1 Recap

Define the following:

\[h_c(x_1, \ldots, x_c) = E(h(x_1, \ldots, x_c, X_{c+1}, \ldots, X_r)) \]

\[\zeta_c = Var(h_c(X_1, \ldots, X_c)) \]

Now consider a U-Statistic:

\[U_n = \frac{1}{n^r} \sum_{\beta} h(X_{\beta_1}, \ldots, X_{\beta_r}) \]

where \(E(h) = \theta \) and

\[\text{Var}(U_n) = \left(\frac{n}{r} \right)^{-2} \sum_{c=0}^{r} \binom{n}{c} \binom{r}{c} (n-r) \zeta_c \]

Note that

\[\text{Var}(U_n) = \frac{r^2 \zeta_1}{n} + O(n^{-2}) \]

1.1 Rao-Blackwellization

Note that we can write \(U_n = E(h(X_1, \ldots, X_r)|X_1, \ldots, X_r) \). Thus, we have the following inequality:

\[E(U_n^2) = E(Eh(X_1, \ldots, X_r)|X_1, \ldots, X_r)^2 \leq E(Eh^2(X_1, \ldots, X_r)|X_1, \ldots, X_r) = h^2 \]

2 Projections

Define \(\mathcal{L}_2(P) \) as the set of functions that are finite when squared, and let \(T \) and \(\{S : S \in \mathcal{S}\} \) belong to \(\mathcal{L}_2(P) \).

Definition 1. \(\hat{S} \in \mathcal{S} \) is a projection of \(T \) on \(\mathcal{S} \) if and only if \(E((T - \hat{S})S) = 0 \) for all \(S \in \mathcal{S} \)

Corollary 2 (From van der Vaart Chapter 11). \(E(T^2) = E(T - \hat{S})^2 + E(\hat{S}^2) \)
Now consider a sequence of statistics T_n and spaces \mathcal{S}_n (that contain constant real variables) with projections \hat{S}_n.

Theorem 3. If $\frac{\text{Var}(T_n)}{\text{Var}(\hat{S}_n)} \to 1$ then

$$\frac{T_n - E(T_n)}{\text{std}(T_n)} - \frac{\hat{S}_n - E(\hat{S}_n)}{\text{std}(\hat{S}_n)} \overset{P}{\to} 0$$

Proof: Let $A_n = \frac{T_n - E(T_n)}{\text{std}(T_n)} - \frac{\hat{S}_n - E(\hat{S}_n)}{\text{std}(\hat{S}_n)}$. Note that $E(A_n) = 0$ and

$$\text{Var}(A_n) = 2 - 2 \left(\frac{\text{Cov}(T_n, \hat{S}_n)}{\text{std}(T_n)\text{std}(\hat{S}_n)} \right)$$

Since $(T_n - \hat{S}_n) \perp \hat{S}_n ((T_n - \hat{S}_n)$ is orthogonal to $\hat{S}_n)$, we have:

$$E(T_n \hat{S}_n) = E(\hat{S}_n^2) \Rightarrow$$

$$\text{Cov}(T_n, \hat{S}_n) = \text{Var}(\hat{S}_n) \Rightarrow$$

$$A_n \overset{p}{\to} 0$$

2.1 Conditional Expectations are Projections

\mathcal{S} is the linear space of all measurable functions $g(Y)$ of Y. Define $E(X|Y)$ as a measurable function of Y that satisfies $E(X - E(X|Y))g(Y) = 0$. As a consequence, we have the following:

- Setting $g \equiv 1$, then $E(X - E(X|Y)) = 0 \Rightarrow E(X) = E(E(X|Y))$

- $E(f(Y)X|Y) = f(Y)E(X|Y)$ because $E[f(Y)X - f(Y)E(X|Y)]g(Y) = E(X - E(X|Y))f(Y)g(Y) = 0$

- $E(E(X|Y,Z)|Y) = E(X|Y)$

2.2 Hájek Projections

Let X_1, X_2, \ldots, X_n be independent, $\mathcal{S} = \{\sum_{i=1}^n g_i(x_i) : g_i \in \mathcal{L}_2(P)\}$. \mathcal{S} is a Hilbert space.

Lemma 3 (11.10 in van der Vaart). Let T have a finite 2nd moment. Then

$$\hat{S} = \sum_{i=1}^n E(T|X_i) - (n-1)E(T)$$

Proof:

$$E(E(T|X_i)|X_j) = \begin{cases} E[E(T|X_i)] = E(T) & \text{if } i \neq j \\ E(T|X_i) & \text{if } i = j \end{cases}$$

$$E(\hat{S}|X_j) = \sum_{i \neq j} E(T) - (n-1)E(T) + E(T|X_j) = E(T|X_j)$$

Thus we have that

$$E[(T - \hat{S})g(X_j)] = E[(E(T - \hat{S})|X_j)g(X_j)] = 0.$$

And we conclude $(T - \hat{S}) \perp \mathcal{S}$.
3 Asymptotic Normality of U-Statistics

Assume \(E(h^2) < \infty \). Take Hájek projection of \((U_n - \theta)\) onto \(\{\sum_{i=1}^n g_i(x_i) : g_i \in \mathcal{L}_2(P)\}\). Define \(\hat{U}_n = U_n - \theta = \sum_{i=1}^n E((U - \theta)|X_i) \). We have that

\[
E(h(X_{\beta_1}, \ldots, X_{\beta_r}) - \theta|X_i = x) = \begin{cases}
 h_1(x) & \text{if } i \in \beta \\
 0 & \text{otherwise}
\end{cases}
\]

Where \(h_1(x) = E(h(x_1, X_2, \ldots, X_r) - \theta) \). Now

\[
E(U_n - \theta|X_i) = \frac{1}{\binom{n}{r}} \sum_{\beta} E(h(x_{\beta_1}, \ldots, x_{\beta_r}|X_i) - \theta) = \frac{\binom{n-1}{r-1}}{\binom{n}{r}} = \frac{r}{n} h_1(x_i) \Rightarrow
\]

\[
\hat{U}_n = \frac{r}{n} \sum_{i=1}^n h_1(x_i)
\]

Note that \(E\hat{U}_n = 0 \) and

\[
\text{Var}(\hat{U}_n) = \frac{r^2}{n^2} [n[\text{Var}(h(X_1))]] = \frac{r^2}{n} \zeta_1
\]

And so we have \(\frac{\text{Var}(U_n)}{\text{Var}(\hat{U}_n)} \rightarrow 1 \). By our previous theorem we have that

\[
\frac{U_n - \theta}{(\frac{r^2}{n^2} \zeta_1 + O(n^{-2}))^{\frac{1}{2}}} - \frac{\hat{U}_n}{(\frac{r^2}{n^2} \zeta_1)^{\frac{1}{2}}} \xrightarrow{P} 0
\]

By Slutsky we have

\[
\sqrt{n}(U_n - \theta - \hat{U}_n) \xrightarrow{P} 0
\]

By CLT we have

\[
\sqrt{n}\hat{U}_n \xrightarrow{d} N(0, r^2 \zeta_1)
\]

And by Slutsky again we have

\[
\sqrt{n}(U_n - \theta) \xrightarrow{d} N(0, r^2 \zeta_1)
\]