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1 Gibbs Sampling
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Figure 1: Undirected and directed graphs, respectively, with set of nodes colored that represent the minimum
set of nodes necessary to render node xi conditionally independent of all of the other nodes in the graph.

A Markov blanket is the minimum set of nodes that renders node xi conditionally independent of all other
nodes in the directed graph. In the undirected case, simple graph separation suffices (as shown). For the
directed case, the Markov blanket (also shown) consists of the parents of xi, the children of xi, and the
parents of the children of xi (the ”coparents” of xi).

If interested in this topic, see BUGS (Bayesian inference Using Gibbs Sampling) software project (http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml).

When performing Gibbs sampling, for each hidden node Xi, construct a conditional probability p(xi|x¬i),
where x¬i is the set of nodes in the graph not including xi. Note that the above conditional independence
arguments imply that it suffices to condition on the graph separators of xi for the undirected graph, and the
Markov blanket for the directed case.

Gibbs sampling proceeds by sampling each hidden variable from the appropriate conditional distribution,
given the current values of the other variables in the graph. Marginal probabilities can be estimated by
summing over the samples.
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2 Sampling Methods

2 MCMC (Markov Chain Monte Carlo)

State: xt [x: the state of the entire graph, time t of Markov chain]

Transition matrix: T (x, x′) [transition matrix is homogeneous if T is independent of t]

Invariant distribution:
p∗(x) =

∑

x′

T (x′, x)p∗(x′)

[a trivial example of this is the identity matrix, where you stay in the same state no matter the distribution]

Detailed balance:

p∗(x)T (x, x′) = p∗(x′)T (x′, x)

detailed balance is a sufficient condition for invariance (⇒ but not ⇐). [In this context, the term detailed -
which comes from statistical physics - means local.]

Proof:

∑

x′

p∗(x′)T (x′, x) =
∑

x′

p∗(x)T (x, x′)

= p∗(x)
∑

x′

T (x, x′)

= p∗(x)

Ergodicity: This is when: (1) there is a non-zero probability of getting from any state to any other state and
(2) there are no (deterministic) cycles. Refer to the book for a more rigorous definition.

Ergodicity ⇒ we have an equilibrium distribution (unique, invariant).

Book recommendation:

Norris, James R. et al. Markov Chains, Cambridge U. Press: 1998. (neither too elementary nor too advanced)

2.1 Metropolis-Hastings (M-H)

Current state: x

Propose to move to x′ according to proposal distribution qt(x, x′)

Accept the proposal with probability:

At(x
′, x) = min

(

1,
p(x′)

p(x)

qt(x
′, x)

qt(x, x′)

)

M-H ”loves to go uphill, is willing to go downhill”.

Evaluating p(x), p(x′) is easy.

qt is a simple distribution, e.g., Gaussian, so it is easy to compute by definition. In general, the normalizer
terms for p(x), p(x′) will cancel in this ratio.

“Uphill” steps will be accepted with probability 1; downhill steps will be accepted with probability At(x
′, x).
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Figure 2:

If the transition is symmetric, the qt(·) terms cancel. This is the ”Metropolis” algorithm:

Metropolis, N., Rosenbluth, A. W., Rosenbluth, N., Teller, A. H.,and Teller, E. (1953) Equation of state
calculation by fast computing machines. Journal of Chemical Physics 21: 1087-1092.

Note: for Ising model and q=”flip one bit”, M-H ≡ Gibbs

M-H satisfies detailed balance.

Proof:

p(x)qt(x, x′)At(x
′, x) = min(p(x)qt(x, x′), p(x′)qt(x

′, x))

= min(p(x′)qt(x
′, x), p(x)qt(x, x′))

= p(x′)qt(x
′, x)At(x, x′)

Ergodicity is based on a reasonable choice for proposal distribution (e.g., Gaussian), to ensure that all paths
from any state to any other state are non-zero.

2.2 Gibbs as M-H

Fix x¬i. Consider updating node xi (x′ is x with x¬i held fixed and xi variable) according to proposal
distribution:

q(x, x′) = p(xi|x¬i)

by Bayes’ Theorem:
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p(x′)

p(x)

q(x′, x)

q(x, x′)
=

p(x′

i
|x′

−i
)

p(xi|x−i)

p(x′

−i
)

p(x−i)

p(xi|x
′

−i
)

p(x′

i
|x−i)

= 1

(i.e. always accept proposal)

Book recommendations:

Robert, Christian P. and George Casella. Monte Carlo Statistical Methods, Springer-Verlag: 2004.

Liu, Jun S. Monte Carlo Strategies in Scientific Computing, Springer-Verlag: 2001.

Gilks, W.R. et al. Markov Chain Monte Carlo in Practice, Chapman-Hall: 1995.

2.3 Particle Filtering
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Figure 3: Graphical model on which particle filtering is often used.

Interest is in p(xt|y(t)), y(t) = (y1, ..., yt) i.e. - filtering.

Consider some function f(xt)

〈f(xt)〉 =

∫

(f(xt)p(xt|y(t))dxt

=

∫

(f(xt)p(xt|yt, y(t−1))dxt

=

∫

f(xt)p(yt|xt)p(xt|y(t−1))dxt
∫

p(yt|xt)p(xt|y(t−1))dxt

≈
M
∑

m=1

w
(m)
t

f(x
(m)
t

)
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where {xt} are samples drawn from p(xt|y(t+1)) and

w
(m)
t

=
p(yt|x

(m)
t

)
∑

m
p(yt|x

(m)
t

)
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Figure 4: Graphical illustration of particle filter updates.

This schematic of the particle filter shows the posterior represented as a mixture model at time t. M samples

are drawn from this distribution and p(yt+1|x
(m)
t+1) is used to determine the new weights wm

(t+1).

p(xt+1|y(t)) =

∫

p(xt+1|xt, y(t))p(xt|y(t))dxt

=

∫

p(xt+1|xt)p(xt|yt,(t−1) )dxt

=

∫

p(xt+1|xt)p(yt|xt)p(xt|y(t−1))dxt
∫

p(yt|xt)p(xt|y(t−1))dxt

≈
∑

M

w
(m)
t

p(xt+1|x
(m)
t

)


