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Conjugate Priors

Lecturer: Michael I. Jordan Scribe: Steven Troxler

1 Recap: Dirichlet and Beta Priors

Recall that if X1, X2, ..., Xn are i.i.d. draws from a multinomial (n, θ) distribution, then

P (X = x|θ) ∝ θ
Pn

j=1 1(xj=θ1)

1 ...θ
Pn

j=1 1(xj=θk)

k ,

then a conjugate prior is the Dirichlet distribution with parameter α ∈ Rk, which has density over the
simplex given by

P (θ|α) ∝ θα1−1
1 ...θαk−1

k .

Here we require that for all i, αi > 0. We then have a posterior distribution

P (θ|X, α) ∝ θ
Pn

j=1 1(xj=θ1)+α1−1

1 ...θ
Pn

j=1 1(xj=θk)+αk−1

k .

The normalizing constant for the Dirichlet distribution is

1
B(α)

=
Γ(

∑
i αi)∏

i Γ(αi)
.

We can compute the expectation of θi for this distribution using the general fact that Γ(t + 1) = tΓ(t) :

E[θj |α] =
∫
4

θj
Γ(

∑
i αi)∏

i Γ(αi)
θα1−1
1 ...θαk−1

k dθ

=
Γ(αj + 1)Γ(

∑
i αi)

Γ(αj)Γ(
∑

i αi + 1)

∫
4

θj
Γ(

∑
i αi + 1)

Γ(αj + 1)
∏

i 6=j Γ(αi)
θα1−1
1 ...θαk−1

k

=
Γ(αj + 1)Γ(

∑
i αi)

Γ(αj)Γ(
∑

i αi + 1)
=

αj∑
i αi

.

Above, the last line follows because we are integrating a density over the simplex 4.

A special case is the binomial-beta conjugacy. If X|θ is distributed as binomial (n, θ), then a conjugate prior
is the beta family of distributions, defined by the density

p(θ|α1, α2) ∝ θα1−1(1− θ)α2−1.

The work above shows that
E[θ|α1, α2] =

α1

α1 + α2
.

As a comparison of the α1 = α2 = 1/2 and α1 = α2 = 2 cases in Figure 1 suggest, when the parameters
are equal the prior mean of the beta is 1/2, and the prior variance decreases as the parameters grow. These
observations carry over to the more general Dirichlet distribution, which becomes more concentrated as∑

i αi becomes large, so that Var(θ|α) ↓ 0 as
∑

i αi ↑ ∞.
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Figure 1: A plot of several beta densities. The flat line corresponds to α1 = α2 = 1, which gives a uniform
distribution. The other cases are α1 = α2 = 1/2, the dotted line, α1 = α2 = 2, the solid line, and
α1 = 2, α2 = 1/2, the dot-dash line.

2 Multinomial Dirichlet Conjugacy

It is clear that if X|θ is distributed as multinomial (n, θ) and θ|α is distributed as Dirichlet with parameter
α, then θ|α, X will have density

p(θ|x, α) ∝ θ
α1+

Pn
j=1 1(xj=1)−1

1 ...θ
αk+

Pn
j=1 1(xj=k)−1

k .

The normalizing constant is given by

Γ(
∑

i αi + n)∏
i Γ(αi +

∑n
j=1 1(xj = i))

.

The posterior mean is given by

E[θi|x, α] =
αi +

∑n
j=1 1(xj = i)

n +
∑k

l=1 αl

= κ
αi∑k
l=1 αl

+ (1− κ)x̄i,

where x̄i = 1
n

∑n
j=1 1(xj = i) is the maximum likelihood estimator (exercise: check this) and κ =

P
l αl

n+
P

l αl
∈

(0, 1).

Several features of this posterior mean are worth observing. First, it is a convex combination of the maximum
likelihood estimate and the prior mean. For this reason, it is sometimes called a shrinkage estimator,
especially when the prior mean takes some central value such as setting all the parameters equal to 1/k.
Second, the convex combination is determined by κ, which decreases to 0 as n ↑ ∞. For this reason, the
posterior mean is asymptotically optimal, since for large n it behaves like the maximum likelihood estimator.
Both these features, we will see, are general features of the conjugate priors to exponential families.

For small n, the degree to which shrinkage takes place is determined by
∑

l αl. In other words, the bigger∑
l αl, the less spread out our prior is and therefore the more confidence we have in the prior mean before

looking at the data. When
∑

l αl is large compared to n, the prior will tend to dominate the data.
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3 Poisson Gamma Conjugacy

Suppose now that X|θ has a Poisson(θ) distribution, or more generally, that X1, ..., Xn|θ is an iid sample
from a Poisson(θ) distribution. Then X has conditional density

p(x|θ) =
n∏

j=1

θxj e−θ

xj !
∝ θ

P
j xj e−nθ.

A conjugate prior is the gamma (α1, α2) distribution, with density

p(θ|α1, α2) ∝ θα1−1e−α2θ,

where the normalizing constant is αα1
2 /Γ(α1). The expectation of this distribution may be calculated using

a method similar to that we used for the Dirichlet distribution, and we find that E[θ|α1, α2] = α1
α2

.

The posterior distribution has density

P (θ|x, α) ∝ θ
P

j xj+α1−1e−(α2+n)θ,

so that

E[θ|x, α] =

∑
j xj + α1

n + α2
= κ

α1

α2
+ (1− κ)

∑
j xj

n
,

where κ = α1/(α2 + n). Again, we see that this is a convex combination of the prior mean and maximum
likelihood estimate, and that it is asymptotically equivalent to the MLE.

4 Conjugacy for General Exponential Families

In general, an exponential family is one with a density (typically with respect to Lebesgue measure or
counting measure) given by

p(x|η) = h(x) exp{ηT T (x)−A(η)},

so that if X1, X2, ..., Xn is an iid sample from the same distribution, conditional on η, the sample has
conditional density of the form

p(x|η) =
∏
j

[h(xj)] exp{ηT
∑

j

T (xj)− nA(η)}.

We define a conjugate prior for this exponential family by taking

p(η|τ, n0) = H(τ, n0) exp{τT η − n0A(η)},

another exponential family. In the posterior distribution, the hyperparameter τ is updated to τ +
∑

j T (xj),
while the hyperparameter n0 is updated to n + n0.

Set µ = µ(η) = E[T (x)|η]. From the theory of exponential families, we know µ = OηA(η), where O denotes
the gradient. We want to treat µ like a parameter, and find its expected value with respect to the prior and
posterior. We will make use of Green’s theorem to do so. First, we note that

E[µ|τ, n0] = E[OηA(η)|τ, n0]

and, by direct compuatation,
Op(η|τ, n0) = p(η|τ, n0)(τ − n0OηA(η)).



4 Conjugate Priors

Now, since p(η|τ, n0) is a density, hence zero at the edges of Rp, Green’s theorem ensures that∫
Rp

p(η|τ, n0)(τ − n0OηA(η))dη =
∫

Rp

Op(η|τ, n0)dη = 0.

Since the term on the left is just τ − n0E[OηA(η)|τ, n0], this tells us that

E[µ|τ, n0] = E[OηA(η)|τ, n0] =
τ

n0
,

and hence also that

E[µ|τ, n0] =
τ +

∑
j T (xj)

n + n0
= κ

τ

n0
+ (1− κ)

∑
j T (xj)

n
,

with κ = n0
n0+n .

Remark: Diaconis and Ylvisaker prove that, under mild conditions, the converse holds: if the posterior mean
is always a convex combination of the MLE and prior mean, then we are working in an exponential family.

5 Gaussian and Conjugate Prior

The Gaussian distribution with parameters µ and σ2 has density

p(x|µ, σ2) =
1√
2πσ

exp{− 1
2σ2

(x− µ2)}.

Conjugate priors for the Gaussian distribution are easy to find if one of µ or σ2 are known, so that we only
have to worry about one parameter. It is left for the reader, for instance, to check (via completion of the
square) that a normal distribution provides a conjugate prior for µ if σ2 is fixed. If µ is fixed, a conjugate
prior for σ2 is the inverse gamma.

We conclude this lecture by defining the inverse gamma density, and will pick up here next lecture. Suppose
y has a gamma (α, β) distribution, so that

p(y|α, β) =
βα

Γ(α)
yα−1e−βy,

and let z = 1/y, so that y = 1/z and dy/dz = −1/z2. By the change of variables formula,

p(z|α, β) = p(y(z)|α, β)
∣∣∣∣dy

dz

∣∣∣∣ =
βα

Γ(α)
y(z)α−1e−βy(z) 1

z2
=

βα

Γ(α)
z−α−1e−β/z.

This density defines the inverse gamma distribution.


