
CS281A/Stat241A: Statistical Learning Theory

Elimination, Moralization and Sum-Product Algorithm (09/14/04)

Lecturer: Michael I. Jordan Scribes: Parvez Ahammad and Ying Zhang

1 Elimination for Undirected Graphical Models

For an arbitrary undirected graphical model, the joint probability will factorize in the following way for the
set of cliques C:

p(x) =
1

Z

∏

C∈C

ψC(xC)

p(x) ∝
∏

C∈C

ψC(xC)

Compute p(x) via elimination on
∏

C∈C ψC(xC)

p(xi) =
mj(xi)

∑

xi
mj(xi)

where mj(xi)) =
∑

xV \i

∏

C∈C

ψC(xC)

and
∑

xi

mj(xi) =
∑

xV

∏

C∈C

ψC(xC) ≡ Z

Example:

(Figure 1)

1

2 Elimination, Moralization and Sum-Product Algorithm

p(x1) ∝
∑

x2,x3,x4

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x1, x4)

=
∑

x2,x3

ψ(x1, x2)ψ(x1, x3)m4(x2, x3)

=
∑

x2

ψ(x1, x2)
∑

x3

ψ(x1, x3)m4(x2, x3)

=
∑

x2

ψ(x1, x2)m3(x1, x2)

= m2(x1) −→ last message

so, p(x1) =
m2(x1)

∑

x1
m2(x1)

During elimination process, a new edge between x2 and x3 is created (i.e., a message containing both x2 and
x3), which is shown in figure 1. Note that in undirected graphical models, we do not need to compute the
normalization term explicitly; instead we can use the final message to quickly compute the term Z for all
marginal probabilities.

2 Moralization

Moralization is a transformation from directed graphical model to an undirected graphical model. In brief,
for each node in a directed graph, add an undirected edge between all pairs of parents of that node that are
not already connected. Then change all edges in the graph from directed to undirected, as in figure 2.

(Figure 2)

Moralization captures the concept that we need to pay the expense of computing the term involving the
parents of a child node while doing elimination.

Elimination, Moralization and Sum-Product Algorithm 3

Example: Fault Networks

(Figure 3)

We want to compute: p(xi|ȳ) (where the top row of nodes denote faults x and the bottom row of nodes
denote symptoms y, some of which are observed)

If we are using elimination process, we would have to do the whole computation all over again for each xi

as i varies. This is a waste of computations, especially since a lot of the intermediate steps are similar.

Ideally, we want to organize things in a way such that we do as little work as possible in a global sense (in
terms of overall number of computations).

3 Sum-Product Algorithm

This algorithm gives us all of the singleton marginals, not just one. Also, it is only correct for trees.

Example: Loopy belief propagation algorithm (the sum-product algorithm on a graph with loops) in the
error control coding domain is a good example. This algorithm finds an approximate answer, even though
this is graph is not a tree (figure 3).

3.1 Sum-Product algorithm on Undirected Trees:

(Figure 4)

4 Elimination, Moralization and Sum-Product Algorithm

p(xV) =
1

Z

∏

i∈V

ψi(xi)
∏

(i,j)∈E

ψ(xi, xj)

Conditioning: Let xi = x̄i for i ∈ E (Evidence, or the shaded nodes in the graph whose values we have
observed).

Evidence potentials are denoted as δ(xi, x̄i). Using this notation, the unnormalized representation of condi-
tional probability p(x|x̄E) can be defined using the following definition,

ψE
i (xi) =

{

ψi(xi)δ(xi, x̄i), i ∈ E

ψi(xi), i /∈ E

(where E is the set of nodes with evidence), then the conditional probability becomes:

p(x|x̄E) ∝
∏

i∈V

ψE
i (xi)

∏

(i,j)∈E

ψ(xi, xj)

Define a set of messages mij(xj) ∀(i, j) ∈ E that are updated according to the following rule:

(Figure 5)

mji(xi) =
∑

xj

ψ(xi, xj)ψ
E(xj)

∏

k∈N (j)\i

mkj(xj)

where ψ(xi, xj) ≡ ψ(xj , xi)

If xj has m states, then the algorithm has O(m2) complexity.

Protocol for sending messages: send a message from a node j to i only after j has received messages
from all of its other neighbors, which is shown in figure 6.

Elimination, Moralization and Sum-Product Algorithm 5

6 Elimination, Moralization and Sum-Product Algorithm

(Figure 6)

The final step is:

p(xi|x̄E) ∝ ψE
i (xi)

∏

j∈N (j)\i

mji(xi)

This has O(2n) complexity where n is the number of edges.

We will show that p(xi|xE) is defined as the marginal of node i according to the joint probability p(xV |xE).

It’s simple to pick a one-way flow based on a specific ordering, and use elimination algorithm to see that the
mj(xi) being computed is exactly the same as the Sum-Product algorithm.

mj(xi) =
∑

xj

ψ(xi, xj)ψ
E(xj)

∏

k∈N (j)\i

mk(xj)

Sum-Product algorithm is basically doing elimination algorithm in all possible ways in this undirected tree
graph.

Question: How do we apply this to an arbitrary graph?

−→ focus on the node we want, and pretend that we are actually looking at a part of the tree (ignoring the
rest of the graph).

—End of the Lecture—

