Importance Sampling & Sequential Importance Sampling

Arnaud Doucet Departments of Statistics & Computer Science University of British Columbia

Consider a sequence of probability distributions {π_n}_{n≥1} defined on a sequence of (measurable) spaces {(E_n, F_n)}_{n≥1} where E₁ = E,
 F₁ = F and E_n = E_{n-1} × E, F_n = F_{n-1} × F.

イロト イ団ト イヨト イヨトー

- Consider a sequence of probability distributions $\{\pi_n\}_{n\geq 1}$ defined on a sequence of (measurable) spaces $\{(E_n, \mathcal{F}_n)\}_{n\geq 1}$ where $E_1 = E$, $\mathcal{F}_1 = \mathcal{F}$ and $E_n = E_{n-1} \times E$, $\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution π_n (dx_{1:n}) = π_n (x_{1:n}) dx_{1:n} is known up to a normalizing constant, i.e.

$$\pi_n\left(x_{1:n}\right) = \frac{\gamma_n\left(x_{1:n}\right)}{Z_n}$$

- Consider a sequence of probability distributions $\{\pi_n\}_{n\geq 1}$ defined on a sequence of (measurable) spaces $\{(E_n, \mathcal{F}_n)\}_{n\geq 1}$ where $E_1 = E$, $\mathcal{F}_1 = \mathcal{F}$ and $E_n = E_{n-1} \times E$, $\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution π_n (dx_{1:n}) = π_n (x_{1:n}) dx_{1:n} is known up to a normalizing constant, i.e.

$$\pi_n\left(x_{1:n}\right) = \frac{\gamma_n\left(x_{1:n}\right)}{Z_n}$$

• We want to estimate expectations of test functions $\varphi_n: E_n \to \mathbb{R}$

$$\mathbb{E}_{\pi_{n}}(\varphi_{n}) = \int \varphi_{n}(x_{1:n}) \pi_{n}(dx_{1:n})$$

and/or the normalizing constants Z_n .

- Consider a sequence of probability distributions $\{\pi_n\}_{n\geq 1}$ defined on a sequence of (measurable) spaces $\{(E_n, \mathcal{F}_n)\}_{n\geq 1}$ where $E_1 = E$, $\mathcal{F}_1 = \mathcal{F}$ and $E_n = E_{n-1} \times E$, $\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution π_n (dx_{1:n}) = π_n (x_{1:n}) dx_{1:n} is known up to a normalizing constant, i.e.

$$\pi_n\left(x_{1:n}\right) = \frac{\gamma_n\left(x_{1:n}\right)}{Z_n}$$

• We want to estimate expectations of test functions $\varphi_n: E_n \to \mathbb{R}$

$$\mathbb{E}_{\pi_{n}}(\varphi_{n}) = \int \varphi_{n}(\mathsf{x}_{1:n}) \,\pi_{n}(d\mathsf{x}_{1:n})$$

and/or the normalizing constants Z_n .

 We want to do this sequentially; i.e. first π₁ and/or Z₁ at time 1 then π₂ and/or Z₂ at time 2 and so on.

• **Problem 1**: For most problems of interest, we cannot sample from $\pi_n(x_{1:n})$.

< Ξ > < Ξ >

- **Problem 1**: For most problems of interest, we cannot sample from $\pi_n(x_{1:n})$.
 - A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.

• • = • • = •

- **Problem 1**: For most problems of interest, we cannot sample from $\pi_n(x_{1:n})$.
 - A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.
- Problem 2: Even if we could sample exactly from π_n (x_{1:n}), then the computational complexity of the algorithm would most likely increase with n but we typically want an algorithm of fixed computational complexity at each time step.

- **Problem 1**: For most problems of interest, we cannot sample from $\pi_n(x_{1:n})$.
 - A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.
- Problem 2: Even if we could sample exactly from π_n (x_{1:n}), then the computational complexity of the algorithm would most likely increase with n but we typically want an algorithm of fixed computational complexity at each time step.
- **Summary**: We cannot use standard MC sampling in our case and, even if we could, this would not solve our problem.

イロン イ団と イヨン ト

• Review of Importance Sampling.

▶ ▲ 문 ▶ ▲ 문 ▶

Image: Image:

- Review of Importance Sampling.
- Sequential Importance Sampling.

3 K K 3 K

- Review of Importance Sampling.
- Sequential Importance Sampling.
- Applications.

ヨト イヨト

• Importance Sampling (IS) identity. For any distribution q such that $\pi(x) > 0 \Rightarrow q(x) > 0$

$$\pi(x) = \frac{w(x) q(x)}{\int w(x) q(x) dx} \text{ where } w(x) = \frac{\gamma(x)}{q(x)}$$

where q is called importance distribution and w importance weight.

イロト イ理ト イヨト イヨト

• Importance Sampling (IS) identity. For any distribution q such that $\pi(x) > 0 \Rightarrow q(x) > 0$

$$\pi(x) = \frac{w(x) q(x)}{\int w(x) q(x) dx} \text{ where } w(x) = \frac{\gamma(x)}{q(x)}$$

where q is called *importance distribution* and w *importance weight*.
q can be chosen arbitrarily, in particular easy to sample from

$$X^{(i)} \stackrel{\text{i.i.d.}}{\sim} q(\cdot) \Rightarrow \widehat{q}(dx) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(dx)$$

イロト イ理ト イヨト イヨト

• Plugging this expression in IS identity

$$\widehat{\pi}(dx) = \sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(dx) \text{ where } W^{(i)} \propto w(X^{(i)}),$$
$$\widehat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}).$$

æ

イロト イヨト イヨト イヨト

• Plugging this expression in IS identity

$$\widehat{\pi}(dx) = \sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(dx) \text{ where } W^{(i)} \propto w(X^{(i)}),$$
$$\widehat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}).$$

π (x) now approximated by weighted sum of delta-masses ⇒ Weights compensate for discrepancy between π and q.

- E - - E -

• Select q as close to π as possible.

7 / 40

- Select q as close to π as possible.
- The varianec of the weights is bounded if and only if

$$\int \frac{\gamma^{2}(x)}{q(x)} dx < \infty.$$

- ∢ ∃ ▶

- Select q as close to π as possible.
- The varianec of the weights is bounded if and only if

$$\int \frac{\gamma^{2}(x)}{q(x)} dx < \infty.$$

• In practice, try to ensure

$$w(x) = rac{\gamma(x)}{q(x)} < \infty.$$

Note that in this case, rejection sampling could be used to sample from $\pi\left(x\right)$.

Example

Figure: Target double exponential distributions and two IS distributions

æ

<ロ> (日) (日) (日) (日) (日)

Figure: IS approximation obtained using a Gaussian IS distribution

э

Figure: IS approximation obtained using a Student-t IS distribution

.∋...>

• We try to compute

$$\int \left(\frac{x}{1-x}\right)^2 \pi\left(x\right) dx$$

where

$$\pi(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x}{\nu}\right)^{-(\nu+1)/2}$$

is a t-student distribution with $\nu > 1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G}a(\nu/2,\nu/2)$) using Monte Carlo.

We try to compute

$$\int \left(\frac{x}{1-x}\right)^2 \pi\left(x\right) dx$$

where

$$\pi(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x}{\nu}\right)^{-(\nu+1)/2}$$

is a t-student distribution with $\nu > 1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G}a(\nu/2,\nu/2)$) using Monte Carlo.

• We use $q_1(x) = \pi(x)$, $q_2(x) = \frac{\Gamma(1)}{\sqrt{\nu\pi}\Gamma(1/2)} \left(1 + \frac{x}{\nu\sigma}\right)^{-1}$ (Cauchy distribution) and $q_3(x) = \mathcal{N}\left(x; 0, \frac{\nu}{\nu-2}\right)$ (variance chosen to match the variance of $\pi(x)$)

We try to compute

$$\int \left(\frac{x}{1-x}\right)^2 \pi\left(x\right) dx$$

where

$$\pi(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x}{\nu}\right)^{-(\nu+1)/2}$$

is a t-student distribution with $\nu > 1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G}a(\nu/2,\nu/2)$) using Monte Carlo.

- We use $q_1(x) = \pi(x)$, $q_2(x) = \frac{\Gamma(1)}{\sqrt{\nu\pi}\Gamma(1/2)} \left(1 + \frac{x}{\nu\sigma}\right)^{-1}$ (Cauchy distribution) and $q_3(x) = \mathcal{N}\left(x; 0, \frac{\nu}{\nu-2}\right)$ (variance chosen to match the variance of $\pi(x)$)
- It is easy to see that

$$rac{\pi\left(x
ight)}{q_{1}\left(x
ight)} < \infty ext{ and } \int rac{\pi\left(x
ight)^{2}}{q_{3}\left(x
ight)} dx = \infty, \ rac{\pi\left(x
ight)}{q_{3}\left(x
ight)} ext{ is unbounded}$$

Figure: Performance for $\nu = 12$ with q_1 (solid line), q_2 (dashes) and q_3 (light dots). Final values 1.14, 1.14 and 1.16 vs true value 1.13

• We now try to compute

$$\int_{2.1}^{\infty} x^5 \pi(x) \, dx$$

We now try to compute

$$\int_{2.1}^{\infty} x^5 \pi\left(x\right) dx$$

 We try to use the same importance distribution but also use the fact that using a change of variables u = 1/x, we have

•

$$\int_{2.1}^{\infty} x^5 \pi(x) \, dx = \int_{0}^{1/2.1} u^{-7} \pi(1/u) \, du$$
$$= \frac{1}{2.1} \int_{0}^{1/2.1} 2.1 u^{-7} \pi(1/u) \, du$$

which is the expectation of $2.1u^{-7}\pi\left(1/u\right)$ with respect to $\mathcal{U}\left[0,1/2.1\right]$.

Figure: Performance for $\nu = 12$ with q_1 (solid), q_2 (short dashes), q_3 (dots), uniform (long dashes). Final values 6.75, 6.48, 7.06 and 6.48 vs true value 6.54

• Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x|\theta)$.

15 / 40

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x|\theta)$.
- The posterior distribution is given by

$$\begin{aligned} \pi\left(\left.\theta\right|x\right) &= \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta}\pi(\theta)f(x|\theta)d\theta} \propto \gamma\left(\left.\theta\right|x\right) \\ \text{where } \gamma\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{aligned}$$

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x|\theta)$.
- The posterior distribution is given by

$$\begin{aligned} \pi\left(\left.\theta\right|x\right) &= \frac{\pi\left(\theta\right)f\left(x|\theta\right)}{\int_{\Theta}\pi\left(\theta\right)f\left(x|\theta\right)d\theta} \propto \gamma\left(\left.\theta\right|x\right) \\ \text{where } \gamma\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{aligned}$$

• We can use the prior distribution as a candidate distribution $q\left(\theta\right)=\pi\left(\theta
ight).$

- < 🗇 > < E > < E >

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x|\theta)$.
- The posterior distribution is given by

$$\begin{aligned} \pi\left(\left.\theta\right|x\right) &= \frac{\pi\left(\theta\right)f\left(x|\theta\right)}{\int_{\Theta}\pi\left(\theta\right)f\left(x|\theta\right)d\theta} \propto \gamma\left(\left.\theta\right|x\right) \\ \text{where } \gamma\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{aligned}$$

- We can use the prior distribution as a candidate distribution $q\left(\theta\right)=\pi\left(\theta
 ight).$
- We also get an estimate of the marginal likelihood

•

$$\int_{\Theta} \pi(\theta) f(x|\theta) d\theta.$$

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

• *Example*: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$\left(egin{array}{cc} p_1 & 1-p_1 \ 1-p_2 & p_2 \end{array}
ight)$$

that is $\Pr(X_{t+1} = 1 | X_t = 1) = 1 - \Pr(X_{t+1} = 2 | X_t = 1) = p_1$ and $\Pr(X_{t+1} = 2 | X_t = 2) = 1 - \Pr(X_{t+1} = 1 | X_t = 2) = p_2$. Physical constraints tell us that $p_1 + p_2 < 1$.

• *Example*: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$\left(egin{array}{cc} p_1 & 1-p_1 \ 1-p_2 & p_2 \end{array}
ight)$$

that is $\Pr(X_{t+1} = 1 | X_t = 1) = 1 - \Pr(X_{t+1} = 2 | X_t = 1) = p_1$ and $\Pr(X_{t+1} = 2 | X_t = 2) = 1 - \Pr(X_{t+1} = 1 | X_t = 2) = p_2$. Physical constraints tell us that $p_1 + p_2 < 1$.

• Assume we observe *x*₁, ..., *x_m* and the prior is

$$\pi\left(\mathbf{p}_{1},\mathbf{p}_{2}
ight)=2\mathbb{I}_{p_{1}+p_{2}\leq1}$$

then the posterior is

$$\pi \left(\left. p_{1}, p_{2} \right| x_{1:m} \right) \propto p_{1}^{m_{1,1}} \left(1 - p_{1} \right)^{m_{1,2}} \left(1 - p_{2} \right)^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{1} + p_{2} \le 1}$$

where

$$m_{i,j} = \sum_{t=1}^{m-1} \mathbb{I}_{x_t=i} \mathbb{I}_{x_{t+1}=i}$$

• *Example*: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$\left(\begin{array}{cc} p_1 & 1-p_1 \\ 1-p_2 & p_2 \end{array}\right)$$

that is $\Pr(X_{t+1} = 1 | X_t = 1) = 1 - \Pr(X_{t+1} = 2 | X_t = 1) = p_1$ and $\Pr(X_{t+1} = 2 | X_t = 2) = 1 - \Pr(X_{t+1} = 1 | X_t = 2) = p_2$. Physical constraints tell us that $p_1 + p_2 < 1$.

• Assume we observe x₁, ..., x_m and the prior is

$$\pi\left(\mathbf{p}_{1},\mathbf{p}_{2}
ight)=2\mathbb{I}_{\mathbf{p}_{1}+\mathbf{p}_{2}\leq1}$$

then the posterior is

$$\pi \left(\left. p_{1}, \left. p_{2} \right| x_{1:m} \right) \propto p_{1}^{m_{1,1}} \left(1 - p_{1} \right)^{m_{1,2}} \left(1 - p_{2} \right)^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{1} + p_{2} \leq 1}$$

where

$$m_{i,j} = \sum_{t=1}^{m-1} \mathbb{I}_{x_t=i} \mathbb{I}_{x_{t+1}=i}$$

 The posterior does not admit a standard expression and its normalizing constant is unknown. We can sample from it using rejection sampling. • We are interested in estimating $\mathbb{E} \left[\varphi_i \left(p_1, p_2 \right) | x_{1:m} \right]$ for $\varphi_1 \left(p_1, p_2 \right) = p_1$, $\varphi_2 \left(p_1, p_2 \right) = p_2$, $\varphi_3 \left(p_1, p_2 \right) = p_1 / (1 - p_1)$, $\varphi_4 \left(p_1, p_2 \right) = p_2 / (1 - p_2)$ and $\varphi_5 \left(p_1, p_2 \right) = \log \frac{p_1(1 - p_2)}{p_2(1 - p_1)}$ using Importance Sampling.

- We are interested in estimating $\mathbb{E} \left[\varphi_i(p_1, p_2) | x_{1:m} \right]$ for $\varphi_1(p_1, p_2) = p_1$, $\varphi_2(p_1, p_2) = p_2$, $\varphi_3(p_1, p_2) = p_1/(1-p_1)$, $\varphi_4(p_1, p_2) = p_2/(1-p_2)$ and $\varphi_5(p_1, p_2) = \log \frac{p_1(1-p_2)}{p_2(1-p_1)}$ using Importance Sampling.
- If there was no on $p_1 + p_2 < 1$ and $\pi(p_1, p_2)$ was uniform on $[0, 1] \times [0, 1]$, then the posterior would be

$$\pi_0(p_1, p_2 | x_{1:m}) = \mathcal{B}e(p_1; m_{1,1} + 1, m_{1,2} + 1)$$
$$\mathcal{B}e(p_2; m_{2,2} + 1, m_{2,1} + 1)$$

but this is inefficient as for the given data $(m_{1,1}, m_{1,2}, m_{2,2}, m_{2,1})$ we have $\pi_0 (p_1 + p_2 < 1 | x_{1:m}) = 0.21$.

- We are interested in estimating $\mathbb{E} \left[\varphi_i \left(p_1, p_2 \right) | x_{1:m} \right]$ for $\varphi_1 \left(p_1, p_2 \right) = p_1$, $\varphi_2 \left(p_1, p_2 \right) = p_2$, $\varphi_3 \left(p_1, p_2 \right) = p_1 / (1 p_1)$, $\varphi_4 \left(p_1, p_2 \right) = p_2 / (1 p_2)$ and $\varphi_5 \left(p_1, p_2 \right) = \log \frac{p_1(1 p_2)}{p_2(1 p_1)}$ using Importance Sampling.
- If there was no on $p_1 + p_2 < 1$ and $\pi(p_1, p_2)$ was uniform on $[0, 1] \times [0, 1]$, then the posterior would be

$$\pi_0 (p_1, p_2 | x_{1:m}) = \mathcal{B}e (p_1; m_{1,1} + 1, m_{1,2} + 1) \\ \mathcal{B}e (p_2; m_{2,2} + 1, m_{2,1} + 1)$$

but this is inefficient as for the given data $(m_{1,1}, m_{1,2}, m_{2,2}, m_{2,1})$ we have $\pi_0 (p_1 + p_2 < 1 | x_{1:m}) = 0.21$.

 The form of the posterior suggests using a Dirichlet distribution with density

$$\pi_1(p_1, p_2 | x_{1:m}) \propto p_1^{m_{1,1}} p_2^{m_{2,2}} (1 - p_1 - p_2)^{m_{1,2} + m_{2,1}}$$

but $\pi(p_1, p_2 | x_{1:m}) / \pi_1(p_1, p_2 | x_{1:m})$ is unbounded.

★ E ► ★ E ► E

• (Geweke, 1989) proposed using the normal approximation to the binomial distribution

$$\pi_{2}(p_{1}, p_{2}|x_{1:m}) \propto \exp\left(-(m_{1,1} + m_{1,2})(p_{1} - \hat{p}_{1})^{2} / (2\hat{p}_{1}(1 - \hat{p}_{1}))\right) \times \exp\left(-(m_{2,1} + m_{2,2})(p_{2} - \hat{p}_{2})^{2} / (2\hat{p}_{2}(1 - \hat{p}_{2}))\right)$$

where $\hat{p}_1 = m_{1,1}/(m_{1,1} + m_{1,2})$, $\hat{p}_1 = m_{2,2}/(m_{2,2} + m_{2,1})$. Then to simulate from this distribution, we simulate first $\pi_2(p_1|x_{1:m})$ and then $\pi_2(p_2|x_{1:m}, p_1)$ which are univariate truncated Gaussian distribution which can be sampled using the inverse cdf method. The ratio $\pi(p_1, p_2|x_{1:m})/\pi_2(p_1, p_2|x_{1:m})$ is upper bounded.

• (Geweke, 1989) proposed using the normal approximation to the binomial distribution

$$\pi_{2}(p_{1}, p_{2}|x_{1:m}) \propto \exp\left(-(m_{1,1} + m_{1,2})(p_{1} - \hat{p}_{1})^{2} / (2\hat{p}_{1}(1 - \hat{p}_{1}))\right) \times \exp\left(-(m_{2,1} + m_{2,2})(p_{2} - \hat{p}_{2})^{2} / (2\hat{p}_{2}(1 - \hat{p}_{2}))\right)$$

where $\hat{p}_1 = m_{1,1}/(m_{1,1} + m_{1,2})$, $\hat{p}_1 = m_{2,2}/(m_{2,2} + m_{2,1})$. Then to simulate from this distribution, we simulate first $\pi_2(p_1|x_{1:m})$ and then $\pi_2(p_2|x_{1:m}, p_1)$ which are univariate truncated Gaussian distribution which can be sampled using the inverse cdf method. The ratio $\pi(p_1, p_2|x_{1:m})/\pi_2(p_1, p_2|x_{1:m})$ is upper bounded. A final one consists of using

A final one consists of using

 $\pi_{3}(p_{1}, p_{2} | x_{1:m}) = \mathcal{B}e(p_{1}; m_{1,1} + 1, m_{1,2} + 1) \pi_{3}(p_{2} | x_{1:m}, p_{1})$ where $\pi(p_{2} | x_{1:m}, p_{1}) \propto (1 - p_{2})^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{2} \leq 1 - p_{1}}$ is badly approximated through $\pi_{3}(p_{2} | x_{1:m}, p_{1}) = \frac{2}{(1 - p_{1})^{2}} p_{2} \mathbb{I}_{p_{2} \leq 1 - p_{1}}$. It is straightforward to check that $\pi(p_{1}, p_{2} | x_{1:m}) / \pi_{3}(p_{1}, p_{2} | x_{1:m}) \propto (1 - p_{2})^{m_{2,1}} p_{2}^{m_{2,2}} / \frac{2}{(1 - p_{1})^{2}} p_{2} < \infty.$

Distribution	φ_1	φ_2	φ_3	φ_4	φ_5
π_1	0.748	0.139	3.184	0.163	2.957
π_2	0.689	0.210	2.319	0.283	2.211
π_3	0.697	0.189	2.379	0.241	2.358
π	0.697	0.189	2.373	0.240	2.358

• Performance for N = 10,000

æ

- ▲ 문 ► ▲ 문 ►

< □ > < 🗇

• Performance for N = 10,000

Distribution	φ_1	φ_2	φ_3	φ_4	φ_5
π_1	0.748	0.139	3.184	0.163	2.957
π_2	0.689	0.210	2.319	0.283	2.211
π_3	0.697	0.189	2.379	0.241	2.358
π	0.697	0.189	2.373	0.240	2.358

• Sampling from π using rejection sampling works well but is computationally expensive. π_3 is computationally much cheaper whereas π_1 does extremely poorly as expected.

- ∢ ∃ ▶

• In statistics, we are usually not interested in a specific φ but in several functions and we prefer having q(x) as close as possible to $\pi(x)$.

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having q(x) as close as possible to $\pi(x)$.
- For flat functions, one can approximate the variance by

$$\mathbb{V}\left(\mathbb{E}_{\widehat{\pi}_{N}}\left(\varphi\left(X\right)\right)\right)\approx\left(1+\mathbb{V}_{q}\left(w\left(X\right)\right)\right)\frac{\mathbb{V}_{\pi}\left(\varphi\left(X\right)\right)}{N}$$

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having q(x) as close as possible to $\pi(x)$.
- For flat functions, one can approximate the variance by

$$\mathbb{V}\left(\mathbb{E}_{\widehat{\pi}_{N}}\left(\varphi\left(X\right)\right)\right)\approx\left(1+\mathbb{V}_{q}\left(w\left(X\right)\right)\right)\frac{\mathbb{V}_{\pi}\left(\varphi\left(X\right)\right)}{N}$$

• Simple interpretation: The N weighted samples are approximately equivalent to M unweighted samples from π where

$$M = \frac{N}{1 + \mathbb{V}_q(w(X))} \le N.$$

Limitations of Importance Sampling

• Consider the case where the target is defined on \mathbb{R}^n and

$$\begin{aligned} \pi\left(x_{1:n}\right) &= \prod_{k=1}^{n} \mathcal{N}\left(x_{k}; \mathbf{0}, 1\right), \\ \gamma\left(x_{1:n}\right) &= \prod_{k=1}^{n} \exp\left(-\frac{x_{k}^{2}}{2}\right), \\ Z &= \left(2\pi\right)^{n/2}. \end{aligned}$$

3 K K 3 K

Limitations of Importance Sampling

• Consider the case where the target is defined on \mathbb{R}^n and

$$egin{aligned} \pi\left(\mathbf{x}_{1:n}
ight) &= \prod_{k=1}^{n} \mathcal{N}\left(\mathbf{x}_{k}; \mathbf{0}, \mathbf{1}
ight), \ \gamma\left(\mathbf{x}_{1:n}
ight) &= \prod_{k=1}^{n} \exp\left(-rac{\mathbf{x}_{k}^{2}}{2}
ight), \ Z &= \left(2\pi
ight)^{n/2}. \end{aligned}$$

• We select an importance distribution

$$q(x_{1:n}) = \prod_{k=1}^{n} \mathcal{N}(x_k; 0, \sigma^2).$$

Limitations of Importance Sampling

• Consider the case where the target is defined on \mathbb{R}^n and

$$\pi (\mathbf{x}_{1:n}) = \prod_{k=1}^{n} \mathcal{N} (\mathbf{x}_{k}; \mathbf{0}, \mathbf{1}),$$
$$\gamma (\mathbf{x}_{1:n}) = \prod_{k=1}^{n} \exp\left(-\frac{\mathbf{x}_{k}^{2}}{2}\right),$$
$$Z = (2\pi)^{n/2}.$$

• We select an importance distribution

$$q(x_{1:n}) = \prod_{k=1}^{n} \mathcal{N}(x_k; 0, \sigma^2).$$

• In this case, we have $\mathbb{V}_{\mathsf{IS}}\left[\widehat{Z}\right]<\infty$ only for $\sigma^2>\frac{1}{2}$ and

$$\frac{\mathbf{W}_{\mathsf{IS}}\left[\widehat{Z}\right]}{Z^2} = \frac{1}{N} \left[\left(\frac{\sigma^4}{2\sigma^2 - 1} \right)^{n/2} - 1 \right].$$

• The variance increases exponentially with *n* even in this simple case.

- The variance increases exponentially with *n* even in this simple case.
- For example, if we select $\sigma^2 = 1.2$ then we have a reasonably good importance distribution as $q(x_k) \approx \pi(x_k)$ but $N \frac{\mathbb{V}_{\text{IS}}[\hat{Z}]}{Z^2} \approx (1.103)^{n/2}$ which is approximately equal to 1.9×10^{21} for n = 1000!

- The variance increases exponentially with *n* even in this simple case.
- For example, if we select $\sigma^2 = 1.2$ then we have a reasonably good importance distribution as $q(x_k) \approx \pi(x_k)$ but $N \frac{\mathbb{V}_{\text{IS}}[\hat{Z}]}{Z^2} \approx (1.103)^{n/2}$ which is approximately equal to 1.9×10^{21} for n = 1000!
- We would need to use $N \approx 2 \times 10^{23}$ particles to obtain a relative variance $\frac{\mathbb{V}_{\text{IS}}[\hat{Z}]}{Z^2} = 0.01$.

• Given N samples from q, we estimate $\mathbb{E}_{\pi}\left(arphi\left(X
ight)
ight)$ through IS

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{IS}}\left(\varphi\left(X\right)\right) = \frac{\sum_{i=1}^{N} w\left(X^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}\right)}$$

or we "filter" the samples through rejection and propose instead

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{RS}}\left(\varphi\left(X\right)\right) = \frac{1}{K}\sum_{k=1}^{K}\varphi\left(X^{\left(i_{k}\right)}\right)$$

where $K \leq N$ is a random variable corresponding to the number of samples accepted.

イロト イポト イヨト イヨト

• Given N samples from q, we estimate $\mathbb{E}_{\pi}\left(\varphi\left(X
ight)
ight)$ through IS

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{IS}}\left(\varphi\left(X\right)\right) = \frac{\sum_{i=1}^{N} w\left(X^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}\right)}$$

or we "filter" the samples through rejection and propose instead

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{RS}}\left(\varphi\left(X\right)\right) = \frac{1}{K}\sum_{k=1}^{K}\varphi\left(X^{\left(i_{k}\right)}\right)$$

where $K \leq N$ is a random variable corresponding to the number of samples accepted.

• We want to know which strategy performs the best.

通 ト イヨ ト イヨ ト

• Define the artificial target $\overline{\pi}(x,y)$ on $E \times [0,1]$ as

$$\overline{\pi}(x,y) = \begin{cases} \frac{Cq(x)}{Z}, & \text{for } \left\{ (x,y) : x \in E \text{ and } y \in \left[0, \frac{\gamma(x)}{Cq(x)} \right] \right\} \\ 0 & \text{otherwise} \end{cases}$$

then

$$\int \overline{\pi}(x,y) \, dy = \int_{0}^{\frac{\gamma(x)}{Cq(x)}} \frac{Cq(x)}{Z} dy = \pi(x) \, .$$

3

イロト イ理ト イヨト イヨト

• Define the artificial target $\overline{\pi}(x, y)$ on $E \times [0, 1]$ as

$$\overline{\pi}(x,y) = \begin{cases} \frac{Cq(x)}{Z}, & \text{for } \left\{ (x,y) : x \in E \text{ and } y \in \left[0, \frac{\gamma(x)}{Cq(x)} \right] \right\}\\ 0 & \text{otherwise} \end{cases}$$

then

$$\int \overline{\pi}(x,y) \, dy = \int_{0}^{\frac{\gamma(x)}{Cq(x)}} \frac{Cq(x)}{Z} dy = \pi(x) \, .$$

• Now let us consider the proposal distribution

$$q\left(x,y
ight)=q\left(x
ight)\mathcal{U}_{\left[0,1
ight]}\left(y
ight) ext{ for }\left(x,y
ight)\in E imes\left[0,1
ight].$$

A B M A B M

 \bullet Then rejection sampling is nothing but IS on $\mathcal{X} \times [0,1]$ where

$$w(x,y) \propto \frac{\overline{\pi}(x,y)}{q(x)\mathcal{U}_{[0,1]}(y)} = \begin{cases} \frac{C\int q(x)dx}{Z} & \text{for } y \in \left[0, \frac{\gamma(x)}{Cq(x)}\right]\\ 0, & \text{otherwise.} \end{cases}$$

ullet Then rejection sampling is nothing but IS on $\mathcal{X}\times [0,1]$ where

$$w(x, y) \propto \frac{\overline{\pi}(x, y)}{q(x) \mathcal{U}_{[0,1]}(y)} = \begin{cases} \frac{C \int q(x) dx}{Z} & \text{for } y \in \left[0, \frac{\gamma(x)}{Cq(x)}\right] \\ 0, & \text{otherwise.} \end{cases}$$

• We have

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{RS}}\left(\varphi\left(X\right)\right) = \frac{1}{K}\sum_{k=1}^{K}\varphi\left(X^{(i_{k})}\right) = \frac{\sum_{i=1}^{N}w\left(X^{(i)}, Y^{(i)}\right)\varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N}w\left(X^{(i)}, Y^{(i)}\right)}.$$

-2

イロト イ理ト イヨト イヨト

• Then rejection sampling is nothing but IS on $\mathcal{X} imes [0,1]$ where

$$w(x, y) \propto \frac{\overline{\pi}(x, y)}{q(x) \mathcal{U}_{[0,1]}(y)} = \begin{cases} \frac{C \int q(x) dx}{Z} & \text{for } y \in \left[0, \frac{\gamma(x)}{Cq(x)}\right] \\ 0, & \text{otherwise.} \end{cases}$$

We have

$$\mathbb{E}_{\widehat{\pi}_{N}}^{\mathsf{RS}}\left(\varphi\left(X\right)\right) = \frac{1}{K} \sum_{k=1}^{K} \varphi\left(X^{(i_{k})}\right) = \frac{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right)}$$

• Compared to standard IS, RS performs IS on an enlarged space.

< 3 > < 3 >

• The variance of the importance weights from RS is higher than for standard IS:

$$\mathbb{V}\left[w\left(X,Y\right)\right] \geq \mathbb{V}\left[w\left(X\right)\right].$$

More precisely, we have

$$\mathbb{V} \left[w \left(X, Y \right) \right] = \mathbb{V} \left[\mathbb{E} \left[w \left(X, Y \right) | X \right] \right] + \mathbb{E} \left[\mathbb{V} \left[w \left(X, Y \right) | X \right] \right]$$

= $\mathbb{V} \left[w \left(X \right) \right] + \mathbb{E} \left[\mathbb{V} \left[w \left(X, Y \right) | X \right] \right].$

A B < A B <</p>

• The variance of the importance weights from RS is higher than for standard IS:

$$\mathbb{V}\left[w\left(X,Y\right)\right] \geq \mathbb{V}\left[w\left(X\right)\right].$$

More precisely, we have

$$\mathbb{V} \left[w \left(X, Y \right) \right] = \mathbb{V} \left[\mathbb{E} \left[w \left(X, Y \right) | X \right] \right] + \mathbb{E} \left[\mathbb{V} \left[w \left(X, Y \right) | X \right] \right]$$

= $\mathbb{V} \left[w \left(X \right) \right] + \mathbb{E} \left[\mathbb{V} \left[w \left(X, Y \right) | X \right] \right].$

• To compute integrals, RS is inefficient and you should simply use IS.

→ Ξ →

Introduction to Sequential Importance Sampling

 Aim: Design an IS method to approximate sequentially {π_n}_{n≥1} and to compute {Z_n}_{n≥1}.

Introduction to Sequential Importance Sampling

- Aim: Design an IS method to approximate sequentially {π_n}_{n≥1} and to compute {Z_n}_{n≥1}.
- At time 1, assume we have approximate π₁ (x₁) and Z₁ using an IS density q₁ (x₁); that is

$$\widehat{\pi}_{1}(dx_{1}) = \sum_{i=1}^{N} W_{1}^{(i)} \delta_{X_{1}^{(i)}}(dx) \text{ where } W_{1}^{(i)} \propto w_{1}\left(X_{1}^{(i)}\right),$$

$$\widehat{Z}_{1} = \frac{1}{N} \sum_{i=1}^{N} w_{1}\left(X_{1}^{(i)}\right)$$

with

$$w_1(x_1) = \frac{\gamma_1(x_1)}{q_1(x_1)}.$$

• At time 2, we want to approximate $\pi_2(x_{1:2})$ and Z_2 using an IS density $q_2(x_{1:2})$.

- At time 2, we want to approximate $\pi_2(x_{1:2})$ and Z_2 using an IS density $q_2(x_{1:2})$.
- We want to reuse the samples $\{X_1^{(i)}\}$ from $q_1(x_1)$ use to build the IS approximation of $\pi_1(x_1)$. This only makes sense if $\pi_2(x_1) \approx \pi_1(x_1)$.

- At time 2, we want to approximate π₂ (x_{1:2}) and Z₂ using an IS density q₂ (x_{1:2}).
- We want to reuse the samples $\{X_1^{(i)}\}$ from $q_1(x_1)$ use to build the IS approximation of $\pi_1(x_1)$. This only makes sense if $\pi_2(x_1) \approx \pi_1(x_1)$.
- We select

$$q_{2}(x_{1:2}) = q_{1}(x_{1}) q_{2}(x_{2}|x_{1})$$

so that to obtain $X_{1:2}^{(i)} \sim q_2(x_{1:2})$ we only need to sample $X_2^{(i)} | X_1^{(i)} \sim q_2(x_2 | X_1^{(i)})$.

Updating the IS approximation

• We have to compute the weights

$$w_{2}(x_{1:2}) = \frac{\gamma_{2}(x_{1:2})}{q_{2}(x_{1:2})} = \frac{\gamma_{2}(x_{1:2})}{q_{1}(x_{1}) q_{2}(x_{2}|x_{1})}$$
$$= \frac{\gamma_{1}(x_{1})}{q_{1}(x_{1})} \frac{\gamma_{2}(x_{1:2})}{\gamma_{1}(x_{1}) q_{2}(x_{2}|x_{1})}$$
$$= \underbrace{w_{1}(x_{1})}_{\text{previous weight}} \underbrace{\frac{\gamma_{2}(x_{1:2})}{\gamma_{1}(x_{1}) q_{2}(x_{2}|x_{1})}}_{\text{incremental weigh}}$$

Updating the IS approximation

• We have to compute the weights

$$w_{2}(x_{1:2}) = \frac{\gamma_{2}(x_{1:2})}{q_{2}(x_{1:2})} = \frac{\gamma_{2}(x_{1:2})}{q_{1}(x_{1}) q_{2}(x_{2}|x_{1})}$$
$$= \frac{\gamma_{1}(x_{1})}{q_{1}(x_{1})} \frac{\gamma_{2}(x_{1:2})}{\gamma_{1}(x_{1}) q_{2}(x_{2}|x_{1})}$$
$$= \underbrace{w_{1}(x_{1})}_{\text{previous weight}} \underbrace{\frac{\gamma_{2}(x_{1:2})}{\gamma_{1}(x_{1}) q_{2}(x_{2}|x_{1})}}_{\text{incremental weigh}}$$

• For the normalized weights

$$W_2^{(i)} \propto W_1^{(i)} \frac{\gamma_2\left(X_{1:2}^{(i)}\right)}{\gamma_1\left(X_1^{(i)}\right) q_2\left(X_2^{(i)} \middle| X_1^{(i)}\right)}$$

• Generally speaking, we use at time n

$$\begin{array}{rcl} q_n \left(x_{1:n} \right) & = & q_{n-1} \left(x_{1:n-1} \right) q_n \left(x_n \right| x_{1:n-1} \right) \\ & = & q_1 \left(x_1 \right) q_2 \left(x_2 \right| x_1 \right) \cdots q_n \left(x_n \right| x_{1:n-1} \right) \end{array}$$

so if $X_{1:n-1}^{(i)} \sim q_{n-1}(x_{1:n-1})$ then we only need to sample $X_n^{(i)} \left| X_{n-1}^{(i)} \sim q_n\left(x_n | X_{1:n-1}^{(i)}\right) \right|$.

30 / 40

個人 くほん くほん … ほ

• Generally speaking, we use at time n

$$q_n(x_{1:n}) = q_{n-1}(x_{1:n-1}) q_n(x_n | x_{1:n-1}) = q_1(x_1) q_2(x_2 | x_1) \cdots q_n(x_n | x_{1:n-1})$$

so if $X_{1:n-1}^{(i)} \sim q_{n-1}(x_{1:n-1})$ then we only need to sample $X_n^{(i)} | X_{n-1}^{(i)} \sim q_n \left(x_n | X_{1:n-1}^{(i)} \right)$.

The importance weights are updated according to

$$w_{n}(x_{1:n}) = \frac{\gamma_{n}(x_{1:n})}{q_{n}(x_{1:n})} = w_{n-1}(x_{1:n-1}) \frac{\gamma_{n}(x_{1:n})}{\gamma_{n-1}(x_{1:n-1}) q_{n}(x_{n}|x_{1:n-1})}$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Sequential Importance Sampling

• At time
$$n=1$$
, sample $X_1^{(i)}\sim q_1\left(\cdot
ight)$ and set $w_1\left(X_1^{(i)}
ight)=rac{\gamma_1\left(X_1^{(i)}
ight)}{q_1\left(X_1^{(i)}
ight)}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Sequential Importance Sampling

• At time n = 1, sample $X_1^{(i)} \sim q_1(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = \frac{\gamma_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)}$. • At time $n \ge 2$

Sequential Importance Sampling

- At time n = 1, sample $X_1^{(i)} \sim q_1(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = \frac{\gamma_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)}$.
- At time n ≥ 2
 - sample $X_n^{(i)} \sim q_n\left(\cdot | X_{1:n-1}^{(i)}
 ight)$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Sequential Importance Sampling

• At time
$$n = 1$$
, sample $X_1^{(i)} \sim q_1(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = rac{\gamma_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)}$.

• At time $n \ge 2$

• sample
$$X_n^{(i)} \sim q_n \left(\cdot | X_{1:n-1}^{(i)} \right)$$

• compute $w_n \left(X_{1:n}^{(i)} \right) = w_{n-1} \left(X_{1:n-1}^{(i)} \right) \frac{\gamma_n \left(X_{1:n-1}^{(i)} \right)}{\gamma_{n-1} \left(X_{1:n-1}^{(i)} \right) q_n \left(X_n^{(i)} | X_{1:n-1}^{(i)} \right)}.$

2

イロト イ理ト イヨト イヨトー

Sequential Importance Sampling

• At time
$$n = 1$$
, sample $X_1^{(i)} \sim q_1\left(\cdot\right)$ and set $w_1\left(X_1^{(i)}\right) = rac{\gamma_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)}$.

- At time $n \ge 2$ • sample $X_n^{(i)} \sim q_n \left(\cdot | X_{1:n-1}^{(i)} \right)$ • compute $w_n \left(X_{1:n}^{(i)} \right) = w_{n-1} \left(X_{1:n-1}^{(i)} \right) \frac{\gamma_n \left(X_{1:n-1}^{(i)} \right)}{\gamma_{n-1} \left(X_{1:n-1}^{(i)} \right) q_n \left(X_n^{(i)} | X_{1:n-1}^{(i)} \right)}.$
- At any time *n*, we have

$$X_{1:n}^{(i)} \sim q_n(x_{1:n}), \ w_n(X_{1:n}^{(i)}) = rac{\gamma_n(X_{1:n}^{(i)})}{q_n(X_{1:n}^{(i)})}$$

thus we can obtain easily an IS approximation of $\pi_n(x_{1:n})$ and of Z_n .

Sequential Importance Sampling for State-Space Models

State-space models

Hidden Markov process: $X_1 \sim \mu$, $X_k | (X_{k-1} = x_{k-1}) \sim f(\cdot | x_{k-1})$

Observation process: $Y_k | (X_k = x_k) \sim g(\cdot | x_k)$

Sequential Importance Sampling for State-Space Models

State-space models

Hidden Markov process: $X_1 \sim \mu$, $X_k | (X_{k-1} = x_{k-1}) \sim f(\cdot | x_{k-1})$

Observation process: $Y_k | (X_k = x_k) \sim g(\cdot | x_k)$

• Assume we receive $y_{1:n}$, we are interested in sampling from

$$\pi_{n}(x_{1:n}) = p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{p(y_{1:n})}$$

and estimating $p(y_{1:n})$ where

$$\gamma_{n}(x_{1:n}) = p(x_{1:n}, y_{1:n}) = \mu(x_{1}) \prod_{k=2}^{n} f(x_{k} | x_{k-1}) \prod_{k=1}^{n} g(y_{k} | x_{k}),$$
$$Z_{n} = p(y_{1:n}) = \int \cdots \int \mu(x_{1}) \prod_{k=2}^{n} f(x_{k} | x_{k-1}) \prod_{k=1}^{n} g(y_{k} | x_{k}) dx_{1:n}$$

• We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$.

• We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$.

• At time
$$n = 1$$
, sample $X_1^{(i)} \sim \mu(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = g\left(y_1 | X_1^{(i)}\right)$.

- We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$. • At time n = 1, sample $X_1^{(i)} \sim \mu(\cdot)$ and set $w_1(X_1^{(i)}) = g(y_1 | X_1^{(i)})$.
- At time $n \ge 2$

- We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$.
- At time n = 1, sample $X_1^{(i)} \sim \mu(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = g\left(y_1 | X_1^{(i)}\right)$.
- At time $n \ge 2$
 - sample $X_n^{(i)} \sim f\left(\cdot \mid X_{1:n-1}^{(i)}\right)$

伺下 くきト くきト

- We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$.
- At time n = 1, sample $X_1^{(i)} \sim \mu(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = g\left(y_1 | X_1^{(i)}\right)$.
- At time $n \ge 2$

• sample
$$X_n^{(i)} \sim f\left(\cdot | X_{1:n-1}^{(i)}\right)$$

• compute $w_n\left(X_{1:n}^{(i)}\right) = w_{n-1}\left(X_{1:n-1}^{(i)}\right)g\left(y_n | X_n^{(i)}\right)$.

3

・ロト ・ 同ト ・ ヨト ・ ヨト -

- We can select $q_1(x_1) = \mu(x_1)$ and $q_n(x_n | x_{1:n-1}) = q_n(x_n | x_{n-1}) = f(x_n | x_{n-1})$.
- At time n = 1, sample $X_1^{(i)} \sim \mu(\cdot)$ and set $w_1\left(X_1^{(i)}\right) = g\left(y_1 \mid X_1^{(i)}\right)$.
- At time n ≥ 2
 - sample $X_n^{(i)} \sim f\left(\cdot | X_{1:n-1}^{(i)}\right)$ • compute $w_n\left(X_{1:n}^{(i)}\right) = w_{n-1}\left(X_{1:n-1}^{(i)}\right)g\left(y_n | X_n^{(i)}\right)$.
- At any time *n*, we have

$$X_{1:n}^{(i)} \sim \mu(x_1) \prod_{k=2}^{n} f(x_k | x_{k-1}), \ w_n\left(X_{1:n}^{(i)}\right) = \prod_{k=1}^{n} g\left(y_k | X_k^{(i)}\right)$$

thus we can obtain easily an IS approximation of $p(x_{1:n}|y_{1:n})$ and of $p(y_{1:n})$.

Application to Stochastic Volatility Model

Figure: Histograms of the base 10 logarithm of $W_n^{(i)}$ for n = 1 (top), n = 50 (middle) and n = 100 (bottom).

• The algorithm performance collapse as *n* increases... After a few time steps, only a very small number of particles have non negligible

Structure of the Optimal Distribution

• The optimal zero-variance density at time n is simply given by

$$q_n(x_{1:n}) = \pi_n(x_{1:n}).$$

イロト イポト イヨト イヨト

Structure of the Optimal Distribution

• The optimal zero-variance density at time n is simply given by

$$q_n(x_{1:n})=\pi_n(x_{1:n}).$$

As we have

$$\pi_n(x_{1:n}) = \pi_n(x_1) \pi_n(x_2|x_1) \cdots \pi_n(x_n|x_{1:n-1}),$$

where $\pi_n(x_k | x_{1:k-1}) \propto \gamma_n(x_k | x_{1:k-1})$ it means that we have

$$q_{k}^{\text{opt}}(x_{k}|x_{1:k-1}) = \pi_{n}(x_{k}|x_{1:k-1}).$$

- ◆ 臣 ▶ - ◆ 臣 ▶

Structure of the Optimal Distribution

• The optimal zero-variance density at time n is simply given by

$$q_n(x_{1:n})=\pi_n(x_{1:n}).$$

As we have

$$\pi_{n}(x_{1:n}) = \pi_{n}(x_{1}) \pi_{n}(x_{2}|x_{1}) \cdots \pi_{n}(x_{n}|x_{1:n-1}),$$

where $\pi_n(x_k | x_{1:k-1}) \propto \gamma_n(x_k | x_{1:k-1})$ it means that we have

$$q_{k}^{\text{opt}}(x_{k}|x_{1:k-1}) = \pi_{n}(x_{k}|x_{1:k-1}).$$

 Obviously this result does depend on n so it is only useful if we are only interested in a specific target π_n (x_{1:n}) and in such scenarios we need to typically approximate π_n (x_k | x_{1:k-1}).

Locally Optimal Importance Distribution

 One sensible strategy consists of selecting q_n (x_n | x_{1:n-1}) at time n so as to minimize the variance of the importance weights.

Locally Optimal Importance Distribution

- One sensible strategy consists of selecting q_n (x_n | x_{1:n-1}) at time n so as to minimize the variance of the importance weights.
- We have for the importance weight

$$w_{n}(x_{1:n}) = \frac{\gamma_{n}(x_{1:n})}{q_{n-1}(x_{1:n-1}) q_{n}(x_{n}|x_{1:n-1})} \\ = \frac{Z_{n}\pi_{n}(x_{1:n-1})}{q_{n-1}(x_{1:n-1})} \frac{\pi_{n}(x_{n}|x_{1:n-1})}{q_{n}(x_{n}|x_{1:n-1})}$$

Locally Optimal Importance Distribution

- One sensible strategy consists of selecting q_n (x_n | x_{1:n-1}) at time n so as to minimize the variance of the importance weights.
- We have for the importance weight

$$w_{n}(x_{1:n}) = \frac{\gamma_{n}(x_{1:n})}{q_{n-1}(x_{1:n-1}) q_{n}(x_{n}|x_{1:n-1})} \\ = \frac{Z_{n}\pi_{n}(x_{1:n-1})}{q_{n-1}(x_{1:n-1})} \frac{\pi_{n}(x_{n}|x_{1:n-1})}{q_{n}(x_{n}|x_{1:n-1})}$$

It follows directly that we have

$$q_n^{\text{opt}}(x_n | x_{1:n-1}) = \pi_n(x_n | x_{1:n-1})$$

and

$$w_{n}(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{\gamma_{n}(x_{1:n})}{\gamma_{n-1}(x_{1:n-1}) \pi_{n}(x_{n} | x_{1:n-1})}$$

= $w_{n-1}(x_{1:n-1}) \frac{\gamma_{n}(x_{1:n-1})}{\gamma_{n-1}(x_{1:n-1})}$

• This locally optimal importance density will be used again and again.

2

(日) (周) (三) (三)

- This locally optimal importance density will be used again and again.
- It is often impossible to sample from $\pi_n(x_n | x_{1:n-1})$ and/or computing $\gamma_n(x_{1:n-1}) = \int \gamma_n(x_{1:n}) dx_n$.

・ロト ・四ト ・ヨト ・ヨトー

- This locally optimal importance density will be used again and again.
- It is often impossible to sample from $\pi_n(x_n | x_{1:n-1})$ and/or computing $\gamma_n(x_{1:n-1}) = \int \gamma_n(x_{1:n}) dx_n$.
- In such cases, it is necessary to approximate $\pi_n(x_n | x_{1:n-1})$ and $\gamma_n(x_{1:n-1})$.

Application to State-Space Models

• In the case of state-space models, we have

$$q_n^{\text{opt}}(x_n | x_{1:n-1}) = p(x_n | y_{1:n}, x_{1:n-1}) = p(x_n | y_n, x_{n-1})$$
$$= \frac{g(y_n | x_n) f(x_n | x_{n-1})}{p(y_n | x_{n-1})}$$

∃ ► < ∃ ►</p>

Application to State-Space Models

• In the case of state-space models, we have

$$q_n^{\text{opt}}(x_n | x_{1:n-1}) = p(x_n | y_{1:n}, x_{1:n-1}) = p(x_n | y_n, x_{n-1}) \\ = \frac{g(y_n | x_n) f(x_n | x_{n-1})}{p(y_n | x_{n-1})}$$

• In this case,

$$w_{n}(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{p(x_{1:n}, y_{1:n})}{p(x_{1:n-1}, y_{1:n-1}) p(x_{n}|y_{n}, x_{n-1})}$$

= $w_{n-1}(x_{1:n-1}) p(y_{n}|x_{n-1}).$

Application to State-Space Models

• In the case of state-space models, we have

$$q_n^{\text{opt}}(x_n | x_{1:n-1}) = p(x_n | y_{1:n}, x_{1:n-1}) = p(x_n | y_n, x_{n-1})$$
$$= \frac{g(y_n | x_n) f(x_n | x_{n-1})}{p(y_n | x_{n-1})}$$

In this case,

$$w_{n}(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{p(x_{1:n}, y_{1:n})}{p(x_{1:n-1}, y_{1:n-1}) p(x_{n}|y_{n}, x_{n-1})}$$

= $w_{n-1}(x_{1:n-1}) p(y_{n}|x_{n-1}).$

• **Example**: Consider $f(x_n | x_{n-1}) = \mathcal{N}(x_n; \alpha(x_{n-1}), \beta(x_{n-1}))$ and $g(y_n | x_n) = \mathcal{N}(x_n; \sigma_w^2)$ then $p(x_n | y_n, x_{n-1}) = \mathcal{N}(x_n; m(x_{n-1}), \sigma^2(x_{n-1}))$ with

$$\sigma^{2}(x_{n-1}) = \frac{\beta(x_{n-1})\sigma_{w}^{2}}{\beta(x_{n-1}) + \sigma_{w}^{2}}, \ m(x_{n-1}) = \sigma^{2}(x_{n-1})\left(\frac{\alpha(x_{n-1})}{\beta(x_{n-1})} + \frac{y_{n}}{\sigma_{w}^{2}}\right).$$

Application to Linear Gaussian State-Space Models

• Consider the simple model

$$X_n = \alpha X_{n-1} + V_n,$$

$$Y_n = X_n + \sigma W_n$$

where $X_{1} \sim \mathcal{N}\left(0,1\right)$, $V_{n} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right)$, $W_{n} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right)$.

イロト イ理ト イヨト イヨト

Application to Linear Gaussian State-Space Models

• Consider the simple model

$$X_n = \alpha X_{n-1} + V_n,$$

$$Y_n = X_n + \sigma W_n$$

where
$$X_1 \sim \mathcal{N}(0, 1)$$
, $V_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$, $W_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$.
• We use $q_n(x_n | x_{1:n-1}) = f(x_n | x_{n-1}) = \mathcal{N}(x_n; \alpha x_{n-1}, 1)$,

$$q_{n}(x_{n}|x_{1:n-1}) = f(x_{n}|x_{n-1}) = \mathcal{N}(x_{n}; \alpha x_{n-1}, 1),$$

$$q_{n}^{\text{opt}}(x_{n}|x_{1:n-1}) = p(x_{n}|y_{n}, x_{n-1})$$

= $\mathcal{N}\left(x_{n}; \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+1}\left(\alpha x_{n-1}+\frac{y_{n}}{\sigma_{w}^{2}}\right), \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+1}\right)$

• Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.

通 ト イヨ ト イヨト

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.

通 ト イヨ ト イヨト

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.
- Is there a way to partially fix this problem?

• • = • • = •