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1 MCMC Foundations

Definition 1 (Reversibility). Let (Xn) be positive (i.e. ψ irreducible and has an invariant probability
measure), then it is said to be reversible if

(Xn+1|Xn+2 = X)
d
= (Xn+1|Xn = X). (1)

Definition 2. (Xn) is said to satisfy the detailed balance conditions if there existis a function f such that

k(y, x)f(y) = k(x, y)f(x), (2)

corresponding to the measure k(X, .).

Theorem 3. Let (Xn) satisfy the detailed balance conditions, where f is the density corresponding to a

probability measure π. We then have

1. π is the invariant measure of (Xn).

2. (Xn) is reversible.

Theorem 4. Let (Xn) be Harris positive. Suppose there exists an ergodic atom α, we then have

lim
n→∞

||Kn(X, .) − π(.)||TV = 0, (3)

where the norm is under the Total Variation norm.

Theorem 5 (Ergodicity). Let π be a σ−finite invariant measure for (Xn). Let Sn(h) = 1
n

∑n

i=1 h(Xi),
h ∈ L∞(π), we then have

lim
n→∞

Sn(h) =

∫

h(x)π(dx), (4)

iff (Xn) is Harris recurrent.

Ergodicity says that, even though there is memory in the system, the sample average goes to the expected
value under the invariant measure.

2 Invariant measure for the Metropolis Hastings

Let’s now analyze the Metropolis Hastings algorithm which is a MCMC sampling algorithm and see if the
samples that we get are indeed from the desired density function. Let f(.) be the density of interest from
which we intend to sample and let q(.|.) be the proposal density. The acceptance probability is given by

ρ(x, y) = min

(

1,
f(y)q(x|y)

f(x)q(y|x)

)

. (5)
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The kernel for this is then given by

k(x, y) = q(y|x)ρ(x, y) + δx(y)(1 − r(x)), (6)

where r(x) =
∫

ρ(x, y)q(y|x)dy and δx(y) is the standard dirac-delta function. Let’s now see how this kernel
comes about. We have the following

K(x(t), A) = P (X(t+1) ∈ A|X(t) = x(t)) (7)

Let

zt =

{

1 if x(t) is accepted
0 otherwise

(8)

We can now express K(x(t), A) as follows

K(x(t), A) = P (X(t+1) ∈ A, zt = 1|X(t) = x(t)) + P (X(t+1) ∈ A, zt = 0|X(t) = x(t))

= P (zt = 1|X(t) = x(t),X(t+1) ∈ A)P (X(t+1) ∈ A|X(t) = x(t)) +

P (zt = 0|X(t) = x(t),X(t+1) ∈ A)P (X(t+1) ∈ A|X(t) = x(t))

=

∫

A

q(y|x(t))ρ(x(t), y)dy + δA(x(t))

∫

A

(1 − ρ(x(t), y))q(y|x(t))dy

Thus we get k(x, y) as defined before.

Let’s now check if the detailed balance equations are satisfied. Consider the first term of k(x, y)f(x). We
have

q(y|x)ρ(x, y)f(x) = f(x)min

(

1,
f(y)q(x|y)

f(x)q(y|x)

)

q(y|x)

= min

(

f(x),
f(y)q(x|y)

q(y|x)

)

q(y|x)

= min

(

f(x)

f(y)

q(y|x)

q(x|y)
, 1

)

f(y)q(x|y)

= q(x|y)ρ(y, x)f(y).

The second term of k(x, y)f(x) is given by

f(x)δx(y)(1 − r(x)) = f(y)δy(x)(1 − r(y)). (9)

From the above two equations we can see that the detailed balance condition is satisfied. We are yet to show
π−irreducibility where π is the measure obtained from f . However this is more problem specific.

2.1 Independence sampler

A special case of the Metropolis Hastings sampler is the Independence sampler. For this we have q(y|x) = q(y)
and q(y) is typically taken to be heavy tailed. This sampler is closer to the rejection sampler. However one
main difference is that, in rejection sampling if we reject the sample, we do not retain the sample. However,
in this case if we reject, then we retain the sample. In rejection sampling the proposal distribution q(x), is
taken so that f(x) ≤ Mq(x). The probability of acceptance in rejection sampling is 1

M
. For independence

sampling, the probability of acceptance depends on the current sample and is a random variable. It can
be shown that E(P (acceptance)) ≥ 1

M
. Hence in independence sampling we cannot lose more samples than

that in rejection sampling.
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2.2 More general kernels

In general, one could have cycles and mixtures of kernels. Let K1,K2, ...,Kr be r kernels. We can have a
composition of these kernels to get K̃.

K̃ = K1 ◦K2 ◦ .... ◦Kr. (10)

Under some weak conditions, if any one of these kernels are irreducible, then a Metropolis algorithm using
such a kernel can also be shown to converge. One can also show that if a kernel that is a mixture of other
kernels is used i.e.

K∗ = d1K1 + d2K2 + ...+ drKr,
∑

di = 1, di > 0, (11)

then also the algorithm converges.

2.3 Random Gibbs

This algorithm is similar to the basic Gibbs algorithm. However as opposed to updating all the samples

in the (t + 1)th step, we would now select a component i randomly and update only the sample X
(t+1)
i ∼

p(X
(t+1)
i |X

(t)
j 6=i). This is also a Metropolis Algorithm with the acceptance ratio

ρ = min

(

1,
p(X

(t+1)
i ,X

(t)
j 6=i)

p(X
(t)
i ,X

(t)
j 6=i)

p(X
(t)
i |X

(t)
j 6=i)

p(X
(t+1)
i |X

(t)
j 6=i)

)

= 1. (12)

Thus the Gibbs kernel gives an acceptance rate of one.

However one should be aware that the basic Gibbs algorithm in itself is not a Metropolis Hastings algorithm.
By imposing an order in updating the samples, we lose on the irreducibility. But this can be shown to have
an invariant distribution, if we use a deterministic sequence of distributions. Consider the following kernel

K(x, x′) = p(X ′
1|X2, ..,Xp)p(X

′
2|X

′
1,X3, ...,Xp)....p(X

′
p|X

′
1,X

′
2, ...,X

′
p−1). (13)

We need to see if the given sequence of updates gives us samples X ′ that are from the true distribution
p(X ′ ∈ A). Consider the following

∫

1A(X ′)K(X,X ′)p(X)dXdX ′ =

∫

1A(X ′)p(X ′
1|X2, ..,Xp)p(X

′
2|X

′
1,X3, ...,Xp)....

p(X ′
p|X

′
1,X

′
2, ...,X

′
p−1)p(X1|X2, ...,Xp)p(X2, ...,Xp)dX1...dXpdX

′

=

∫

1A(X ′)p(X ′
1|X2, ..,Xp)p(X

′
2|X

′
1,X3, ...,Xp)....

p(X ′
p|X

′
1,X

′
2, ...,X

′
p−1)p(X2, ...,Xp)dX2...dXpdX

′

=

∫

1A(X ′)p(X ′
1,X2, ..,Xp)p(X

′
2|X

′
1,X3, ...,Xp)....

p(X ′
p|X

′
1,X

′
2, ...,X

′
p−1)dX2...dXpdX

′

=

∫

1A(X ′)p(X2|X
′
1,X3, ...,Xp).....dX2...dXpdX

′

=

∫

1A(X ′)p(X ′)dX ′

= p(X ′ ∈ A)
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3 Rao-Blackwellization

Suppose the samples can be grouped as (X(t), Y (t)) and X(t) are the only samples of interest and we
intend to compute the mean value of some function h(X). A naive estimator would get samples from

both (X(t), Y (t)) and compute the estimate 1
T

∑T

t=1 h(X
(t)). A Rao-Blackwellized sampler would compute

1
T

∑T
t=1 E(h(X)|Y (t)). Let’s consider the variance of the samples. Then by the total variance rule we have

Var(X) ≥ Var(E(X|Y )). However this is only true for two random variables (X,Y ) and does not extend to
vectors.

4 Improper priors

One should be careful that the theory holds true for any measure and not necessarily only the probability
measure. Hence it is possible that we may converge to an improper posterior. For example consider the
following system

Yij = µ+ αi + ǫij

αi ∼ N(0, σ2)

ǫij ∼ N(0, τ2)

π(µ, σ, τ) α
1

στ

We can prove that this system is ergodic and the Gibbs measure converges. However the posterior turns out
to be flat and the samples obtained would not be useful.


