10/23/06
20:30:08

CS 61B Lab 8
Cct ober 24-25, 2006

Goal: This lab will introduce you to gjdb, the Java debugger.

Copy the Lab 8 directory by starting fromyour honme directory and typing:
cp -r $naster/lab/lab8 .

The Java Debugger Tutori al

Wel cone. You now find yourself in the position of debuggi ng sonebody el se’s
bad code in DebugMe.java, which is supposed to conpute the partial geonetric
series

1 1 1
1+ --- 4 --- 4 ---
2 4 8

(whi ch equal s 1.875)

DebugMe. mai n() begins by calling the recursive nethod createGeonSeries(), which
creates a linked list in which each node contains one termof the above series.
Next, main() calls the recursive method |istSun() to conpute the sum of the
nodes in the list. As you may have guessed, it doesn’t work. If you conpile
and run DebugMe you will see that it prints the value 1.0 instead of 1.875.

Sone docunentation on the java debugger (gjdb) is available in the course
reader and is also linked fromthe class Wb page. (The Java debugger provided
with Sun's Java Devel opnent Kit is called jdb, and it is not very good;
Professor Hilfinger nodified it and built a better interface for it.) Hereis
a summary of how you m ght use gjdb to track down the error in this program
(1) Conpile the programwith the debugging switch ‘-g'.

javac -g DebugMe.java
(2) Instead of running java, you could run gjdb as follows.

gj db DebugMe

Wien you see the ‘[-]’ pronpt, the debugger is ready to go, and you nay
follow the instructions in the course reader on howto use it. However, rather

than run gjdb froma shell, we recommend you run it fromenmacs. Enacs will
interpret the output of the debugger and show you where the debugger is in your
.java files, which is extrenmely useful. To begin, type ‘Meta-x gjdb’ from
within enacs. When asked to fill in the gjdb command, use ‘gjdb Debughe’. You
shoul d see a new wi ndow appear with the ‘[-]’" pronpt.

(3) 9jdb is a command-line driven program The nost inportant conmand you
should learn howto use is the (limted) on-line help; type help at the pronpt.

[-1 help
If you see a command that |ooks |ike the one you want, but need nore

information, type ‘help <command>', replacing <command> with the conmand you
want to know nore about.

readme

(4) To run the programfromwi thin the debugger, type ‘run’ at the pronpt.
[-] run

Thi s executes your program FROM THE BEG NNI NG

(5) The other npst inportant conmand is ‘quit’.

When gjdb is stuck, not giving you a coomand pronpt, you may sinply kill the

emacs buffer in which gjdb is running. |If you ever need to restart gjdb, make

sure your cursor is in the debugger wi ndow and type ‘Cx k.

(6) Let's see what’'s happening within the main function. So that we can do
this, we’'ll set a breakpoint at the beginning of main().

[-]1 break DebugMe. main

This tells the debugger to stop when execution reaches the begi nning of the
mai n method. (You can al so set breakpoints at specific line nunbers. |If
you've witten small nodul ar programs, you will rarely find that necessary.)

Start the programby typing ‘run’. Wen execution reaches the breakpoint,
emacs Wi ll show the DebugMe.java file in a separate window with the current
line indicated by an ‘=>" arrow.

(7) At the beginning of the ‘main’ function, there’s no sign yet of the bug.
Execute slowy through the code using either the ‘next’ command or the ‘step’

command. These two commands have a crucial difference: ‘next’ executes one
statement in full, including any nethod calls. ‘step’ normally executes one
statement, but if the statenment includes a nmethod call, execution stops at the

first line of the called nethod. Think of ‘step’ as ‘stepping into’ a nethod.
In emacs, CG-c Cs or the f5 key is shorthand for "step’, and C-c Cn or the f6
key is shorthand for ‘next’.

Type f6 twice while watching the '=> arrow in the other wi ndow The arrow
shoul d now point to the line that declares ‘suni and assigns it a val ue.
This neans that we are about to execute that line, but haven't yet.

(If you stepped too far, you can start over by typing ‘run’ again.)

10/23/06
20:30:08

(8) Let's see if the list ‘geonBSeries’ has been constructed correctly. It is
made of ListNodes, each containing an itemand a reference to the next ListNode
inthe list. Let's inspect the local variables and confirmthat they have

val ues we expect.

main[0] info locals

You can al so inspect the value of any variable or expression using the ‘print’
comand.

mai n[0] print geonBeries
Since geonBeries is a reference to a ListNode, this information isn’t very

useful. But we can view the ListNode's itemas follows. (W can also use
as shorthand for ‘print’.)

p

mai n[0] p geonBSeries.item
main[0] p geonBeries.itemtoString()

Each itemis a Double (fromjava.lang), which defines a toString nethod, which
prints the item W can see the second el enent of the list as follows.

mai n[0] p geonBeries.next.item
mai n[0] p geonBeries.next.itemtoString()

[1 point] Inplement a toString nethod in ListNode.java that prints the
contents of the full list. Reconpile the file, re-run the debugger, step again
to the third line of main(), and print the value of the list fromthe debugger.

mai n[0] print geonBSeries.toString()

Draw a box-and- poi nter di agram of the geonSeries data structure, including all
Li st Nodes and itens.

[1 point] Find a sinple command (either by the ‘help’ command or by the gjdb
docunentation in your reader or online) that allows you to directly print the
geonBeries to a deeper nunber of levels, and thereby learn the structure of
geonBeries without calling toString(). Note that this command will print a |ot
of extraneous information too, |ike a bunch of "final static" constants

associ ated with the Double class.

(9) Set a breakpoint on the createGeonSeries nethod.
[-]1 break DebugMe. creat eGeonfSeri es

‘run’ the programagain. Your programis still set to break at the beginning
of main, so type ‘cont’ (or just ‘c’ for short) to ‘continue’ execution. You
could instead use f8 in emacs. \When the debugger reached createCeonfSeries, use
‘info locals’ to see the value of the paraneters ‘r’ and ‘N . Since
createCeonBeries is a recursive function, you will want to | ook at these

vari abl es during several invocations of createGeonBeries. To do this, repeat
the two commands ‘cont’ and ‘info locals’ until you see each invocation of the
recursive function. You should now be able to determne the bug in the
program

[2 points] Fix the bug in the program reconpile it, and run it. Mke sure
you are getting the right answer.

readme

Check- of f

Show your TA or Lab Assistant that DebugMe produces the correct answer, and
that you can print a list fromw thin the debugger.

1 point: Show your box-and- poi nter diagram of the geonBeries list (in the
original buggy version).
1 point: Show that your toString nmethod nmakes it possible for you to print

a conplete list fromw thin the debugger. Say what other debugger
command can give you the sanme information without calling toString.
2 points: Show that your debugged programis producing the right answer.

Post scri pt

Now use the debugger to find the source of the bugs in your project. Although
it takes some effort to learn to use a debugger, it will save you a lot of tinme
this senmester if you get accustoned to using it now.

