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Sequential Importance Sampling

We use a structured IS distribution

qn (x1:n) = qn�1 (x1:n�1) qn (xn j x1:n�1)

= q1 (x1) q2 (x2j x1) � � � qn (xn j x1:n�1)

so if X (i )1:n�1 � qn�1 (x1:n�1) then we only need to sample

X (i )n
���X (i )1:n�1 � qn

�
xn jX (i )1:n�1

�
to obtain X (i )1:n � qn (x1:n)

The importance weights are updated according to

wn (x1:n) =
γn (x1:n)

qn (x1:n)
= wn�1 (x1:n�1)

γn (x1:n)

γn�1 (x1:n�1) qn (xn j x1:n�1)| {z }
αn(x1:n)
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Sequential Importance Sampling

At time n = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .

At time n � 2

sample X (i )n � qn
�
�jX (i )1:n�1

�
compute wn

�
X (i )1:n

�
= wn�1

�
X (i )1:n�1

�
αn
�
X (i )1:n

�
.

It follows that

bπn (dx1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(dx1:n) ,

bZn =
1
N

N

∑
i=1
wn
�
X (i )1:n

�
.
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Sequential Importance Sampling for State-Space Models

State-space models

Hidden Markov process: X1 � µ, Xk j (Xk�1 = xk�1) � f ( �j xk�1)

Observation process: Yk j (Xk = xk ) � g ( �j xk )

Assume we have received y1:n, we are interested in sampling from

πn (x1:n) = p (x1:n j y1:n) =
p (x1:n, y1:n)

p (y1:n)

and estimating p (y1:n) where

γn (x1:n) = p (x1:n, y1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) ,

Zn = p (y1:n) =
Z
� � �

Z
µ (x1)

n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) dx1:n.
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Locally Optimal Importance Distribution

The optimal IS distribution qn (xn j x1:n�1) at time n minimizing the
variance of wn (x1:n) is given by

qoptn (xn j x1:n�1) = πn (xn j x1:n�1)

and yields an incremental importance weight of the form

αn (x1:n) =
γn (x1:n�1)

γn�1 (x1:n�1)

For state-space models, we have

qoptn (xn j x1:n�1) = p (xn j yn, xn�1) =
g (yn j xn) f (xn j xn�1)

p (yn j xn�1)
,

αn (x1:n) = p (yn j xn�1) .
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Summary

Sequential Importance Sampling is a special case of Importance
Sampling.

Importance Sampling only works decently for moderate size problems.

Today, we discuss how to partially �x this problem.
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Resampling

Intuitive KEY idea: As the time index n increases, the variance of the
unnormalized weights

n
wn
�
X (i )1:n

�o
tend to increase and all the mass

is concentrated on a few random samples/particles. We propose to
reset the approximation by getting rid in a principled way of the
particles with low weights W (i )

n (relative to 1/N) and multiply the
particles with high weights W (i )

n (relative to 1/N).

The main reason is that if a particle at time n has a low weight then
typically it will still have a low weight at time n+ 1 (though I can
easily give you a counterexample).

You want to focus your computational e¤orts on the �promising�
parts of the space.
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Multinomial Resampling

At time n, IS provides the following approximation of πn (x1:n)

bπn (dx1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(dx1:n) .

The simplest resampling schemes consists of sampling N timeseX (i )1:n � bπn (dx1:n) to build the new approximation

eπn (dx1:n) =
1
N

N

∑
i=1

δeX (i )1:n
(dx1:n) .

The new resampled particles
neX (i )1:n

o
are approximately distributed

according to πn (x1:n) but statistically dependent. This is
theoretically more di¢ cult to study.
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Note that we can rewrite

eπn (dx1:n) =
N

∑
i=1

N (i )n
N

δ
X (i )1:n
(dx1:n)

where
�
N (1)n , ...,N (N )n

�
�M

�
N;W (1)

n , ...,W (N )
n

�
thus

E
h
N (i )n

i
= NW (i )

n , var
h
N (1)n

i
= NW (i )

n

�
1�W (i )

n

�
.

It follows that the resampling step is an unbiased operation

E [ eπn (dx1:n)j bπn (dx1:n)] = bπn (dx1:n)

but clearly it introduces some errors �locally� in time. That is for any
test function, we have

vareπn [ϕ (X1:n)] � varbπn [ϕ (X1:n)]

Resampling is bene�cial for future time steps (sometimes).
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Strati�ed Resampling

Better resampling steps can be designed such that E
h
N (i )n

i
= NW (i )

n

but V
h
N (i )n

i
< NW (i )

n

�
1�W (i )

n

�
.

A popular alternative to multinomial resampling consists of selecting

U1 � U
�
0,
1
N

�
and for i = 2, ...,N

Ui = U1 +
i � 1
N

= Ui�1 +
1
N
.

Then we set

N (i )n = #

(
Uj :

i�1
∑
m=1

W (m)
n � Uj <

i

∑
m=1

W (m)
n

)
where ∑0

m=1 = 0.

It is trivial to check that E
h
N (i )n

i
= NW (i )

n .
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An alternative approach to resampling

Assume
αn (x1:n) � 1 over En (rescale if necessary)

We have

πn (x1:n) =
αn (x1:n) qn (xn j x1:n�1)πn�1 (x1:n�1)R
αn (x1:n) qn (dxn j x1:n�1)πn�1 (dx1:n�1)

= αn (x1:n) qn (xn j x1:n�1)πn�1 (x1:n�1)

+

�
1�

Z
αn (x1:n) qn (dxn j x1:n�1)πn�1 (dx1:n�1)

�
� αn (x1:n) qn (xn j x1:n�1)πn�1 (x1:n�1)R

αn (x1:n) qn (dxn j x1:n�1)πn�1 (dx1:n�1)

Looks like measure-valued Metropolis-Hastings algorithm.
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Probabilistic interpretation

We have

πn (x1:n) = αn (x1:n)| {z }
accept with proba wn

qn (xn j x1:n�1)πn�1 (x1:n�1)| {z }
trial distribution

+

�
1�

Z
αn (x1:n) qn (dxn j x1:n�1)πn�1 (dx1:n�1)

�
| {z }

rejection probability

πn (x1:n)

Say X (i )1:n�1 � πn�1 and sample X
(i )
n � qn

�
�jX (i )1:n�1

�
.

With probability αn
�
X (i )n

�
, set eX (i )1:n = X

(i )
1:n otherwiseeX (i )1:n � ∑N

i=1W
(i )
n δ

X (i )1:n
(dx1:n).

Remark: Allows to decrease variance if αn (x1:n) ��at" over En; e.g.
�ltering with large observation noise.
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Degeneracy Measures

Resampling at each time step is harmful. We should resample only
when necessary.

To measure the variation of the weights, we can use the E¤ective
Sample Size (ESS) or the coe¢ cient of variation CV

ESS =

 
N

∑
i=1

�
W (i )
n

�2!�1
, CV =

 
1
N

N

∑
i=1

�
NW (i )

n � 1
�2!1/2

We have ESS = N and CV = 0 if W (i )
n = 1/N for any i .

We have ESS = 1 and CV =
p
N � 1 if W (i )

n = 1 and W (j)
n = 1 for

j 6= i .
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We can also use the entropy

Ent = �
N

∑
i=1
W (i )
n log2

�
W (i )
n

�

We have Ent = log2 (N) if W
(i )
n = 1/N for any i . We have Ent = 0

if W (i )
n = 1 and W (j)

n = 1 for j 6= i .
Dynamic Resampling: If the variation of the weights as measured by
ESS, CV or Ent is too high, then resample the particles.
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Generic Sequential Monte Carlo Scheme

At time n = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .

Resample
n
X (i )1 ,W

(i )
1

o
to obtain new particles also denoted

n
X (i )1

o
At time n � 2

sample X (i )n � qn
�
�jX (i )1:n�1

�
compute wn

�
X (i )1:n

�
= αn

�
X (i )1:n

�
.

Resample
n
X (i )1:n ,W

(i )
n

o
to obtain new particles also denoted

n
X (i )1:n

o
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At any time n, we have two approximation of πn (x1:n)

bπn (dx1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(dx1:n) (before resampling)

eπn (dx1:n) =
1
N

N

∑
i=1

δ
X (i )1:n
(dx1:n) (after resampling).

We also have dZn
Zn�1

=
1
N

N

∑
i=1
wn
�
X (i )1:n

�
.
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Sequential Monte Carlo for Hidden Markov Models

At time n = 1, sample X (i )1 � q1 (�) and set

w1
�
X (i )1

�
=

µ
�
X (i )1

�
g
�
y1 jX (i )1

�
q
�
X (i )1

���y1� .

Resample
n
X (i )1 ,W

(i )
1

o
to obtain new particles also denoted

n
X (i )1

o
At time n � 2

sample X (i )n � q
�
�j yn ,X (i )n�1

�
compute wn

�
X (i )1:n

�
=

f
�
X (i )n

���X (i )n�1�g� yn jX (i )n �
q
�
X (i )n

���yn ,X (i )n�1� .

Resample
n
X (i )1:n ,W

(i )
n

o
to obtain new particles also denoted

n
X (i )1:n

o
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Example: Linear Gaussian model

X1 � N (0, 1) , Xn = αXn�1 + σvVn,

Yn = Xn + σwWn

where Vn � N (0, 1) and Wn � N (0, 1).

We know that p (x1:n j y1:n) is Gaussian and its parameters can be
computed using Kalman techniques. In particular p (xn j y1:n) is also a
Gaussian which can be computed using the Kalman �lter.

We apply the SMC method with
q (xn j yn, xn�1) = f (xn j xn�1) = N

�
xn; αxn�1, σ2v

�
.
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Importance Weights (base 10 logarithm)

Figure: Histograms of the base 10 logarithm of W (i )
n for n = 1 (top), n = 50

(middle) and n = 100 (bottom).

By itself this graph does not mean that the procedure is e¢ cient!
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This SMC strategy performs remarkably well in terms of estimation of
the marginals p (xk j y1:k ) . This is what is only necessary in many
applications thankfully.

However, the joint distribution p (x1:k j y1:k ) is poorly estimated when
k is large; i.e. we have in the previous example

bp (x1:11j y1:24) = δX1:11 (x1:11) .

The same conclusion holds for most sequences of distributions
πk (x1:k ).

Resampling only solves partially our problems.
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Another Illustration of the Degeneracy Phenomenon

For the linear Gaussian state-space model described before, we can
compute in closed form

Sn =
1
n

n

∑
k=1

E
�
X 2k
��Y1:n

�
using the Kalman techniques.

We compute the SMC estimate of this quantity given by

bSn = 1
n

n

∑
k=1

N

∑
i=1
W (i )
n

�
X (i )k

�2
This estimate can be updated sequentially using our SMC
approximation.
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Figure: Su¢ cient statistics computed exactly through the Kalman smoother
(blue) and the SMC method (red).
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Some Convergence Results for SMC

We will discuss convergence results for SMC later; see (Del Moral,
2004).

In particular we have for any bounded function ϕ and any p > 1

E

�����Z ϕn (x1:n) (bπn (dx1:n)� πn (dx1:n))

����p�1/p

� Cn kϕk∞
N

.

It looks like a nice result but it is rather useless as Cn increases
polynomially/exponentially with time.

To achieve a �xed precision, this would require to use a
time-increasing number of particles N.
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You cannot hope to estimate with a �xed precision a target
distribution of increasing dimension.

At best, you can expect results of the following form

E

�����Z ϕ (xn�L+1:n) (bπn (dxn�L+1:n)� πn (dxn�L+1:n))

����p�1/p

� ML kϕk∞
N

if the model has nice forgetting/mixing properties, i.e.Z ��πn (xn j x1)� πn
�
xn j x 01

��� dxn � 2λn�1

with 0 � λ < 1.

In the HMM case, it means thatZ ��p (xn j y1:n, x1)� p
�
xn j y1:n, x 01

��� dxn � λn�1
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Central Limit Theorems

For SIS we have
p
N (Ebπn (ϕn (X1:n))�Eπn (ϕn (X1:n)))) N

�
0, σ2IS (ϕn)

�
where

σ2IS (ϕn) =
Z

π2n (x1:n)

qn (x1:n)
((ϕn (x1:n))�Eπn (ϕ (x1:n)))

2 dx1:n

We also have p
N
�bZn � Zn�) N

�
0, σ2IS

�
where

σ2IS =
Z

π2n (x1:n)

qn (x1:n)
dx1:n � 1
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For SMC, we have

σ2SMC (ϕn) =
R π2n(x1)
q1(x1)

�R
ϕn (x2:n)πn (x2:n j x1) dx2:n �Eπn (ϕn (X1:n))

�2 dx1
+∑n�1

k=2

R πn(x1:k )
2

πk�1(x1:k�1)qk ( xk jxk�1)
�
�R

ϕn (x1:n)πn (xk+1:n j xk ) dxk+1:n �Eπn (ϕn (X1:n))
�2 dx1:k

+
R πn(x1:n)

2

πn�1(x1:n�1)qn( xn jxn�1) (ϕn (x1:n)�Eπn (ϕn (X1:n)))
2 dx1:n.

and

σ2SMC =
Z

π2n (x1)
q1 (x1)

dx1 +
n

∑
k=2

Z
πn (x1:k )

2

πk�1 (x1:k�1) qk (xk j xk�1)
dx1:k � n
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Back to our toy example

Consider the case where the target is de�ned on Rn and

π (x1:n) =
n

∏
n=1

N (xk ; 0, 1) ,

γ (x1:n) =
n

∏
k=1

exp
�
�x

2
k

2

�
, Z = (2π)n/2 .

We select an importance distribution

q (x1:n) =
n

∏
k=1

N
�
xk ; 0, σ

2� .
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For SMC, the asymptotic variance is �nite only when σ2 > 1
2 and

VSMC

hbZni
Z 2n

� 1
N

"Z
π2n (x1)
q1 (x1)

dx1 � 1+
n

∑
k=2

Z
π2n (xk )
qk (xk )

dxk � 1
#

=
n
N

"�
σ4

2σ2 � 1

�1/2

� 1
#

compared to

VIS

hbZni
Z 2n

=
1
N

"�
σ4

2σ2 � 1

�n/2

� 1
#

for SIS.

If select σ2 = 1.2 then we saw that it is necessary to employ

N � 2� 1023 particles in order to obtain VIS[bZn]
Z 2n

= 10�2 for
n = 1000.

To obtain the same performance,
VSMC[bZn]

Z 2n
= 10�2, SMC requires the

use of just N � 104 particles: an improvement by 19 orders of
magnitude.
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If you have nice mixing properties, then you can obtain

σ2SMC (ϕ) �
C
N

for ϕ depending only on Xn�L+1:n.

Under the same assumptions, you can also obtain

σ2SMC �
D.T
N
.
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Summary

Resampling can drastically improve the performance of SIS in models
having �good�mixing properties; e.g. state-space models: this can be
veri�ed experimentally and theoretically.

Resampling does not solve all our problems; only the SMC
approximations of the most recent marginals πn (xn�L+1:n) are
reliable; i.e. we can have uniform (in time) convergence bounds.

The SMC approximation of πn (x1:n) is only reliable for �small�n.
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