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1 Stochastic Equicontinuity

Definition 1. Stochastic Equicontinuity:
A collection of stochastic processes {Zn(t)} indexed by t ∈ T is said to be stochastic equicontinuous at t0 ∈ T
if ∀η > 0,∀ε > 0, there exists a neighborhood Ut0 of t0 such that:

lim sup
n

P

(

sup
t∈U

|Zn(t) − Zn(t0)| > η

)

< ε

One application of stochastic equicontinuity will be in proving results of the kind:

Lemma 2. Suppose {Zn(t)} is stochastically equicontinuous at t0 ∈ T . Let τn be a sequence of random

elements of T known to satisfy:

τn
P−→ t0

It follows that:

Zn(τn) − Zn(t0)
P−→ 0

Proof. Fix η > 0 and ε > 0. From the stochastic equicontinuity of Zn, we know that there exists a
neighborhood U of t0 such that:

lim sup
n

P

(

sup
t∈U

|Zn(t) − Zn(t0)| > η

)

<
ε

2

Since τn
p→ t0, it follows that

lim sup
n

P (τn /∈ U) <
ε

2

From the assumptions, we have that:

|Zn(t) − Zn(t0)| > η ⇒ (τn /∈ U) OR

(

sup
t∈U

|Zn(t) − Zn(t0)| > η

)

Now, using the union bound on the union of these two events yields the result.

We now move on to results on asymptotic normality (AN) of M-estimators. We will cover the results in
Pollard (1984) based on stochastic equicontinuity.
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2 Chaining

We now develop chaining arguments leading to stochastic equicontinuity. Chaining arguments are based on
building a multiresolution grid on the space of functions we are interested. We bound the fluctuations of the
Z(·) process by controlling the fluctuations along short paths on the grid. To control the fluctuations along
the path in the grid, we need to bound the covering integral defined below.

We are given:

• a stochastic process {Z(t) : t ∈ T };

• a semi-metric on T : d(s, t), s, t ∈ T ;

• a pointwise exponential inequality: (e.g. the Hoeffding bound)

We want to find conditions on Zt ensuring that the pointwise inequality can be upgraded to a uniform
inequality. One important quantity in getting such results is the covering integral.

Definition 3.

J(δ, d, T ) =

∫ δ

0

[

2 log

(

N(u)2

u

)]1/2

du

where N(δ) is the smallest integer m such that there exist points t1, . . . , tm such that min1≤i≤m d(t, ti) ≤
δ,∀t ∈ T . Here we implicitly restrict t1, t2, ..., tm to be points of T , which is different from the definition of
covering number in earlier lectures.

Our next lemma establishes that boundedness of the covering integral J(δ, d, T ) is sufficient to ensure that
the difference between points close to one another are unlikely to be larger than a quantity related to the
covering integral.

Lemma 4. Pollard (1984), Lemma 9
Suppose that J(δ, d, T ) < ∞ and there exists D such that:

P (|Zn(s) − Zn(t)| > η · d(s, t)) ≤ 2 exp

(

− η2

2D2

)

.

Then:

P (|Zn(s) − Zn(t)| > 26DJ(ε, d, T ) for some s, t ∈ T with d(s, t) < ε) < ε

Proof. Let δi = ε
2i and define:

H(u)
∆
=

(

2 log

(

N(u)2

u

))

1

2

.

Now, construct a 2δi-net by following these steps:

1. Pick an arbitrary t1 ∈ T ;

2. For k going from 2 to m1 = N(δ1):

(a) pick tk such that d(tk, tj) > 2δ1 for all j < k;
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3. Let T1 = {t1, . . . , tm1
};

4. Pick tm1+1 such that d(tm1
, tj) > 2δ2 for all j < m1 + 1;

5. For k going from m1 + 2 to m1 + m2 with m2 = N(δ2):

(a) pick tk such that d(tk, tj) > 2δ2 for all j < k;

6. Let T2 = {tm1
, . . . , tm1+m2

};

7.
...

8. Pick tPl−1

j=1
mj

such that d(tm1
, tj) > 2δl for all j < (

∑l−1
j=1 mj) + 1;

9. For k going from (
∑l−1

j=1 mj) + 2 to (
∑l−1

j=1 mj) + ml with ml = N(δl):

(a) pick tk such that d(tk, tj) > 2δ2 for all j < k;

10. Let Tl = {t(Pl−1

j=1
mj)+1, . . . , t(

P

l
j=1

mj)
};

11.
...

12. Let T ∗ = ∪iTi;

We now define the set Ai on which something “bad” happens at scale i, i.e., a set where the observed
difference between Z(s) − Z(t) is large for a pair of points on the grid at scale δi:

Ai = {ω ∈ Ω : |Z(ω, s) − Z(ω, t)| > Dd(s, t)H(δi) for some s, t ∈ Ti}.

Now, notice that Ai is the sum of at most N(δi)
2 events whose probabilities can be controlled using the

pointwise bound and conclude:

P(Ai) ≤ 2N(δi)
2 exp

(

−1

2
H(δi)

2

)

= 2δi

It follows that:

P(∪∞
i=1Ai) ≤

∑

P(Ai) = 2ε

Now, we want to extend this result from the points in the grids T ∗ to the entire set T .

Now, let s, t ∈ T be such that d(s, t) < ε. Find n such that δn ≤ d(s, t) ≤ 2δn. Now link s = sm+1, sm, . . . , sn

such that sm ∈ Tm choosing the closest point at each step. By construction, d(si, si+1) ≤ 2δi.

Similarly, build {tn, . . . , tm, tm+1} for t = tm+1. Now, using the triangular inequality:

|Z(s) − Z(t)| ≤ |Z(sn) − Z(tn)| +
m

∑

i=n

[

|Z(si+1) − Z(si)| + |Z(ti+1) − Z(ti)|
]

Now, on Ac
i , we have:

|Z(si+1) − Z(si)| ≤ D · d(si+1, si) · H(δi+1) ≤ 2D · δi+1 · H(δi+1)
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which substituting this back into the inequality above yields that on (∪∞
i=1Ai)

c:

|Z(s) − Z(t)| ≤ D · d(sn, tn) · H(δn) + 2
m

∑

i=n

2DδiH(δi+1)

The distance along the chain is such that:

d(sn, tn) ≤ d(s, t) +

m
∑

i=n

(

d(si+1, si) + d(ti+1, ti)

)

≤ 2δn + 4
∞
∑

i=n

δi

≤ 10δn

As a result, since δi = 4(δi+1 − δi+2), we have on (∪∞
i=1Ai)

c:

|Z(s) − Z(t)| ≤ 10DδnH(δn) + 4D

∞
∑

i=n

4(δi+1 − δi+2)H(δi)

≤ 10DδnH(δn) + 16D

∞
∑

i=n

∫

I(δi+2 ≤ u ≤ δi+1)H(u)du

≤ 10DδnH(δn) + 16D · J(δn+1)

≤ 10DδnH(δn) + 16D · J(δn+1)

≤ 26DJ

(

d(s, t)

)

Figure 1: Pictorial argument for (δi+1 − δi+2)H(δi+2) ≤
∫

I(δi+1 − δi+2)H(u)du

3 Symmetrization, Equicontinuity and Chaining

Recall we constructed P 0
n as a signed measure assigning mass ±n−1 to each of the observed points ξ1, ξ2, . . . , ξn.

We will now define rescaled version of Pn and P 0
n as:

Enf =
√

nPnf =
√

n

[

1

n

n
∑

i=1

f(Xi)

]

E0
n =

√
nP 0

n
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Figure 2: Pictorial argument for δH(δ) ≤
∫ δ

0
H(u)du

Let E denote a Brownian Bridge process and let Ef =
∫

f(x)dE(x). We will be extending the theory to
establish conditions on a class of functions F so convergence Enf =

√
nPnf to Ef is obtained for every

f ∈ F .

Coming up next

In the coming classes, we will be covering:

• Pollard (1984), chapter 7

• Pollard (1984), Theorem 13

• Pollard (1984), Lemma 15

• Pollard (1984), Theorem 21: Use Stochastic Equicontinuity to get En
L→ E

References

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.


