Importance Sampling \& Sequential Importance Sampling

Arnaud Doucet
Departments of Statistics \& Computer Science
University of British Columbia

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

- We want to estimate expectations of test functions $\varphi_{n}: E_{n} \rightarrow \mathbb{R}$

$$
\mathbb{E}_{\pi_{n}}\left(\varphi_{n}\right)=\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)
$$

and/or the normalizing constants Z_{n}.

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

- We want to estimate expectations of test functions $\varphi_{n}: E_{n} \rightarrow \mathbb{R}$

$$
\mathbb{E}_{\pi_{n}}\left(\varphi_{n}\right)=\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)
$$

and/or the normalizing constants Z_{n}.

- We want to do this sequentially; i.e. first π_{1} and/or Z_{1} at time 1 then π_{2} and/or Z_{2} at time 2 and so on.

Using Monte Carlo Methods

- Problem 1: For most problems of interest, we cannot sample from $\pi_{n}\left(x_{1: n}\right)$.

Using Monte Carlo Methods

- Problem 1: For most problems of interest, we cannot sample from $\pi_{n}\left(x_{1: n}\right)$.
- A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.

Using Monte Carlo Methods

- Problem 1: For most problems of interest, we cannot sample from $\pi_{n}\left(x_{1: n}\right)$.
- A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.
- Problem 2: Even if we could sample exactly from $\pi_{n}\left(x_{1: n}\right)$, then the computational complexity of the algorithm would most likely increase with n but we typically want an algorithm of fixed computational complexity at each time step.

Using Monte Carlo Methods

- Problem 1: For most problems of interest, we cannot sample from $\pi_{n}\left(x_{1: n}\right)$.
- A standard approach to sample from high dimensional distribution consists of using iterative Markov chain Monte Carlo algorithms, this is not appropriate in our context.
- Problem 2: Even if we could sample exactly from $\pi_{n}\left(x_{1: n}\right)$, then the computational complexity of the algorithm would most likely increase with n but we typically want an algorithm of fixed computational complexity at each time step.
- Summary: We cannot use standard MC sampling in our case and, even if we could, this would not solve our problem.

Plan of the Lectures

- Review of Importance Sampling.

Plan of the Lectures

- Review of Importance Sampling.
- Sequential Importance Sampling.

Plan of the Lectures

- Review of Importance Sampling.
- Sequential Importance Sampling.
- Applications.

Importance Sampling

- Importance Sampling (IS) identity. For any distribution q such that $\pi(x)>0 \Rightarrow q(x)>0$

$$
\pi(x)=\frac{w(x) q(x)}{\int w(x) q(x) d x} \text { where } w(x)=\frac{\gamma(x)}{q(x)}
$$

where q is called importance distribution and w importance weight.

Importance Sampling

- Importance Sampling (IS) identity. For any distribution q such that $\pi(x)>0 \Rightarrow q(x)>0$

$$
\pi(x)=\frac{w(x) q(x)}{\int w(x) q(x) d x} \text { where } w(x)=\frac{\gamma(x)}{q(x)}
$$

where q is called importance distribution and w importance weight.

- q can be chosen arbitrarily, in particular easy to sample from

$$
X^{(i)} \stackrel{\text { i.i.d. }}{\sim} q(\cdot) \Rightarrow \widehat{q}(d x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(d x)
$$

- Plugging this expression in IS identity

$$
\begin{aligned}
\widehat{\pi}(d x) & =\sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(d x) \text { where } W^{(i)} \propto w\left(X^{(i)}\right) \\
\hat{Z} & =\frac{1}{N} \sum_{i=1}^{N} w\left(X^{(i)}\right) .
\end{aligned}
$$

- Plugging this expression in IS identity

$$
\begin{aligned}
\widehat{\pi}(d x) & =\sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(d x) \text { where } W^{(i)} \propto w\left(X^{(i)}\right) \\
\widehat{Z} & =\frac{1}{N} \sum_{i=1}^{N} w\left(X^{(i)}\right)
\end{aligned}
$$

- $\pi(x)$ now approximated by weighted sum of delta-masses \Rightarrow Weights compensate for discrepancy between π and q.

Practical recommendations

- Select q as close to π as possible.

Practical recommendations

- Select q as close to π as possible.
- The varianec of the weights is bounded if and only if

$$
\int \frac{\gamma^{2}(x)}{q(x)} d x<\infty
$$

Practical recommendations

- Select q as close to π as possible.
- The varianec of the weights is bounded if and only if

$$
\int \frac{\gamma^{2}(x)}{q(x)} d x<\infty
$$

- In practice, try to ensure

$$
w(x)=\frac{\gamma(x)}{q(x)}<\infty
$$

Note that in this case, rejection sampling could be used to sample from $\pi(x)$.

Example

Figure: Target double exponential distributions and two IS distributions

Figure: IS approximation obtained using a Gaussian IS distribution

Figure: IS approximation obtained using a Student-t IS distribution

- We try to compute

$$
\int\left(\frac{x}{1-x}\right)^{2} \pi(x) d x
$$

where

$$
\pi(x)=\frac{\Gamma((v+1) / 2)}{\sqrt{v \pi} \Gamma(v / 2)}\left(1+\frac{x}{v}\right)^{-(v+1) / 2}
$$

is a t-student distribution with $v>1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G} a(v / 2, v / 2))$ using Monte Carlo.

- We try to compute

$$
\int\left(\frac{x}{1-x}\right)^{2} \pi(x) d x
$$

where

$$
\pi(x)=\frac{\Gamma((v+1) / 2)}{\sqrt{v \pi} \Gamma(v / 2)}\left(1+\frac{x}{v}\right)^{-(v+1) / 2}
$$

is a t-student distribution with $v>1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G} a(v / 2, v / 2))$ using Monte Carlo.

- We use $q_{1}(x)=\pi(x), q_{2}(x)=\frac{\Gamma(1)}{\sqrt{v \pi \Gamma(1 / 2)}}\left(1+\frac{x}{v \sigma}\right)^{-1}$ (Cauchy distribution) and $q_{3}(x)=\mathcal{N}\left(x ; 0, \frac{v}{v-2}\right)$ (variance chosen to match the variance of $\pi(x)$)
- We try to compute

$$
\int\left(\frac{x}{1-x}\right)^{2} \pi(x) d x
$$

where

$$
\pi(x)=\frac{\Gamma((v+1) / 2)}{\sqrt{v \pi} \Gamma(v / 2)}\left(1+\frac{x}{v}\right)^{-(v+1) / 2}
$$

is a t-student distribution with $v>1$ (you can sample from it by composition $\mathcal{N}(0,1) / \mathcal{G} a(v / 2, v / 2))$ using Monte Carlo.

- We use $q_{1}(x)=\pi(x), q_{2}(x)=\frac{\Gamma(1)}{\sqrt{v \pi \Gamma(1 / 2)}}\left(1+\frac{x}{v \sigma}\right)^{-1}$ (Cauchy distribution) and $q_{3}(x)=\mathcal{N}\left(x ; 0, \frac{v}{v-2}\right)$ (variance chosen to match the variance of $\pi(x)$)
- It is easy to see that

$$
\frac{\pi(x)}{q_{1}(x)}<\infty \text { and } \int \frac{\pi(x)^{2}}{q_{3}(x)} d x=\infty, \frac{\pi(x)}{q_{3}(x)} \text { is unbounded }
$$

Figure: Performance for $v=12$ with q_{1} (solid line), q_{2} (dashes) and q_{3} (light dots). Final values $1.14,1.14$ and 1.16 vs true value 1.13

- We now try to compute

$$
\int_{2.1}^{\infty} x^{5} \pi(x) d x
$$

- We now try to compute

$$
\int_{2.1}^{\infty} x^{5} \pi(x) d x
$$

- We try to use the same importance distribution but also use the fact that using a change of variables $u=1 / x$, we have

$$
\begin{aligned}
\int_{2.1}^{\infty} x^{5} \pi(x) d x & =\int_{0}^{1 / 2.1} u^{-7} \pi(1 / u) d u \\
& =\frac{1}{2.1} \int_{0}^{1 / 2.1} 2.1 u^{-7} \pi(1 / u) d u
\end{aligned}
$$

which is the expectation of $2.1 u^{-7} \pi(1 / u)$ with respect to $\mathcal{U}[0,1 / 2.1]$.

Figure: Performance for $v=12$ with q_{1} (solid), q_{2} (short dashes), q_{3} (dots), uniform (long dashes). Final values $6.75,6.48,7.06$ and 6.48 vs true value 6.54

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \gamma(\theta \mid x) \\
& \text { where } \gamma(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \gamma(\theta \mid x) \\
& \text { where } \gamma(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- We can use the prior distribution as a candidate distribution $q(\theta)=\pi(\theta)$.

Application to Bayesian Statistics

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \gamma(\theta \mid x) \\
& \text { where } \gamma(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- We can use the prior distribution as a candidate distribution $q(\theta)=\pi(\theta)$.
- We also get an estimate of the marginal likelihood

$$
\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta
$$

- Example: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$
\left(\begin{array}{ll}
p_{1} & 1-p_{1} \\
1-p_{2} & p_{2}
\end{array}\right)
$$

that is $\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=1\right)=1-\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=1\right)=p_{1}$ and $\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=2\right)=1-\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=2\right)=p_{2}$. Physical constraints tell us that $p_{1}+p_{2}<1$.

- Example: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$
\left(\begin{array}{ll}
p_{1} & 1-p_{1} \\
1-p_{2} & p_{2}
\end{array}\right)
$$

that is $\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=1\right)=1-\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=1\right)=p_{1}$ and $\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=2\right)=1-\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=2\right)=p_{2}$. Physical constraints tell us that $p_{1}+p_{2}<1$.

- Assume we observe x_{1}, \ldots, x_{m} and the prior is

$$
\pi\left(p_{1}, p_{2}\right)=2 \mathbb{I}_{p_{1}+p_{2} \leq 1}
$$

then the posterior is

$$
\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) \propto p_{1}^{m_{1,1}}\left(1-p_{1}\right)^{m_{1,2}}\left(1-p_{2}\right)^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{1}+p_{2} \leq 1}
$$

where

$$
m_{i, j}=\sum_{t=1}^{m-1} \mathbb{I}_{x_{t}=i} \mathbb{I}_{x_{t+1}=i}
$$

- Example: Application to Bayesian analysis of Markov chain. Consider a two state Markov chain with transition matrix F

$$
\left(\begin{array}{ll}
p_{1} & 1-p_{1} \\
1-p_{2} & p_{2}
\end{array}\right)
$$

that is $\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=1\right)=1-\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=1\right)=p_{1}$ and $\operatorname{Pr}\left(X_{t+1}=2 \mid X_{t}=2\right)=1-\operatorname{Pr}\left(X_{t+1}=1 \mid X_{t}=2\right)=p_{2}$. Physical constraints tell us that $p_{1}+p_{2}<1$.

- Assume we observe x_{1}, \ldots, x_{m} and the prior is

$$
\pi\left(p_{1}, p_{2}\right)=2 \mathbb{I}_{p_{1}+p_{2} \leq 1}
$$

then the posterior is

$$
\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) \propto p_{1}^{m_{1,1}}\left(1-p_{1}\right)^{m_{1,2}}\left(1-p_{2}\right)^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{1}+p_{2} \leq 1}
$$

where

$$
m_{i, j}=\sum_{t=1}^{m-1} \mathbb{I}_{x_{t}=i} \mathbb{I}_{x_{t+1}=i}
$$

- The posterior does not admit a standard expression and its normalizing constant is unknown. We can sample from it using rejection sampling.
- We are interested in estimating $\mathbb{E}\left[\varphi_{i}\left(p_{1}, p_{2}\right) \mid x_{1: m}\right]$ for $\varphi_{1}\left(p_{1}, p_{2}\right)=p_{1}, \varphi_{2}\left(p_{1}, p_{2}\right)=p_{2}, \varphi_{3}\left(p_{1}, p_{2}\right)=p_{1} /\left(1-p_{1}\right)$, $\varphi_{4}\left(p_{1}, p_{2}\right)=p_{2} /\left(1-p_{2}\right)$ and $\varphi_{5}\left(p_{1}, p_{2}\right)=\log \frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}$ using Importance Sampling.
- We are interested in estimating $\mathbb{E}\left[\varphi_{i}\left(p_{1}, p_{2}\right) \mid x_{1: m}\right]$ for $\varphi_{1}\left(p_{1}, p_{2}\right)=p_{1}, \varphi_{2}\left(p_{1}, p_{2}\right)=p_{2}, \varphi_{3}\left(p_{1}, p_{2}\right)=p_{1} /\left(1-p_{1}\right)$, $\varphi_{4}\left(p_{1}, p_{2}\right)=p_{2} /\left(1-p_{2}\right)$ and $\varphi_{5}\left(p_{1}, p_{2}\right)=\log \frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}$ using Importance Sampling.
- If there was no on $p_{1}+p_{2}<1$ and $\pi\left(p_{1}, p_{2}\right)$ was uniform on $[0,1] \times[0,1]$, then the posterior would be

$$
\begin{aligned}
\pi_{0}\left(p_{1}, p_{2} \mid x_{1: m}\right)= & \mathcal{B e}\left(p_{1} ; m_{1,1}+1, m_{1,2}+1\right) \\
& \mathcal{B e}\left(p_{2} ; m_{2,2}+1, m_{2,1}+1\right)
\end{aligned}
$$

but this is inefficient as for the given data ($m_{1,1}, m_{1,2}, m_{2,2}, m_{2,1}$) we have $\pi_{0}\left(p_{1}+p_{2}<1 \mid x_{1: m}\right)=0.21$.

- We are interested in estimating $\mathbb{E}\left[\varphi_{i}\left(p_{1}, p_{2}\right) \mid x_{1: m}\right]$ for $\varphi_{1}\left(p_{1}, p_{2}\right)=p_{1}, \varphi_{2}\left(p_{1}, p_{2}\right)=p_{2}, \varphi_{3}\left(p_{1}, p_{2}\right)=p_{1} /\left(1-p_{1}\right)$, $\varphi_{4}\left(p_{1}, p_{2}\right)=p_{2} /\left(1-p_{2}\right)$ and $\varphi_{5}\left(p_{1}, p_{2}\right)=\log \frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}$ using Importance Sampling.
- If there was no on $p_{1}+p_{2}<1$ and $\pi\left(p_{1}, p_{2}\right)$ was uniform on $[0,1] \times[0,1]$, then the posterior would be

$$
\begin{aligned}
\pi_{0}\left(p_{1}, p_{2} \mid x_{1: m}\right)= & \mathcal{B e}\left(p_{1} ; m_{1,1}+1, m_{1,2}+1\right) \\
& \mathcal{B e}\left(p_{2} ; m_{2,2}+1, m_{2,1}+1\right)
\end{aligned}
$$

but this is inefficient as for the given data ($m_{1,1}, m_{1,2}, m_{2,2}, m_{2,1}$) we have $\pi_{0}\left(p_{1}+p_{2}<1 \mid x_{1: m}\right)=0.21$.

- The form of the posterior suggests using a Dirichlet distribution with density

$$
\pi_{1}\left(p_{1}, p_{2} \mid x_{1: m}\right) \propto p_{1}^{m_{1,1}} p_{2}^{m_{2,2}}\left(1-p_{1}-p_{2}\right)^{m_{1,2}+m_{2,1}}
$$

but $\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) / \pi_{1}\left(p_{1}, p_{2} \mid x_{1: m}\right)$ is unbounded.

- (Geweke, 1989) proposed using the normal approximation to the binomial distribution

$$
\begin{aligned}
\pi_{2}\left(p_{1}, p_{2} \mid x_{1: m}\right) & \propto \exp \left(-\left(m_{1,1}+m_{1,2}\right)\left(p_{1}-\widehat{p}_{1}\right)^{2} /\left(2 \widehat{p}_{1}\left(1-\widehat{p}_{1}\right)\right)\right) \\
& \times \exp \left(-\left(m_{2,1}+m_{2,2}\right)\left(p_{2}-\widehat{p}_{2}\right)^{2} /\left(2 \widehat{p}_{2}\left(1-\widehat{p}_{2}\right)\right)\right)
\end{aligned}
$$

where $\widehat{p}_{1}=m_{1,1} /\left(m_{1,1}+m_{1,2}\right), \widehat{p}_{1}=m_{2,2} /\left(m_{2,2}+m_{2,1}\right)$. Then to simulate from this distribution, we simulate first $\pi_{2}\left(p_{1} \mid x_{1: m}\right)$ and then $\pi_{2}\left(p_{2} \mid x_{1: m}, p_{1}\right)$ which are univariate truncated Gaussian distribution which can be sampled using the inverse cdf method. The ratio $\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) / \pi_{2}\left(p_{1}, p_{2} \mid x_{1: m}\right)$ is upper bounded.

- (Geweke, 1989) proposed using the normal approximation to the binomial distribution
$\pi_{2}\left(p_{1}, p_{2} \mid x_{1: m}\right) \propto \exp \left(-\left(m_{1,1}+m_{1,2}\right)\left(p_{1}-\widehat{p}_{1}\right)^{2} /\left(2 \widehat{p}_{1}\left(1-\widehat{p}_{1}\right)\right)\right)$

$$
\times \exp \left(-\left(m_{2,1}+m_{2,2}\right)\left(p_{2}-\widehat{p}_{2}\right)^{2} /\left(2 \widehat{p}_{2}\left(1-\widehat{p}_{2}\right)\right)\right)
$$

where $\widehat{p}_{1}=m_{1,1} /\left(m_{1,1}+m_{1,2}\right), \widehat{p}_{1}=m_{2,2} /\left(m_{2,2}+m_{2,1}\right)$. Then to simulate from this distribution, we simulate first $\pi_{2}\left(p_{1} \mid x_{1: m}\right)$ and then $\pi_{2}\left(p_{2} \mid x_{1: m}, p_{1}\right)$ which are univariate truncated Gaussian distribution which can be sampled using the inverse cdf method. The ratio $\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) / \pi_{2}\left(p_{1}, p_{2} \mid x_{1: m}\right)$ is upper bounded.

- A final one consists of using

$$
\pi_{3}\left(p_{1}, p_{2} \mid x_{1: m}\right)=\mathcal{B} e\left(p_{1} ; m_{1,1}+1, m_{1,2}+1\right) \pi_{3}\left(p_{2} \mid x_{1: m}, p_{1}\right)
$$

where $\pi\left(p_{2} \mid x_{1: m}, p_{1}\right) \propto\left(1-p_{2}\right)^{m_{2,1}} p_{2}^{m_{2,2}} \mathbb{I}_{p_{2} \leq 1-p_{1}}$ is badly approximated through $\pi_{3}\left(p_{2} \mid x_{1: m}, p_{1}\right)=\frac{\frac{2}{2}}{\left(1-p_{1}\right)^{2}} p_{2} \mathbb{I}_{p_{2} \leq 1-p_{1}}$. It is straightforward to check that $\pi\left(p_{1}, p_{2} \mid x_{1: m}\right) / \pi_{3}\left(p_{1}, p_{2} \mid x_{1: m}\right) \propto$ $\left(1-p_{2}\right)^{m_{2,1}} p_{2}^{m_{2,2}} / \frac{2}{\left(1-p_{1}\right)^{2}} p_{2}<\infty$.

- Performance for $N=10,000$

Distribution	φ_{1}	φ_{2}	φ_{3}	φ_{4}	φ_{5}
π_{1}	0.748	0.139	3.184	0.163	2.957
π_{2}	0.689	0.210	2.319	0.283	2.211
π_{3}	0.697	0.189	2.379	0.241	2.358
π	0.697	0.189	2.373	0.240	2.358

- Performance for $N=10,000$

Distribution	φ_{1}	φ_{2}	φ_{3}	φ_{4}	φ_{5}
π_{1}	0.748	0.139	3.184	0.163	2.957
π_{2}	0.689	0.210	2.319	0.283	2.211
π_{3}	0.697	0.189	2.379	0.241	2.358
π	0.697	0.189	2.373	0.240	2.358

- Sampling from π using rejection sampling works well but is computationally expensive. π_{3} is computationally much cheaper whereas π_{1} does extremely poorly as expected.

Effective Sample Size

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having $q(x)$ as close as possible to $\pi(x)$.

Effective Sample Size

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having $q(x)$ as close as possible to $\pi(x)$.
- For flat functions, one can approximate the variance by

$$
\mathbb{V}\left(\mathbb{E}_{\widehat{\pi}_{N}}(\varphi(X))\right) \approx\left(1+\mathbb{V}_{q}(w(X))\right) \frac{\mathbb{V}_{\pi}(\varphi(X))}{N}
$$

Effective Sample Size

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having $q(x)$ as close as possible to $\pi(x)$.
- For flat functions, one can approximate the variance by

$$
\mathbb{V}\left(\mathbb{E}_{\hat{\pi}_{N}}(\varphi(X))\right) \approx\left(1+\mathbb{V}_{q}(w(X))\right) \frac{\mathbb{V}_{\pi}(\varphi(X))}{N}
$$

- Simple interpretation: The N weighted samples are approximately equivalent to M unweighted samples from π where

$$
M=\frac{N}{1+\mathbb{V}_{q}(w(X))} \leq N
$$

Limitations of Importance Sampling

- Consider the case where the target is defined on \mathbb{R}^{n} and

$$
\begin{aligned}
\pi\left(x_{1: n}\right) & =\prod_{k=1}^{n} \mathcal{N}\left(x_{k} ; 0,1\right) \\
\gamma\left(x_{1: n}\right) & =\prod_{k=1}^{n} \exp \left(-\frac{x_{k}^{2}}{2}\right), \\
Z & =(2 \pi)^{n / 2}
\end{aligned}
$$

Limitations of Importance Sampling

- Consider the case where the target is defined on \mathbb{R}^{n} and

$$
\begin{aligned}
\pi\left(x_{1: n}\right) & =\prod_{k=1}^{n} \mathcal{N}\left(x_{k} ; 0,1\right) \\
\gamma\left(x_{1: n}\right) & =\prod_{k=1}^{n} \exp \left(-\frac{x_{k}^{2}}{2}\right) \\
Z & =(2 \pi)^{n / 2}
\end{aligned}
$$

- We select an importance distribution

$$
q\left(x_{1: n}\right)=\prod_{k=1}^{n} \mathcal{N}\left(x_{k} ; 0, \sigma^{2}\right)
$$

Limitations of Importance Sampling

- Consider the case where the target is defined on \mathbb{R}^{n} and

$$
\begin{aligned}
\pi\left(x_{1: n}\right) & =\prod_{k=1}^{n} \mathcal{N}\left(x_{k} ; 0,1\right) \\
\gamma\left(x_{1: n}\right) & =\prod_{k=1}^{n} \exp \left(-\frac{x_{k}^{2}}{2}\right), \\
Z & =(2 \pi)^{n / 2} .
\end{aligned}
$$

- We select an importance distribution

$$
q\left(x_{1: n}\right)=\prod_{k=1}^{n} \mathcal{N}\left(x_{k} ; 0, \sigma^{2}\right)
$$

- In this case, we have $\mathbb{V}_{\text {IS }}[\widehat{Z}]<\infty$ only for $\sigma^{2}>\frac{1}{2}$ and

$$
\frac{\mathbb{V}_{\mathrm{IS}}[\hat{Z}]}{Z^{2}}=\frac{1}{N}\left[\left(\frac{\sigma^{4}}{2 \sigma^{2}-1}\right)^{n / 2}-1\right]
$$

- The variance increases exponentially with n even in this simple case.
- The variance increases exponentially with n even in this simple case.
- For example, if we select $\sigma^{2}=1.2$ then we have a reasonably good importance distribution as $q\left(x_{k}\right) \approx \pi\left(x_{k}\right)$ but $N \frac{\mathbb{V}_{\text {IS }}[\hat{Z}]}{Z^{2}} \approx(1.103)^{n / 2}$ which is approximately equal to 1.9×10^{21} for $n=1000$!
- The variance increases exponentially with n even in this simple case.
- For example, if we select $\sigma^{2}=1.2$ then we have a reasonably good importance distribution as $q\left(x_{k}\right) \approx \pi\left(x_{k}\right)$ but $N \frac{\mathbb{V}_{\text {IS }}[\hat{Z}]}{Z^{2}} \approx(1.103)^{n / 2}$ which is approximately equal to 1.9×10^{21} for $n=1000$!
- We would need to use $N \approx 2 \times 10^{23}$ particles to obtain a relative variance $\frac{\mathbb{V}_{\text {II }}[\hat{Z}]}{Z^{2}}=0.01$.

Importance Sampling versus Rejection Sampling

- Given N samples from q, we estimate $\mathbb{E}_{\pi}(\varphi(X))$ through IS

$$
\mathbb{E}_{\hat{\pi}_{N}}^{\text {IS }}(\varphi(X))=\frac{\sum_{i=1}^{N} w\left(X^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}\right)}
$$

or we "filter" the samples through rejection and propose instead

$$
\mathbb{E}_{\widehat{\pi}_{N}}^{\mathrm{RS}}(\varphi(X))=\frac{1}{K} \sum_{k=1}^{K} \varphi\left(X^{\left(i_{k}\right)}\right)
$$

where $K \leq N$ is a random variable corresponding to the number of samples accepted.

Importance Sampling versus Rejection Sampling

- Given N samples from q, we estimate $\mathbb{E}_{\pi}(\varphi(X))$ through IS

$$
\mathbb{E}_{\hat{\pi}_{N}}^{\text {IS }}(\varphi(X))=\frac{\sum_{i=1}^{N} w\left(X^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}\right)}
$$

or we "filter" the samples through rejection and propose instead

$$
\mathbb{E}_{\widehat{\pi}_{N}}^{\mathrm{RS}}(\varphi(X))=\frac{1}{K} \sum_{k=1}^{K} \varphi\left(X^{\left(i_{k}\right)}\right)
$$

where $K \leq N$ is a random variable corresponding to the number of samples accepted.

- We want to know which strategy performs the best.
- Define the artificial target $\bar{\pi}(x, y)$ on $E \times[0,1]$ as

$$
\bar{\pi}(x, y)= \begin{cases}\frac{C q(x)}{Z}, & \text { for }\left\{(x, y): x \in E \text { and } y \in\left[0, \frac{\gamma(x)}{C q(x)}\right]\right\} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\int \bar{\pi}(x, y) d y=\int_{0}^{\frac{\gamma(x)}{C q(x)}} \frac{C q(x)}{Z} d y=\pi(x)
$$

- Define the artificial target $\bar{\pi}(x, y)$ on $E \times[0,1]$ as

$$
\bar{\pi}(x, y)= \begin{cases}\frac{C q(x)}{Z}, & \text { for }\left\{(x, y): x \in E \text { and } y \in\left[0, \frac{\gamma(x)}{C q(x)}\right]\right\} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\int \bar{\pi}(x, y) d y=\int_{0}^{\frac{\gamma(x)}{C q(x)}} \frac{C q(x)}{Z} d y=\pi(x)
$$

- Now let us consider the proposal distribution

$$
q(x, y)=q(x) \mathcal{U}_{[0,1]}(y) \text { for }(x, y) \in E \times[0,1]
$$

- Then rejection sampling is nothing but IS on $\mathcal{X} \times[0,1]$ where

$$
w(x, y) \propto \frac{\bar{\pi}(x, y)}{q(x) \mathcal{U}_{[0,1]}(y)}= \begin{cases}\frac{C \int q(x) d x}{Z} & \text { for } y \in\left[0, \frac{\gamma(x)}{C q(x)}\right] \\ 0, & \text { otherwise }\end{cases}
$$

- Then rejection sampling is nothing but IS on $\mathcal{X} \times[0,1]$ where

$$
w(x, y) \propto \frac{\bar{\pi}(x, y)}{q(x) \mathcal{U}_{[0,1]}(y)}= \begin{cases}\frac{C \int q(x) d x}{Z} & \text { for } y \in\left[0, \frac{\gamma(x)}{C q(x)}\right] \\ 0, & \text { otherwise }\end{cases}
$$

- We have

$$
\mathbb{E}_{\hat{\pi}_{N}}^{\mathrm{RS}}(\varphi(X))=\frac{1}{K} \sum_{k=1}^{K} \varphi\left(X^{\left(i_{k}\right)}\right)=\frac{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right)}
$$

- Then rejection sampling is nothing but IS on $\mathcal{X} \times[0,1]$ where

$$
w(x, y) \propto \frac{\bar{\pi}(x, y)}{q(x) \mathcal{U}_{[0,1]}(y)}= \begin{cases}\frac{C \int q(x) d x}{Z} & \text { for } y \in\left[0, \frac{\gamma(x)}{C q(x)}\right] \\ 0, & \text { otherwise }\end{cases}
$$

- We have

$$
\mathbb{E}_{\hat{\pi}_{N}}^{\mathrm{RS}}(\varphi(X))=\frac{1}{K} \sum_{k=1}^{K} \varphi\left(X^{\left(i_{k}\right)}\right)=\frac{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right) \varphi\left(X^{(i)}\right)}{\sum_{i=1}^{N} w\left(X^{(i)}, Y^{(i)}\right)}
$$

- Compared to standard IS, RS performs IS on an enlarged space.
- The variance of the importance weights from RS is higher than for standard IS:

$$
\mathbb{V}[w(X, Y)] \geq \mathbb{V}[w(X)]
$$

More precisely, we have

$$
\begin{aligned}
\mathbb{V}[w(X, Y)] & =\mathbb{V}[\mathbb{E}[w(X, Y) \mid X]]+\mathbb{E}[\mathbb{V}[w(X, Y) \mid X]] \\
& =\mathbb{V}[w(X)]+\mathbb{E}[\mathbb{V}[w(X, Y) \mid X]] .
\end{aligned}
$$

- The variance of the importance weights from RS is higher than for standard IS:

$$
\mathbb{V}[w(X, Y)] \geq \mathbb{V}[w(X)]
$$

More precisely, we have

$$
\begin{aligned}
\mathbb{V}[w(X, Y)] & =\mathbb{V}[\mathbb{E}[w(X, Y) \mid X]]+\mathbb{E}[\mathbb{V}[w(X, Y) \mid X]] \\
& =\mathbb{V}[w(X)]+\mathbb{E}[\mathbb{V}[w(X, Y) \mid X]]
\end{aligned}
$$

- To compute integrals, RS is inefficient and you should simply use IS.

Introduction to Sequential Importance Sampling

- Aim: Design an IS method to approximate sequentially $\left\{\pi_{n}\right\}_{n \geq 1}$ and to compute $\left\{Z_{n}\right\}_{n \geq 1}$.

Introduction to Sequential Importance Sampling

- Aim: Design an IS method to approximate sequentially $\left\{\pi_{n}\right\}_{n \geq 1}$ and to compute $\left\{Z_{n}\right\}_{n \geq 1}$.
- At time 1 , assume we have approximate $\pi_{1}\left(x_{1}\right)$ and Z_{1} using an IS density $q_{1}\left(x_{1}\right)$; that is

$$
\begin{aligned}
\widehat{\pi}_{1}\left(d x_{1}\right) & =\sum_{i=1}^{N} W_{1}^{(i)} \delta_{x_{1}^{(i)}}(d x) \text { where } W_{1}^{(i)} \propto w_{1}\left(X_{1}^{(i)}\right) \\
\widehat{Z}_{1} & =\frac{1}{N} \sum_{i=1}^{N} w_{1}\left(X_{1}^{(i)}\right)
\end{aligned}
$$

with

$$
w_{1}\left(x_{1}\right)=\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)}
$$

- At time 2, we want to approximate $\pi_{2}\left(x_{1: 2}\right)$ and Z_{2} using an IS density $q_{2}\left(x_{1: 2}\right)$.
- At time 2, we want to approximate $\pi_{2}\left(x_{1: 2}\right)$ and Z_{2} using an IS density $q_{2}\left(x_{1: 2}\right)$.
- We want to reuse the samples $\left\{X_{1}^{(i)}\right\}$ from $q_{1}\left(x_{1}\right)$ use to build the IS approximation of $\pi_{1}\left(x_{1}\right)$. This only makes sense if $\pi_{2}\left(x_{1}\right) \approx \pi_{1}\left(x_{1}\right)$.
- At time 2, we want to approximate $\pi_{2}\left(x_{1: 2}\right)$ and Z_{2} using an IS density $q_{2}\left(x_{1: 2}\right)$.
- We want to reuse the samples $\left\{X_{1}^{(i)}\right\}$ from $q_{1}\left(x_{1}\right)$ use to build the IS approximation of $\pi_{1}\left(x_{1}\right)$. This only makes sense if $\pi_{2}\left(x_{1}\right) \approx \pi_{1}\left(x_{1}\right)$.
- We select

$$
q_{2}\left(x_{1: 2}\right)=q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)
$$

so that to obtain $X_{1: 2}^{(i)} \sim q_{2}\left(x_{1: 2}\right)$ we only need to sample $X_{2}^{(i)} \mid X_{1}^{(i)} \sim q_{2}\left(x_{2} \mid X_{1}^{(i)}\right)$.

Updating the IS approximation

- We have to compute the weights

$$
\begin{aligned}
w_{2}\left(x_{1: 2}\right) & =\frac{\gamma_{2}\left(x_{1: 2}\right)}{q_{2}\left(x_{1: 2}\right)}=\frac{\gamma_{2}\left(x_{1: 2}\right)}{q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)} \\
& =\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)} \frac{\gamma_{2}\left(x_{1: 2}\right)}{\gamma_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)} \\
& =\underbrace{w_{1}\left(x_{1}\right)}_{\text {previous weight }} \underbrace{\frac{\gamma_{2}\left(x_{1: 2}\right)}{\gamma_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)}}_{\text {incremental weigh }}
\end{aligned}
$$

Updating the IS approximation

- We have to compute the weights

$$
\begin{aligned}
w_{2}\left(x_{1: 2}\right) & =\frac{\gamma_{2}\left(x_{1: 2}\right)}{q_{2}\left(x_{1: 2}\right)}=\frac{\gamma_{2}\left(x_{1: 2}\right)}{q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)} \\
& =\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)} \frac{\gamma_{2}\left(x_{1: 2}\right)}{\gamma_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)} \\
& =\underbrace{w_{1}\left(x_{1}\right)}_{\text {previous weight }} \underbrace{\frac{\gamma_{2}\left(x_{1: 2}\right)}{\gamma_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right)}}_{\text {incremental weigh }}
\end{aligned}
$$

- For the normalized weights

$$
W_{2}^{(i)} \propto W_{1}^{(i)} \frac{\gamma_{2}\left(X_{1: 2}^{(i)}\right)}{\gamma_{1}\left(X_{1}^{(i)}\right) q_{2}\left(X_{2}^{(i)} \mid X_{1}^{(i)}\right)}
$$

- Generally speaking, we use at time n

$$
\begin{aligned}
q_{n}\left(x_{1: n}\right) & =q_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right) \\
& =q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right)
\end{aligned}
$$

so if $X_{1: n-1}^{(i)} \sim q_{n-1}\left(x_{1: n-1}\right)$ then we only need to sample $X_{n}^{(i)} \mid X_{n-1}^{(i)} \sim q_{n}\left(x_{n} \mid X_{1: n-1}^{(i)}\right)$.

- Generally speaking, we use at time n

$$
\begin{aligned}
q_{n}\left(x_{1: n}\right) & =q_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right) \\
& =q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right)
\end{aligned}
$$

so if $X_{1: n-1}^{(i)} \sim q_{n-1}\left(x_{1: n-1}\right)$ then we only need to sample $X_{n}^{(i)} \mid X_{n-1}^{(i)} \sim q_{n}\left(x_{n} \mid X_{1: n-1}^{(i)}\right)$.

- The importance weights are updated according to

$$
w_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{q_{n}\left(x_{1: n}\right)}=w_{n-1}\left(x_{1: n-1}\right) \frac{\gamma_{n}\left(x_{1: n}\right)}{\gamma_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right)}
$$

Sequential Importance Sampling

- At time $n=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.

Sequential Importance Sampling

- At time $n=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $n \geq 2$

Sequential Importance Sampling

- At time $n=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim q_{n}\left(\cdot \mid X_{1: n-1}^{(i)}\right)$

Sequential Importance Sampling

- At time $n=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim q_{n}\left(\cdot \mid X_{1: n-1}^{(i)}\right)$
- compute $w_{n}\left(X_{1: n}^{(i)}\right)=w_{n-1}\left(X_{1: n-1}^{(i)}\right) \frac{\gamma_{n}\left(X_{1: n}^{(i)}\right)}{\gamma_{n-1}\left(X_{1: n-1}^{(i)}\right) q_{n}\left(X_{n}^{(i)} \mid X_{1: n-1}^{(i)}\right)}$.

Sequential Importance Sampling

- At time $n=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim q_{n}\left(\cdot \mid X_{1: n-1}^{(i)}\right)$
- compute $w_{n}\left(X_{1: n}^{(i)}\right)=w_{n-1}\left(X_{1: n-1}^{(i)}\right) \frac{\gamma_{n}\left(X_{1: n}^{(i)}\right)}{\gamma_{n-1}\left(X_{1: n-1}^{(i)}\right) q_{n}\left(X_{n}^{(i)} \mid X_{1: n-1}^{(i)}\right)}$.
- At any time n, we have

$$
X_{1: n}^{(i)} \sim q_{n}\left(x_{1: n}\right), w_{n}\left(X_{1: n}^{(i)}\right)=\frac{\gamma_{n}\left(X_{1: n}^{(i)}\right)}{q_{n}\left(X_{1: n}^{(i)}\right)}
$$

thus we can obtain easily an IS approximation of $\pi_{n}\left(x_{1: n}\right)$ and of Z_{n}.

Sequential Importance Sampling for State-Space Models

- State-space models

Hidden Markov process: $X_{1} \sim \mu, X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f\left(\cdot \mid x_{k-1}\right)$
Observation process: $Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g\left(\cdot \mid x_{k}\right)$

Sequential Importance Sampling for State-Space Models

- State-space models

Hidden Markov process: $X_{1} \sim \mu, X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f\left(\cdot \mid x_{k-1}\right)$
Observation process: $Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g\left(\cdot \mid x_{k}\right)$

- Assume we receive $y_{1: n}$, we are interested in sampling from

$$
\pi_{n}\left(x_{1: n}\right)=p\left(x_{1: n} \mid y_{1: n}\right)=\frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(y_{1: n}\right)}
$$

and estimating $p\left(y_{1: n}\right)$ where

$$
\begin{aligned}
& \gamma_{n}\left(x_{1: n}\right)=p\left(x_{1: n}, y_{1: n}\right)=\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right) \\
& Z_{n}=p\left(y_{1: n}\right)=\int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right) d x_{1: n}
\end{aligned}
$$

- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and
$q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right)$.
- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and

$$
q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right) .
$$

- At time $n=1$, sample $X_{1}^{(i)} \sim \mu(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=g\left(y_{1} \mid X_{1}^{(i)}\right)^{1}
$$

- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and

$$
q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right) .
$$

- At time $n=1$, sample $X_{1}^{(i)} \sim \mu(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=g\left(y_{1} \mid X_{1}^{(i)}\right)$.
- At time $n \geq 2$
- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and

$$
q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right) .
$$

- At time $n=1$, sample $X_{1}^{(i)} \sim \mu(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=g\left(y_{1} \mid X_{1}^{(i)}\right)^{1}
$$

- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim f\left(\cdot \mid X_{1: n-1}^{(i)}\right)$
- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and

$$
q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right) .
$$

- At time $n=1$, sample $X_{1}^{(i)} \sim \mu(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=g\left(y_{1} \mid X_{1}^{(i)}\right)^{1}
$$

- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim f\left(\cdot \mid X_{1: n-1}^{(i)}\right)$
- compute $w_{n}\left(X_{1: n}^{(i)}\right)=w_{n-1}\left(X_{1: n-1}^{(i)}\right) g\left(y_{n} \mid X_{n}^{(i)}\right)$.
- We can select $q_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)$ and
$q_{n}\left(x_{n} \mid x_{1: n-1}\right)=q_{n}\left(x_{n} \mid x_{n-1}\right)=f\left(x_{n} \mid x_{n-1}\right)$.
- At time $n=1$, sample $X_{1}^{(i)} \sim \mu(\cdot)$ and set
$w_{1}\left(X_{1}^{(i)}\right)=g\left(y_{1} \mid X_{1}^{(i)}\right)$.
- At time $n \geq 2$
- sample $X_{n}^{(i)} \sim f\left(\cdot \mid X_{1: n-1}^{(i)}\right)$
- compute $w_{n}\left(X_{1: n}^{(i)}\right)=w_{n-1}\left(X_{1: n-1}^{(i)}\right) g\left(y_{n} \mid X_{n}^{(i)}\right)$.
- At any time n, we have

$$
X_{1: n}^{(i)} \sim \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right), w_{n}\left(X_{1: n}^{(i)}\right)=\prod_{k=1}^{n} g\left(y_{k} \mid X_{k}^{(i)}\right)
$$

thus we can obtain easily an IS approximation of $p\left(x_{1: n} \mid y_{1: n}\right)$ and of $p\left(y_{1: n}\right)$.

Application to Stochastic Volatility Model

Figure: Histograms of the base 10 logarithm of $W_{n}^{(i)}$ for $n=1$ (top), $n=50$ (middle) and $n=100$ (bottom).

- The algorithm performance collapse as n increases... After a few time steps, only a very small number of particles have non negligible

Structure of the Optimal Distribution

- The optimal zero-variance density at time n is simply given by

$$
q_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) .
$$

Structure of the Optimal Distribution

- The optimal zero-variance density at time n is simply given by

$$
q_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right)
$$

- As we have

$$
\pi_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1}\right) \pi_{n}\left(x_{2} \mid x_{1}\right) \cdots \pi_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

where $\pi_{n}\left(x_{k} \mid x_{1: k-1}\right) \propto \gamma_{n}\left(x_{k} \mid x_{1: k-1}\right)$ it means that we have

$$
q_{k}^{\mathrm{opt}}\left(x_{k} \mid x_{1: k-1}\right)=\pi_{n}\left(x_{k} \mid x_{1: k-1}\right)
$$

Structure of the Optimal Distribution

- The optimal zero-variance density at time n is simply given by

$$
q_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right)
$$

- As we have

$$
\pi_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1}\right) \pi_{n}\left(x_{2} \mid x_{1}\right) \cdots \pi_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

where $\pi_{n}\left(x_{k} \mid x_{1: k-1}\right) \propto \gamma_{n}\left(x_{k} \mid x_{1: k-1}\right)$ it means that we have

$$
q_{k}^{\mathrm{opt}}\left(x_{k} \mid x_{1: k-1}\right)=\pi_{n}\left(x_{k} \mid x_{1: k-1}\right) .
$$

- Obviously this result does depend on n so it is only useful if we are only interested in a specific target $\pi_{n}\left(x_{1: n}\right)$ and in such scenarios we need to typically approximate $\pi_{n}\left(x_{k} \mid x_{1: k-1}\right)$.

Locally Optimal Importance Distribution

- One sensible strategy consists of selecting $q_{n}\left(x_{n} \mid x_{1: n-1}\right)$ at time n so as to minimize the variance of the importance weights.

Locally Optimal Importance Distribution

- One sensible strategy consists of selecting $q_{n}\left(x_{n} \mid x_{1: n-1}\right)$ at time n so as to minimize the variance of the importance weights.
- We have for the importance weight

$$
\begin{aligned}
w_{n}\left(x_{1: n}\right) & =\frac{\gamma_{n}\left(x_{1: n}\right)}{q_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right)} \\
& =\frac{Z_{n} \pi_{n}\left(x_{1: n-1}\right)}{q_{n-1}\left(x_{1: n-1}\right)} \frac{\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)}{q_{n}\left(x_{n} \mid x_{1: n-1}\right)}
\end{aligned}
$$

Locally Optimal Importance Distribution

- One sensible strategy consists of selecting $q_{n}\left(x_{n} \mid x_{1: n-1}\right)$ at time n so as to minimize the variance of the importance weights.
- We have for the importance weight

$$
\begin{aligned}
w_{n}\left(x_{1: n}\right) & =\frac{\gamma_{n}\left(x_{1: n}\right)}{q_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right)} \\
& =\frac{Z_{n} \pi_{n}\left(x_{1: n-1}\right)}{q_{n-1}\left(x_{1: n-1}\right)} \frac{\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)}{q_{n}\left(x_{n} \mid x_{1: n-1}\right)}
\end{aligned}
$$

- It follows directly that we have

$$
q_{n}^{\mathrm{opt}}\left(x_{n} \mid x_{1: n-1}\right)=\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

and

$$
\begin{aligned}
w_{n}\left(x_{1: n}\right) & =w_{n-1}\left(x_{1: n-1}\right) \frac{\gamma_{n}\left(x_{1: n}\right)}{\gamma_{n-1}\left(x_{1: n-1}\right) \pi_{n}\left(x_{n} \mid x_{1: n-1}\right)} \\
& =w_{n-1}\left(x_{1: n-1}\right) \frac{\gamma_{n}\left(x_{1: n-1}\right)}{\gamma_{n-1}\left(x_{1: n-1}\right)}
\end{aligned}
$$

- This locally optimal importance density will be used again and again.
- This locally optimal importance density will be used again and again.
- It is often impossible to sample from $\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)$ and/or computing $\gamma_{n}\left(x_{1: n-1}\right)=\int \gamma_{n}\left(x_{1: n}\right) d x_{n}$.
- This locally optimal importance density will be used again and again.
- It is often impossible to sample from $\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)$ and/or computing $\gamma_{n}\left(x_{1: n-1}\right)=\int \gamma_{n}\left(x_{1: n}\right) d x_{n}$.
- In such cases, it is necessary to approximate $\pi_{n}\left(x_{n} \mid x_{1: n-1}\right)$ and $\gamma_{n}\left(x_{1: n-1}\right)$.

Application to State-Space Models

- In the case of state-space models, we have

$$
\begin{aligned}
q_{n}^{\text {opt }}\left(x_{n} \mid x_{1: n-1}\right) & =p\left(x_{n} \mid y_{1: n}, x_{1: n-1}\right)=p\left(x_{n} \mid y_{n}, x_{n-1}\right) \\
& =\frac{g\left(y_{n} \mid x_{n}\right) f\left(x_{n} \mid x_{n-1}\right)}{p\left(y_{n} \mid x_{n-1}\right)}
\end{aligned}
$$

Application to State-Space Models

- In the case of state-space models, we have

$$
\begin{aligned}
q_{n}^{\text {opt }}\left(x_{n} \mid x_{1: n-1}\right) & =p\left(x_{n} \mid y_{1: n}, x_{1: n-1}\right)=p\left(x_{n} \mid y_{n}, x_{n-1}\right) \\
& =\frac{g\left(y_{n} \mid x_{n}\right) f\left(x_{n} \mid x_{n-1}\right)}{p\left(y_{n} \mid x_{n-1}\right)}
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
w_{n}\left(x_{1: n}\right) & =w_{n-1}\left(x_{1: n-1}\right) \frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(x_{1: n-1}, y_{1: n-1}\right) p\left(x_{n} \mid y_{n}, x_{n-1}\right)} \\
& =w_{n-1}\left(x_{1: n-1}\right) p\left(y_{n} \mid x_{n-1}\right) .
\end{aligned}
$$

Application to State-Space Models

- In the case of state-space models, we have

$$
\begin{aligned}
q_{n}^{\text {opt }}\left(x_{n} \mid x_{1: n-1}\right) & =p\left(x_{n} \mid y_{1: n}, x_{1: n-1}\right)=p\left(x_{n} \mid y_{n}, x_{n-1}\right) \\
& =\frac{g\left(y_{n} \mid x_{n}\right) f\left(x_{n} \mid x_{n-1}\right)}{p\left(y_{n} \mid x_{n-1}\right)}
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
w_{n}\left(x_{1: n}\right) & =w_{n-1}\left(x_{1: n-1}\right) \frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(x_{1: n-1}, y_{1: n-1}\right) p\left(x_{n} \mid y_{n}, x_{n-1}\right)} \\
& =w_{n-1}\left(x_{1: n-1}\right) p\left(y_{n} \mid x_{n-1}\right) .
\end{aligned}
$$

- Example: Consider $f\left(x_{n} \mid x_{n-1}\right)=\mathcal{N}\left(x_{n} ; \alpha\left(x_{n-1}\right), \beta\left(x_{n-1}\right)\right)$ and

$$
\begin{aligned}
& g\left(y_{n} \mid x_{n}\right)=\mathcal{N}\left(x_{n} ; \sigma_{w}^{2}\right) \text { then } \\
& p\left(x_{n} \mid y_{n}, x_{n-1}\right)=\mathcal{N}\left(x_{n} ; m\left(x_{n-1}\right), \sigma^{2}\left(x_{n-1}\right)\right) \text { with }
\end{aligned}
$$

$$
\sigma^{2}\left(x_{n-1}\right)=\frac{\beta\left(x_{n-1}\right) \sigma_{w}^{2}}{\beta\left(x_{n-1}\right)+\sigma_{w}^{2}}, m\left(x_{n-1}\right)=\sigma^{2}\left(x_{n-1}\right)\left(\frac{\alpha\left(x_{n-1}\right)}{\beta\left(x_{n-1}\right)}+\frac{y_{n}}{\sigma_{w}^{2}}\right) .
$$

Application to Linear Gaussian State-Space Models

- Consider the simple model

$$
\begin{aligned}
X_{n} & =\alpha X_{n-1}+V_{n} \\
Y_{n} & =X_{n}+\sigma W_{n}
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}(0,1), V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$.

Application to Linear Gaussian State-Space Models

- Consider the simple model

$$
\begin{aligned}
X_{n} & =\alpha X_{n-1}+V_{n} \\
Y_{n} & =X_{n}+\sigma W_{n}
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}(0,1), V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$.

- We use $q_{n}\left(x_{n} \mid x_{1: n-1}\right)=f\left(x_{n} \mid x_{n-1}\right)=\mathcal{N}\left(x_{n} ; \alpha x_{n-1}, 1\right)$,

$$
\begin{aligned}
& q_{n}\left(x_{n} \mid x_{1: n-1}\right)=f\left(x_{n} \mid x_{n-1}\right)=\mathcal{N}\left(x_{n} ; \alpha x_{n-1}, 1\right), \\
& q_{n}^{\mathrm{opt}}\left(x_{n} \mid x_{1: n-1}\right)=p\left(x_{n} \mid y_{n}, x_{n-1}\right) \\
&=\mathcal{N}\left(x_{n} ; \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+1}\left(\alpha x_{n-1}+\frac{y_{n}}{\sigma_{w}^{2}}\right), \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+1}\right) .
\end{aligned}
$$

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.
- Is there a way to partially fix this problem?

