m\boldsymbol{v}$
- Velocity (rather than acceleration) is a function of force

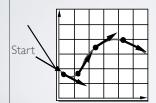
 $\dot{\boldsymbol{x}} = \mathsf{f}(\boldsymbol{x},t)$

Note: Second order ODEs can be turned into first order ODEs using extra variables.

ullet For now let's pretend $m{f}$

• Velocity (rather than acceleration) is a function of force

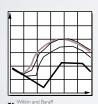
 $\boldsymbol{f} = m \boldsymbol{v}$



 $\dot{\boldsymbol{x}} = \mathsf{f}(\boldsymbol{x},t)$

Integration

- With numerical integration, errors accumulate
- Euler integration is particularly bad



 $x := x + \Delta t \ \mathsf{f}(\boldsymbol{x}, t)$

- Stability issues can also arise
- Occurs when errors lead to larger errors
- Often more serious than error issues

 $\dot{\boldsymbol{x}} = [-\sin(\omega t) \;,\; -\cos(\omega t) \;]$

ln+	000	atio	n
ΠIL	egra	alic)

Modified Euler

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} \left(\dot{\boldsymbol{x}}^t + \dot{\boldsymbol{x}}^{t+\Delta t} \right)$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^t$$

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \ \dot{oldsymbol{x}}^t + rac{(\Delta t)^2}{2} \ \ddot{oldsymbol{x}}^t$$

Integration Midpoint method a. Compute half Euler step b. Eval. derivative at halfway c. Retake step Other methods

17

18

- Verlet
- Runge-Kutta
- · And many others...

Integration

- Implicit methods
- Informally (incorrectly) called backward methods
- Use derivatives in the future for the current step

$$\begin{split} \boldsymbol{x}^{t+\Delta t} &= \boldsymbol{x}^t + \Delta t \; \dot{\boldsymbol{x}}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \dot{\boldsymbol{x}}^t + \Delta t \; \ddot{\boldsymbol{x}}^{t+\Delta t} \\ \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \\ \\ \ddot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \end{split}$$

- Implicit methods
- Informally (incorrectly) called backward methods
- Use derivatives in the future for the current step

$$\begin{split} &\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \\ &\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \end{split}$$

- Solve nonlinear problem for $oldsymbol{x}^{t+\Delta t}$ and $\dot{oldsymbol{x}}^{t+\Delta t}$
- This is fully implicit backward Euler
- Many other implicit methods exist...
- Modified Euler is *partially* implicit as is Verlet

Temp Slide

Need to draw reverse diagrams....

0	
-	

- Semi-Implicit
- Approximate with linearized equations

$$\mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{V}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{A} \cdot (\Delta \boldsymbol{x}) + \mathbf{B} \cdot (\Delta \dot{\boldsymbol{x}})$$

$$\mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{A}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{C} \cdot (\Delta \boldsymbol{x}) + \mathbf{D} \cdot (\Delta \dot{\boldsymbol{x}})$$

$$\begin{bmatrix} \boldsymbol{x}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}^t \\ \dot{\boldsymbol{x}}^t \end{bmatrix} + \Delta t \left(\begin{bmatrix} \dot{\boldsymbol{x}}^t \\ \ddot{\boldsymbol{x}}^t \end{bmatrix} + \begin{bmatrix} \mathbf{A} \ \mathbf{B} \\ \mathbf{C} \ \mathbf{D} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x} \\ \Delta \dot{\boldsymbol{x}} \end{bmatrix} \right)$$

1 (
Int	egra	atio	n
	0.	OF C. 4	

- Explicit methods can be conditionally stable
- Depends on time-step and **stiffness** of system
- Fully implicit can be **un**conditionally stable
- May still have large errors
- · Semi-implicit can be conditionally stable
- · Nonlinearities can cause instability
- Generally more stable than explicit
- Comparable errors as explicit
- Often show up as excessive damping

Integration Integrators can be analyzed in modal domain System have different component behaviors Integrators impact components differently

Suggested Reading

• Physically Based Modeling: Principles and Practice

- Andy Witkin and David Baraff
- http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Numerical Recipes in C++
- Chapter 16
- Any good text on integrating ODE's