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Outline
• Ordinary Least Squares Regression

- Online version

- Normal equations

- Probabilistic interpretation

• Overfitting and Regularization

• Overview of additional topics

- L1 Regression

- Quantile Regression

- Generalized linear models

- Kernel Regression and Locally Weighted Regression
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Regression vs. Classification:

Anything:

• continuous (ℜ, ℜd, …)

• discrete ({0,1}, {1,…k}, …)

• structured (tree, string, …)

• …

• Discrete:

– {0,1} binary

– {1,…k} ! multi-class

– tree, etc. structured

Classification

X    Y⇒
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Regression vs. Classification:

Anything:

• continuous (ℜ, ℜd, …)

• discrete ({0,1}, {1,…k}, …)

• structured (tree, string, …)

• …

Perceptron
Logistic Regression
Support Vector Machine

Decision Tree
Random Forest

Kernel trick

Classification

X    Y⇒
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Regression vs. Classification:

Anything:

• continuous (ℜ, ℜd, …)

• discrete ({0,1}, {1,…k}, …)

• structured (tree, string, …)

• …

Regression

• continuous:
– ℜ, ℜd

X    Y⇒
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Examples

• Voltage      Temperature
• Processes, memory      Power consumption
• Protein structure      Energy
• Robot arm controls      Torque at effector
• Location, industry, past losses      Premium

⇒
⇒
⇒

⇒

⇒
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Linear regression
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Given examples
Predict given a new point
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where     is a parameter to be estimated and we have used the 
standard convention of letting the first component of    be 1. 

We wish to estimate     by a linear function of our data    : 
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Choosing the regressor

10

Of the many regression fits that approximate the data, which should 
we choose?

Observation

0 20
0

Xi =
(

1
xi

)
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LMS Algorithm
(Least Mean Squares)

In order to clarify what we mean by a good choice of    , we will 
define a cost function for how well we are doing on the training data:

w

0 20
0

Error or “residual”

Prediction

Observation

Cost =
1
2

n∑
i=1

(w!xi − yi)2

Xi =
(

1
xi

)
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LMS Algorithm
(Least Mean Squares)

The best choice of     is the one that minimizes our cost functionw

E =
1
2

n∑
i=1

(w!xi − yi)2 =
n∑

i=1

Ei

In order to optimize this equation, we use standard gradient descent

where

∂

∂w
E =

n∑
i=1

∂

∂w
Ei and

∂

∂w
Ei =

1
2

∂

∂w
(w!xi − yi)2

= (w!xi − yi)xi

wt+1 := wt − α
∂

∂w
E
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LMS Algorithm
(Least Mean Squares)

The LMS algorithm is an online method that performs the 
following update for each new data point

wt+1 := wt − α
∂

∂w
Ei

= wt + α(yi − x!i w)xi

α
∂Ei

∂w
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LMS, Logistic regression, and 
Perceptron updates

• LMS

• Logistic Regression

• Perceptron

wt+1 := wt + α(yi − x!i w)xi

wt+1 := wt + α(yi − fw(xi))xi

wt+1 := wt + α(yi − fw(xi))xi
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Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

Cost =
1
2

n∑
i=1

(w!xi − yi)2

Xi =
(

1
xi

)
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Minimize the sum squared error

n

d

∂

∂w
E = X!Xw −X!y

Setting the derivative equal to zero 
gives us the Normal Equations

X!Xw = X!y

w = (X!X)−1X!y

E =
1
2

n∑
i=1

(w!xi − yi)2

=
1
2
(Xw − y)!(Xw − y)

=
1
2
(w!X!Xw − 2y!Xw + y!y)
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A geometric interpretation
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We solved
∂

∂w
E = X!(Xw − y) = 0

Residuals are orthogonal to columns of X⇒
⇒ gives the best reconstruction ofŷ = Xw y

in the range ofX
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[X]1

y

[X]2

y’

y’ is an orthogonal 
projection of y onto S

Subspace S spanned 
by columns of X

Residual vector y!y’ is
orthogonal to subspace S
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Computing the solution

19

w.

.

Euclidean norm.

the pseudoinverse X
If X!X is not invertible, there is no unique solution

In that case chooses the solution with smallest

and the solution is unique.

w = (X!X)−1X!yWe compute 

If X!X is invertible, then (X!X)−1X! coincides with

X+ of

An alternative way to deal with non-invertible X!X is
to add a small portion of the identity matrix (= Ridge regression).

w = X+y
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Beyond lines and planes

0 10 20
0

20

40

Linear models become powerful function approximators when we 
consider non-linear feature transformations. 

⇒
All the math is the same!

Predictions are still linear in X !
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Geometric interpretation

[Matlab demo]

0
10

20 0

100

200

300

400

-10

0

10

20
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Ordinary Least Squares [summary]

n

d

Let

For example

Let

Minimize by solving

Given examples

Predict
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Probabilistic interpretation
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0

Likelihood
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BREAK
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Overfitting

• So the more features the better? NO! 
• Carefully selected features can improve 

model accuracy. 
• But adding too many can lead to overfitting.
• Feature selection will be discussed in a 

separate lecture.

27
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Overfitting
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[Matlab demo]

Degree 15 polynomial
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Ridge Regression
(Regularization)
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-10

-5

0

5

10

15
Effect of regularization (degree 19)

with     “small” by solving

Minimize

(X!X + εI)w = X!y

[Continue Matlab demo]
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Probabilistic interpretation

Likelihood

Prior

Posterior

P (w|X, y) =
P (w, x1, . . . , xn, y1, . . . , yn)
P (x1, . . . , xn, y1, . . . , yn)

∝ P (w.x1, . . . , x1, y1, . . . , yn)

∝ exp
{
− ε

2σ2
||w||22

}∏
i

exp
{
− 1

2σ2

(
X!

i w − yi

)2
}

= exp

{
− 1

2σ2

[
ε||w||22 +

∑
i

(X!
i w − yi)2

]}

30



Outline
• Ordinary Least Squares Regression

- Online version

- Normal equations

- Probabilistic interpretation

• Overfitting and Regularization

• Overview of additional topics

- L1 Regression

- Quantile Regression

- Generalized linear models

- Kernel Regression and Locally Weighted Regression

31



Errors in Variables
(Total Least Squares)

0
0
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Sensitivity to outliers

High weight 
given to outliers
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L1 Regression

Linear program
Influence 
function

[Matlab demo]
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Quantile Regression
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Generalized Linear Models

36

Probabilistic interpretation of OLS
Mean is linear in Xi

OLS: linearly predict the mean of a Gaussian conditional. 

GLM: predict the mean of some other conditional density.

May need to transform linear prediction by          to produce a 
valid parameter. 

yi|xi ∼ p
(
f(X!

i w)
)

f(·)
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Example: “Poisson regression”

37

yi|xi ∼ Poisson
(
f(X!

i w)
)

Suppose data are event counts:y

Typical distribution for count data: Poisson

Poisson(y|λ) =
e−λλy

y!
Mean parameter is λ > 0

Say we predict λ = f(x!w) = exp
{
x!w

}

y ∈ N0

GLM:

37
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Poisson regression: learning

39

As for OLS: optimize      by maximizing the likelihood of data.w

Equivalently: maximize log likelihood.

Likelihood L =
∏

i

Poisson
(
yi|f(X!

i w)
)

l =
∑

i

(
X!

i wyi − exp
{
X!

i w
})

+ const.Log likelihood

∂l

∂w
=

∑
i

(
yi − exp

{
X!

i w
})

Xi

=
∑

i

(
yi − f

(
X!

i w
))

Xi

Batch gradient:

︸ ︷︷ ︸
“residual”
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LMS, Logistic regression, 
Perceptron and GLM updates

• GLM (online)

• LMS

• Logistic Regression

• Perceptron

wt+1 := wt + α(yi − x!i w)xi

wt+1 := wt + α(yi − fw(xi))xi

wt+1 := wt + α(yi − fw(xi))xi

wt+1 := wt + α(yi − fw(xi))xi
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Kernel Regression and 
Locally Weighted Linear Regression

• Kernel Regression:
 Take a very very conservative function approximator called 

AVERAGING. Locally weight it.

• Locally Weighted Linear Regression:
 Take a conservative function approximator called LINEAR 

REGRESSION. Locally weight it.

Slide from Paul Viola 2003
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Kernel Regression
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Locally Weighted Linear Regression
(LWR)

Kernel regression (sigma=1)

E =
1
2

n∑
i=1

(w!xi − yi)2

OLS cost function:

LWR cost function:

E′ =
n∑

i=1

k(xi − x)(w"xi − yi)2

[Matlab demo]
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