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Regression vs. Classification:

Classification
Anything: * Discrete:
e continuous (N, N9, ...) —{0,1} binary
» discrete ({0,1}, {1,...k}, ...) -{1,...k} multi-class

e structured (tree, string, ...) — tree, etc. structured




Regression vs. Classification:

Classification

X=Y

Perceptron
Logistic Regression
Support Vector Machine

Anything:

e continuous (N, A9, ...)
» discrete ({0,1}, {1,...k}, ...)

» structured (tree, string, ...)

Decision Tree
Random Forest

Kerhél trick




Regression vs. Classification:

Regression
Anything: * continuous:
- continuous (R, R4, ...) - N, e

» discrete ({0,1}, {1,...k}, ...)

» structured (tree, string, ...)




Examples

° Voltage = Temperature

Processes, memory = Power consumption
Protein structure = Energy

Robot arm controls = Torque at effector

° Location, industry, past losses = Premium




Linear regression

Given examples (x;,Y;)i=1 n
Predict Yn+41 givenanew point x, 41
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Linear regression

We wish to estimate ¢ by a linear function of our data x :
Un+1 = W+ WiTpt1,1 + W2Tny12

— UJTZCTH_l
where w 1s a parameter to be estimated and we have used the
standard convention of letting the first component of x be 1.
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Choosing the regressor

Of the many regression fits that approximate the data, which should
we choose?

Observation Y
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LMS Algorithm

(Least Mean Squares)
In order to clarify what we mean by a good choice of w, we will
define a cost function for how well we are doing on the training data:

. Error or “residual”
Observation Y

Prediction g’j

J
0 n :U 20
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LMS Algorithm

(Least Mean Squares)

The best choice of w 1s the one that minimizes our cost function
mn

E:%Z(w T; — ZE

i=1
In order to optimize this equation, we use standard gradient descent

t+1 t 0 E

Wt = wt — a—
ow
where
%, "0 9, 19, ¢ )
o L= - —Fb = 4= i — Yi
ow” " 2aput a4 B 20" T
- = (w'z; — i)z
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LMS Algorithm

(Least Mean Squares)

The LMS algorithm is an online method that performs the
following update for each new data point

9,
wtt = wl—a—EF,
ow
= w'+aly —x we
OF
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LMS, Logistic regression, and
Perceptron updates

« LMS
wtt = w4 aly; — 2w
* Logistic Regression
w = wh +aly; — fol®))T;

* Perceptron

w = w tay — ful@)T
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Ordinary Least Squares (OLS)

. E f : ”
Observation rror or “residual

Prediction ?j
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Minimize the sum squared error

1 n
E = §Z(wai—y7;)2
i=1
1 T
= S(Xw—y) (Xw-y)
1
= i(wTXTXw—QyTXeryTy)
0 T T
—F = X Xw—-—X'y
ow
[—z{-\1 | .
1 Setting the derivative equal to zero
= | _ .CET . n gives us the Normal Equations
2
\ )y X" Xw = X'y
< > w = (X'X)7'X 'y
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A geometric interpretation

0
Wesolved —F = X ' (Xw —y) =0
ow

—> Residuals are orthogonal to columns of X

—> ¢ = Xw gives the best reconstruction of Y

in the range of X
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Residual vector y-y’ is
orthogonal to subspace S

Subspace S spanned
by columns of X

y’ is an orthogonal
projection of y onto S
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Computing the solution

We compute W = (XTX)_lXTy.
If X T X is invertible, then (X ' X) ' X " coincides with

the pseudoinverse X T of X and the solution is unique.

If X' X is not invertible, there is no unique solution W.

In that case W = X +y chooses the solution with smallest

Euclidean norm.

An alternative way to deal with non-invertible X TX s

to add a small portion of the identity matrix (= Ridge regression).
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Beyond lines and planes

Linear models become powerful function approximators when we
consider non-linear feature transformations.

1

Xj = 5’75 i 9; = wo + wiz; + wor?

.

Predictions are still linear in X !

All the math 1s the same!
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Geometric interpretation

20_f HAFiS

104 Wi/

10

[Matlab demo]
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Ordinary Least Squares [summary]

Given examples (:UZ', yi)i:]_,,,'n,

Let X,;' = (f1(z;) folmi) ... fa(z))

For example XT (1 i1 X2 5177?1 %22 Ly 1L5 2)

[ —Xx{ -\t [ y1 )
et X = —_XxXJ— || ¥Y=] »
\4 >), \ -/

Minimize || Xw — y||3 by solving (XTX) w= X"y
Predict ¥Ynp4+1 = Xn—l—lw
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Probabillistic interpretation

yilzi ~ N(X; w,0?)

|
I
I
|
|
|
|
|
|
|
| ]
0 ajz- 20

Likelihood [, = Hexp 5.2 (XTw yz)2 = exp—m->5 Z(XT’LU yz)2

argmax L = argmin E
w w
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Overfitting

So the more features the better? NO!

Carefully selected features can improve
model accuracy.

But adding too many can lead to overfitting.

Feature selection will be discussed in a
separate lecture.

27

27



30 r

25+

20 +

15+

10

-10 +

-15

Overfitting

Degree 15 polynomial
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[Matlab demo]
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Ridge Regression

(Regularization)

~ Effect of regularization (degree 19)

0 2 4 6 8

1 1 1
10 12 14

16 18 20

Minimize
L 12 2
SIXw = y)13 + el|wll3
with € “small” by solving

(X'X+eDw=X"y

[Continue Matlab demo]
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Probabillistic interpretation

Likelihood  y;|x; ~ N(Xi—l_wa 02)

2
Prior w ~ N (O, a>

€
Posterior

P(w|X,y) =

30
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Errors in Variables
(Total Least Saquares)
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Sensitivity to outliers

— I 2 __ . /'High weight
E = T: W —Y; )T = E. E igh weig
ZL:( ¢ i) %: ¢ v/ given to outliers
Temperature at noon
- Vi
XL W
7
aEi Infl
O nfluence
Yi /' function
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L, Regression

L;
/ /! T
E@ B = Z|$Z’w—yz|
1
_ /
= ) E
> 1
) Yi
Linear program
OF; Influence
oy; function I’pu’lp Z C;
[/
: > U I -
z; w Yi S.t. T, w—1Y; < ¢ Vi
T

Y, —T; w< ¢ Vi

[Matlab demo]
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CPU utilization [MHz]

Quantile Regression

—— mean CPU
—— 95th percentile of CPU °

300 320 340 360

280

260

w w
15 16 17 18 19 20 21
workload (Viewltem.php) [req/s]

Slide courtesy of Peter Bodik
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Generalized Linear Models

Probabilistic interpretation of OLS
Mean is linear in X;

< 5
yilz; ~ N(X; w,0%)

OLS: linearly predict the mean of a Gaussian conditional.

GLM: predict the mean of some other conditional density.

yilzi ~p (f(X; w))

May need to transform linear prediction by f(-) to produce a
valid parameter.
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Example: “"Poisson regression”

Suppose data { are event counts: Y & N 0

Typical distribution for count data: Poisson

e~ A\Y

' Mean parameter is A > 0
y!

Poisson(y|A) =
Say we predict )\ = f(ngw) = exp {LL’TUJ}
GLM: ¥;|z; ~ Poisson (f(XZTw))
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Poisson regression: learning

As for OLS: optimize W by maximizing the likelihood of data.

Equivalently: maximize log likelihood.

Likelihood L = | [ Poisson (ys| f(X, w))

Log likelihood [ = Z (XZ-TwyZ- — exp {X?Tw}) + const.

()

Ol

Batch gradient: o = EZ: (i — exp { X,LTw}) X,
= Z (?Jz —f (XZTUJ)) X

“residual” .
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LMS, Logistic regression,
Perceptron and GLM updates
 GLM (online)

Wt =l oy — ful@)es
« LMS
wtt = wi - aly -z way

* Logistic Regression

w = W+ oy — fuol(T))T
* Perceptron

wt = Wt aly — fol(T))T
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Kernel Regression and
Locally Weighted Linear Regression

 Kernel Regression:
Take a very very conservative function approximator called

AVERAGING. Locally weight 1t.

* Locally Weighted Linear Regression:
Take a conservative function approximator called LINEAR
REGRESSION. Locally weight it.

Slide from Paul Viola 2003
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Kernel Regression

Kernel regression (sigma=1)

_ 2iyik(e; — o)
> i k(x; — )
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Locally Weighted Linear Regression
(LWR)

Kernel regression (sigma=1)

OLS cost function:

1 n
- ;(mi )’
LWR cost function:

E' = Z k(x; — ) (w' x5 — y;)?
=1

10 ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18

[Matlab demo]
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Heteroscedasticity

#requests per minute

5000

1 2 Time (days)
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VWhat we covered

e Ordinary Least Squares Regression

- Online version
- Normal equations
- Probabillistic interpretation

e QOverfitting and Regularization
e QOverview of additional topics
- L, Regression
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- Generalized linear models

- Kernel Regression and Locally Weighted Regression
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