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In this lecture, we assume that θ ∈ R; in higher-dimensions, reference priors are defined in a sequential
manner based on the parameter of primary interest, and we will address this construction in later lectures.

1 Motivating Reference Priors

Consider an inference scenario in which we have data X coming from a distribution p(X|θ) depending on a
parameter θ, and suppose that T (X) is a sufficient statistic for θ. This implies that p(X|θ) is in one-to-one
correspondence with p(T |θ) := p(T (X)|θ).

Our goal is to develop a non-informative prior for θ. One possible way to choose a non-informative prior
is via information: we select the prior π(θ) to maximize mutual information between T k and θ : take
π1(θ) = argmaxp(θ) Ip(θ)(θ, T

k), where.

Ip(θ)(θ, T ) =

∫

p(t)

[∫

p(θ|t) log
p(θ|t)

p(θ)
dθ

]

︸ ︷︷ ︸

KL(p(θ|t),p(θ)

d

The inner term in the double integral, KL(p(θ|t), p(θ) :=
∫

p(θ|tk) log p(θ|tk)
p(θ) dθ, is the Kullback-Leibler

divergence between the posterior and prior when we observe a particular value T = t. The mutual information,
then, is an average of Kullback-Leibler divergence with respect to the marginal distribution p(t) of T. This
idea is clever, but does not quite work as posed. Unfortunately, the problem of maximizing the mutual
information between T and θ is often not analytically tractable. We might hope to solve the problem
numerically, but this can be difficult.

An alternative is to use asymptotics, which often results in more analytically tractable expressions. To
this end, we consider the following hypothetical situation: instead of observing T (X) for just a single
experiment, we repeat the experiment k independent (conditional on θ, which remains the same throughout)
times, obtaining a vector T k consisting of k independent copies of T. Instead of maximizing the mutual
information just between T and θ, we maximize the information between the vector T k and θ, obtaining
πk(θ) = argmaxp(θ) Ip(θ)(θ, T

k), where.

Ip(θ)(θ, T
k) =

∫

p(tk)

[∫

p(θ|tk) log
p(θ|tk)

p(θ)
dθ

]

dtk

We can obtain an analytically tractable uninformative prior by then taking π(θ) = limk→∞ πk(θ), where the
‘limit’ is in a loose sense that allows for improper priors. Bernardo Bernardo (2005) argues that not only does
taking k to infinity give us a convenient way to compute uninformative priors, but it is also philosophically
sense the ‘right’ thing to do. His argument is loosely that, when choosing a prior, we want to not only
consider the information we obtain from a particular experiment, but the information we might obtain from
many future experiments.
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2 Reference Priors

2 Computing Reference Priors and the Bernstein Von Mises The-

orem

2.1 Solving the Mutual Information Problem

To find a more convenient form of πk so that we may apply asymptotic theory, we rewrite Ip(θ)(θ, T
k) as

Ip(θ)(θ, T
k) =

∫

p(tk)

[∫

p(θ|tk) log
p(θ|tk)

p(θ)
dθ

]

dtk

=

∫

p(θ) log
fk(θ)

p(θ)
dθ,

where

fk(θ) = exp{

∫

p(tk|θ) log p(θ|tk)dtk}.

Using a functional form of a Lagrangian to include the constraint that
∫

p(θ) = 1, the problem becomes

πk(θ) = sup
p(θ)

∫

p(θ) log
fk(θ)

p(θ)
+ λ

(∫

p(θ)dθ − 1

)

⇒ p∗(θ) ∝ fk(θ) (1)

This can be solved via methods of calculus of variations, and the solution is πk(θ) ∝ fk(θ). Although we will
not go through the calculus-of-variations argument here, we will motivate this solution using the discrete
case: if T and θ are both discrete, then the problem is of the form

π = argmax
p

∑

i

pi log

(
qi

pi

)

+ λ

(
∑

i

pi − 1

)

.

Taking partial derivatives with respect to pj , we obtain

∂

∂pj

[
∑

i

pi log

(
qi

pi

)

+ λ(
∑

i

pi − 1)

]

= log(qj/pi) + pj(qj/pj)
−1(−1 · qj/p2

j ) + λ

= −1 − log pj + log qj + λ,

and setting this partial derivative to zero we obtain

log pi = log qi + λ − 1 ⇒ pi = qie
λ−1 ⇒ π = q.

2.2 The Bernstein Von Mises Theorem and an Asymptotic Solution

We have now reduced the problem to computing

fk(θ) = exp

{∫

p(tk|θ) log p(θ|tk)dtk
}

. (2)

It is possible to obtain an analytical solution for the limit as k → ∞ using the fact that p(θ|tk) is asymptot-
ically Gaussian, concentrated at the ‘true’ value θ0 i.e. the value of θ such that T k

j ∼iid p(t|θ0). This fact,
which ensures similar behavior of Bayesian posteriors and frequentists sampling distributions as the sample
size tends to infinity, is a consequence of the Bernstein Von Mises Theorem, sometimes called the “Bayesian
Central Limit Theorem:”
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Theorem 1. Assume regularity conditions on the model which ensure asymptotic normality of an asymp-
totically efficient (in the frequentist sense) estimator θ̃k and also assume that the prior satisfies regularity
assumptions, in particular that it is near θ0. If T k denotes a vector of iid components T k

j drawn from the
distribution of T |θ0, then

∥
∥
∥p(θ|tk) − N(θ̃k, I−1

k (θ0))
∥
∥
∥→ 0, (3)

where Ik(θ0) denotes the Fisher information at θ0 and the convergence denotes convergence in probability.
Here, ‖·‖ denotes the total variation distance.

In general, any asymptotically efficient estimator θ̃k is also asymptotically sufficient, so we may replace tk
in (3) with θ̃k, obtaining

∥
∥
∥p(θ|θ̃k) − N

(

θ̃k, I−1
k (θ0))

)∥
∥
∥→ 0. (4)

Also, using the density of a multivariate normal, we know that if y ∼ N
(

θ̃k, I−1
k (θ0)

)

, then

p(y) =
√

Ik(θ0) exp

(

−
Ik(θ0)

2
(y − θ̃k)2

)

By independence, we know that I−1
k (θ0)) = 1/k · I−1(θ0)) with I−1(θ0)) := I−1

1 (θ0)), so the preceding

expression, combined with limit in (4), and the fact that θ̃k is consistent, leads to the following approximate
representation for large k :

p(θ|θ̃k) ∝ k
1

2 I
1

2 (θ̃k) exp

(

−
k−1I(θ̃k)

2
(θ − θ̃k)2

)

The remainder of the argument will be somewhat loose; for rigorous arguments of our final result (that a
one-dimensional reference prior is a Jeffreys prior), see Bernardo’s review paper Bernardo (2005).

Suppose now that θ̃k results from k independent draws of X, where X has distribution of X|θ0 for a particular
θ0. Then, because θ̃k is consistent, θ̃k →p θ0 and under regularity conditions, also I(θ̃k) → I(θ0). Hence,

p(θ0|θ̃k) ∝ k
1

2 I
1

2 (θ̃k) exp

(

−
k−1I(θ̃k)

2
(θ0 − θ̃k)2

)

≈ k
1

2 I
1

2 (θ0) exp

(

−
k−1I(θ0)

2
(θ0 − θ0)

2

)

= k
1

2 I
1

2 (θ0).

Returning now to equation (2), since the inner integral is an expectation with respect to p(tk|θ) so that the
preceding theory applies so long as there exists some asymptotically normal efficient estimator θ̃k = θ̃(tk),
we obtain

fk(θ) ≈ exp

{∫

p(tk|θ) log
(
I

1

2 (θ)
)
dtk
}

.

Since the term inside the integral does not depend on tk, and it is being integrated against a density, as
k → ∞ we have

fk(θ) ≈ I
1

2 (θ0).

In other words, when there is an asymptotically normal asymptotically efficient estimator θ̃k, the Jeffreys
prior is a reference prior in one dimension!
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3 Example: Reference Prior for Exponential Distribution

Let Xi ∼ Exp(θ) be iid. A sufficient statistic for θ is x̄ :=
P

Xi

n
, and the maximum likelihood estimator is

θ̂MLE = 1
x̄
. We could use the Jeffreys prior directly, but let us instead work through some of the work above

for this specific case.

Set X = (X1, . . . ,Xn). Then p(x|θ) = θn exp(−nx̄θ). Since the Bernstein Von Mises theorem ensures that
the posterior is the same as n → ∞ regardless of the prior we use, we may just take the prior to be flat for
convenience. Hence, asymptotically, we have

p(θ|θ̂ML) ∝ θn exp(−nθ/θ̂ML),

and since θ̂ML is consistent, i.e. θ̂ML → θ0 when X ∼ Exp(θ0), we obtain

πn(θ) =

(
n

θ̂ML

)n+1
1

Γ(k + 1)
θn exp

(

−
nθ

θ̂ML

)

|
θ̂ML=θ

∝
1

θ
,

where we evaluated at θ̂ML = θ because, in the definition of fn, we are integrating with respect to p(x|θ),
so that the consistency applies.

4 Invariance to Transformations

We have already showed that reference priors are the same as Jeffreys priors under regularity conditions, so
they are invariant to transformations in that setting, but it also follows directly from the definition that they
are invariant to transformation even in the absence of such regularity conditions. Specifically, the reference
prior was defined in terms of mutual information, but mutual information is transformation-invariant. That
is,

I(θ, T k) =

∫

p(tk)

∫

p(θ|tk) log
p(θ|tk)

p(θ)
dθdtk =

∫

p(tk)

∫

p(φ|tk) log
p(φ|tk)

p(φ)
dφdtk.

The equality holds because, when we do the changes of variables p(φ) = p(θ(φ))
∣
∣
∣

dθ
dφ

∣
∣
∣ and p(φ|tk) =

p(θ(φ)|tk)
∣
∣
∣

dθ
dφ

∣
∣
∣ , the Jacobian terms inside the logarithm cancel, so that the logarithms in the integrals

are equal. The term
∣
∣
∣

dθ
dφ

∣
∣
∣ in p(φ) = p(θ(φ))

∣
∣
∣

dθ
dφ

∣
∣
∣ , on the other hand, is exactly what we obtain if we do a

change of variables from θ to φ in the inner integral on the left hand side, obtaining

∫

p(θ|tk) log
p(θ|tk)

p(θ)
dθ =

∫

p(θ(φ)|tk) log
p(θ(φ)|tk))

p(θ)

∣
∣
∣
∣

dθ

dφ

∣
∣
∣
∣
dφ.

Hence, mutual information is transformation-invariant, and so are reference priors.

5 Example: Location and Scale Families

5.1 Location Families

For a given density f (which we identify with the induced distribution) define a class of measures

m1 = {f(x − µ) : x ∈ R, µ ∈ R}.
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For a particular µ and random variable X ∼ f(x − µ), let Y = X + α, and θ = µ + α. If π denotes the
reference prior under the parametrization in our definition of m1 above, then if f ′(y) = f(y − α − µ), the
similarly constructed family

m′
1 = {f ′(y − θ) : y ∈ R, θ ∈ R}

is actually equal to m1, reparametrized by the transformation θ = µ + α. Since we know reference priors
are transformation-invariant and the Jacobian of the transformation is equal to 1, π′(θ) = π(µ). But since
the two families are identical, we also have π′(θ) = π(µ + α), and hence π(µ + α) = π(µ). In other words,
reference priors for one-dimensional location families are flat.

5.2 Scale Families

Define the family

m2 =

{
1

σ
f(

X

σ
) : x > 0, σ > 0

}

.

Taking y = log x and φ = log σ, define an equivalent reparametrized family

m′
2 = {f(exp(y − φ)) : y ∈ R, φ ∈ R}.

In m′
2, φ is a location family, so π′(φ) is flat by the work in Section 5.1. But since π′(φ) = σπ(σ) by a change

of variables and transformation-invariance, we therefore obtain π(σ) ∝ 1
σ
.
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