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1 Gibbs Sampling

Let x = (x1, x2, ..., xp). In order to obtain samples x(i) from the joint distribution P (x) do the following:

• Initialize x(0) and let i = 0.

• Repeatedly:
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Set i = i + 1

It is possible to do this block-wise, i.e. sample blocks of the xi together. Various approaches exist (and can
be justified) to ordering the variables in the sampling loop. One approach is random sweeps: variables are
chosen at random to resample.

Figure 1: x1, x2 actually independent. Gibbs sampler makes big jumps. This is desirable.
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2 Sampling Methods

Figure 2: x1, x2 highly correlated. Gibbs sampler makes only small moves. This is called chattering and is
undesirable.

Example 1 (Gibbs Sampling).

yij ∼ N (θj , σ
2)

θj ∼ N (µ, τ2)
(µ, σ, τ) ∝ 1

σ

We want to sample all of (θ1, ..., θJ , µ, σ, τ |y). Here’s the Gibbs sampler:
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2 Slice Sampling

Slice sampling is a special case of Gibbs sampling (in a product space). Consider the goal of obtaining
samples from P (x). Introduce a new random variable u, conditioned on x, in the following way:

x ∼ P (x)
u|x ∼ Uniform([0, P (x)])

This yields a joint distribution P (x, u) such that the marginal distribution on x is the original P (x). Hence,
if we can obtain samples from P (x, u), simply ignoring u will give us samples from P (x). The Gibbs sampler
for sampling from P (x, u) has the following convenient updates:

Sample u(i+1) ∼ Uniform([0, p(x(i))])
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Sample x(i+1) ∼ Uniform({x : p(x) > u(i+1)})

See Neal (2003) for details on efficient book keeping in slice sampling, and in particular how to efficiently
keep track of slices for x: {x : p(x) > u(i+1)}.
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Figure 3: Multimodal distribution where slice for x has two distinct regions.

3 Simulated Annealing

Simulated annealing is mainly used for optimization, but can be used for sampling.

Define a temperature ti at iteration i.

Sample x(i+1) ∼ (p(x))
1
ti (usually via Metropolis-Hastings since it does not require the normalization

constant.)

At each iteration t decreases: ti+1 < ti. If t goes to 0, simulated annealing performs optimization. If t goes
to 1, simulated annealing performs sampling.

Remark 2. Simulated tempering involves running multiple Metropolis-Hastings chains in parallel at different
temperatures. Part of the proposal involves proposing to switch between different chains.
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