UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

Basic Compilation Control with Grake

Even relatively small software systems can require rather involved, or at least tedious, sequences
of instructionsto trans ate them from source to executable forms. Furthermore, since trand ation takes
time (more than it should) and systems generally comein separately-trandatable parts, it isdesirable
to save time by updating only those portions whose source has changed since the last compilation.
However, keeping track of and using such information isitself atedious and error-prone task, if done
by hand.

The UNIX nmake utility is a conceptually-simple and general solution to these problems. It
accepts as input a description of the interdependencies of a set of source files and the commands
necessary to compile them, known as a makefile; it examines the ages of the appropriate files; and it
executes whatever commands are necessary, according to the description. For further convenience, it
will supply certain standard actions and dependencies by default, making it unnecessary to state them
explicitly.

There are numerous dialects of make, both among UNIX installations and (under other names)
in programming environments for personal computers. In this course, we will use aversion known as
gmakel. Though conceptually simple, the make utility has accreted features with age and use, and
is rather imposing in the glory of its full definition. This document describes only the simple use of
gnake.

1 Basic Operation and Syntax

The following is a sample makefile? for compiling a simple editor program, edi t, from eight . cc
filesand three header (. h) files.

Makefile for sinple editor

edit : edit.o kbd.o commands.o display.o \

'For “GNU mmake,” GNU being an acronym for “GNU’sNot Unix.” grmake is“copylefted” (it hasalicensethat requires
free use of any product containing it). It isaso more powerful than the standard make utility.
2Adapted from “GNU Make: A Program for Directing Recompilation” by Richard Stallman and Roland McGrath, 1988.

39

40 P N. Hilfinger

insert.o search.o files.o utils.o
g++ -g -0 edit edit.o kbd.o conmands. o display.o \
insert.o search.o files.o utils.o -1g++

edit.o : edit.cc defs.h
g++ -g -c -Vall edit.cc
kbd.o : kbd.cc defs.h command. h
g++ -g -c -Wall kbd. cc
conmands. o : command. cc defs. h conmand. h
g++ -g -¢c -Wall commands. cc
di splay.o : display.cc defs.h buffer.h
g++ -g -c -Vl display.cc
insert.o : insert.cc defs.h buffer.h
g++ -g -c -Vll insert.cc
search.o : search.cc defs.h buffer.h
g++ -g -c -Wall search.cc
files.o : files.cc defs.h buffer.h command. h
g+t+ -g -c -Vall files.cc
utils.o : utils.cc defs.h
g+t+ -g -c -Vall utils.cc

Thisfile consists of asequence of ninerules. Each rule consists of aline containing two lists of names
separated by a colon, followed by one or more lines beginning with tab characters. Any line may be
continued, asillustrated, by ending it with a backslash-newline combination, which essentially acts
like a space, combining the line with its successor. The‘# character indicates the start of acomment
that goesto the end of theline.

The names preceding the colons are known as targets; they are most often the names of files
that are to be produced. The names following the colons are known as dependencies of the targets.
They usually denote other files (generaly, other targets) that must be present and up-to-date before
the target can be processed. The lines starting with tabs that follow the first line of arule we will call
actions. They are shell commands (that is, commands that you could type in response to the Unix
prompt) that get executed in order to create or update the target of the rule (we'll use the generic term
update for both).

Each rule says, in effect, that to update the targets, each of the dependencies must first be updated
(recursively). Next, if atarget does not exist (that is, if no file by that name exists) or if it does exist
but is older than one of its dependencies (so that one of its dependencies was changed after it was
last updated), the actions of the rule are executed to create or update that target. The program will
complainif any dependency does not exist and thereisno rule for creating it. To start the process off,
the user who executes the gmake utility specifies one or more targets to be updated. The first target
of thefirst rulein the fileis the default.

In the example above, edi t isthe default target. Thefirst step in updating it isto update al the
object (. o) fileslisted as dependencies. To updateedi t . o, inturn, requiresfirst thatedi t . cc and
def s. h be updated. Presumably, edi t . cc isthe source file that producesedi t . o anddef s. h

Basic Compilation Control with Grake 41

isaheader filethat edi t . cc includes. Thereare no rulestargeting thesefiles; therefore, they merely
need to exist to be up-to-date. Now edi t . o is up-to-date if it is younger than either edi t . cc
or def s. h (if it were older, it would mean that one of those files had been changed since the last
compilation that produced edi t . 0). If edi t . o isolder than itsdependencies, gnake executesthe
action“g++ -g -c -Wall edit.cc”, producinganew edit.o. Onceedit. o and al the
other . o files are updated, they are combined by the action “g++ -g -0 edit --.” to produce
theprogramedi t , if either edi t doesnot already exist or if any of the . o filesare younger than the
existingedi t file.
To invoke gnmake for this example, oneissues the command

gmake -f makefile-name target-names

where the target-names are the targets that you wish to update and the makefile-name given in the
- f switch is the name of the makefile. By default, the target is that of the first rule in the file. You
may (and usually do) leave off - f makefile-name, in which case it defaults to either makefi | e or
Makef i | e, whichever exists. It istypica to arrange that each directory contains the source code
for a single principal program. By adopting the convention that the rule with that program as its
target goesfirst, and that the makefile for the directory isnamed makef i | e, you can arrangethat, by
convention, issuing the command grmak e with no argumentsin any directory will update the principal
program of that directory.

It is possible to have more than one rule with the same target, aslong as no more than one rule for
each target has an action. Thus, we can also write the latter part of the example above asfollows.

edit.o : edit.cc

g+t+ -g -c -Vall edit.cc
kbd.o : kbd. cc

g++ -g -c -Vl l kbd. cc
commands. o : conmand. cc

g++ -g -c -Vl |l commands. cc
di splay.o : display.cc

g++ -g -c -Vl |l display.cc
insert.o : insert.cc

g++ -g -c -Vall insert.cc
search.o : search. cc

g++ -g -c -Wall search.cc
files.o : files.cc

g+t+ -g -c -Vall files.cc
utils.o : utils.cc

g+t+ -g -c -Vall utils.cc
edit.o kbd.o conmands. o display.o \

insert.o search.o files.o utils.o: defs.h

kbd. o commands.o files.o : conmand. h
display.o insert.o search.o files.o : buffer.h

42 P N. Hilfinger

Theorder inwhichtheserulesarewrittenisirrelevant. Which order or grouping you chooseislargely
amatter of taste.

The example of this section illustrates the concepts underlying grmake. The rest of gmmake’s
features exist mostly to enhance the convenience of using it.

2 Variables

The dependencies of the target edi t in §1 are also the arguments to the command that links them.
One can avoid this redundancy by defining a variable that contains the names of all object files.

Makefile for sinple editor

OBJS = edit.o kbd.o commands. o di splay.o \
insert.o search.o files.o utils.o

edit : $(0BJS)
g++ -g -0 edit $(OBIS

The (continued) line beginning “OBJS =" defines the variable OBJ S, which can later be referenced
as “$(OBJS)” or “${OBJIS}”. These later references cause the definition of OBJ to be substituted
verbatim before the rule is processed. It is somewhat unfortunate that both grmake and the shell use
‘$ to prefix variable references; gmake defines ' $$' to be smply *$’, thus allowing you to send ‘$'s
to the shell, where needed.

You will sometimesfind that you need avaluethat isjust likethat of some variable, with acertain
systematic substitution. For example, given a variablelisting the names of all sourcefiles, you might
want to get the names of all resulting . o files. We can rewrite the definition of OBJS above to get
this.

SRCS = edit.cc kbd.cc commands. cc di splay.cc \
insert.cc search.cc files.cc utils.cc
OBJS = $(SRCS: . cc=.0)

The substitution suffix *: . cc=. 0’ specifiesthe desired substitution. We now have variablesfor both
the names of all sources and the names of al object files without having to repeat alot of file names
(and possibly make a mistake).

Variables may also be set in the command line that invokes gnmake. For example, if the makefile
contains

edit.o: edit.cc
g++ $(DEBUG -c -wall edit.cc

Then a command such as

gnmake DEBUG=-g ...

Basic Compilation Control with Grake 43

will cause the compilationsto usethe - g (add symbolic debugging information) switch, whileleaving
off the DEBUG=- g will not use the - g switch. Variable definitions in the command lines override
those in the makefile, which allows the makefile to supply defaults.

Variables not set by either of these methods may be set as UNIX environment variables. Thus,
the sequence of commands

setenv DEBUG -g
gmake ...

for this last example will aso use the - g switch during compilations.

3 Implicit rules

Intheexamplefrom §1, all of the compilationsthat produced. o fileshavethesameform. Itistedious
to have to duplicate them; it merely gives you the opportunity to type something wrong. Therefore,
gmake can be told about—and for some standard cases, already knows about—the default files and
actions needed to produce files having various extensions. For our purposes, the most important is
that it knows how to produce afile F. o given afile of theform F'. cc, and knowsthat the F'. o file
dependson thefile F'. cc. Specifically, gnake automatically introduces (in effect) therule

F.o: F.cc
$(CXX) -c -Wall $(CXXFLAGS) F.cc

when called upon to produce F'. o when thereisa C++ file F'. cc present, but no explicitly specified
actions exist for producing F'. 0. The use of the prefix “CXX” is anaming convention for variables
that have to do with C++. It also creates the command

F: F.o
$(CXX) $(LDFLAGS) F.o $(LOADLIBES) -0 F

to tell how to create an executable file named F' from F'. o.
Asaresult, we may abbreviate the example as follows.

Makefile for sinple editor

SRCS = edit.cc kbd.cc commands.cc display.cc \
insert.cc search.cc files.cc utils.cc

OBJS = $(SRCS: . cc=.0)
CC = gcc
CXX = g++

CXXFLAGS = -g

44 P N. Hilfinger

LOADLI BES = -Im

edit : $(0BJS)

edit.o : defs.h

kbd.o : defs.h command. h

conmands. o : defs.h command. h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h

files.o : defs.h buffer.h conmmand. h
utils.o : defs.h

There are quite afew other such implicit rules built into grmake. The - p switch will cause gnake
to list them somewhat cryptically, if you are at all curious. We are most likely to be using the rules
for creating . o filesfrom. cc (C++) files. It isalso possibleto supply your own default rules and to
suppress the standard rules; for details, see the full documentation, which is available on our systems
throughthe C- h i command in Emacs.

4 Special actions

It is often useful to have targets for which there are never any corresponding files. If the actions for
atarget do not create afile by that name, it follows from the definition of how grmake worksthat the
actions for that target will be executed each time gnmake is applied to that target. A common useis
to put a standard “clean-up” operation into each of your makefiles, specifying how to get rid of files
that can be reconstructed, if necessary. For example, you will often see arule like thisin a makefile.

cl ean:
rm-f *.o0

Every time you issue the shell command grmeke cl ean, this action will execute, removing all . o
files.

Another possible use isto provide a standard way to run a set of tests on your program—what are
typically known as regression tests—to see that it is working and has not “regressed” as a result of
some change you've made. For example, to cause the command

make test
to feed atest file through our editor program and check that it produces the right result, use:

test: edit
rm-f test-filel
.ledit < test-conmandsl
diff test-filel expected-test-filel

Basic Compilation Control with Grake 45

wherethefilet est - commands1 presumably contains editor commands that are supposed to pro-
duce afiletest-fil el, andthefileexpect ed-test-fil el containswhat is supposed to be
intest-fil el after executing those commands. The first action line of the rule clears away any
old copy of t est - f i | e1; the second runsthe editor and feedsint est - commands1 through the
standard input, and the third comparesthe resulting file with its expected contents. If either the second
or third action fails, make will report that it encountered an error.

Figurelillustratesamoregeneral set-up. Here, the makefiledefinesthevariable TESTPROGRAM
to be the name of any arbitrary testing command, and TESTSto be alist of argument sets to give the
test program. The makefile also includes the template shown in the figure. Suppose that my makefile
includes this template and also the definitions

TESTPROGRAM = . /test-edit

TESTS = "test-commandsl test-filel expected-test-filel"” \
"test-comuands2 test-file2 expected-test-file2"

Thengmake test will run

./test-edit test-comandsl test-filel expected-test-filel
./test-edit test-commands2 test-file2 expected-test-file2

and will report which tests succeed and which fail. The scriptt est - edi t inthis case could be

#!/ bi n/ sh

$1: command file. $2: output file.

$3: standard for the output file.

rm-f $2

The followi ng conmand runs the editor and conpares the out put

agai nst the standard. This script returns normally if the editor
returns normally and diff finds no differences.

Jedit < $1 && diff $2 $3

Of course, doing things this fancy requires that you learn afair amount about the shell language (the
Bourne shell, in this case).

The definition of the t est target in Figure 1 illustrates the advanced use of shell commands in
a makefile. Because the action is a single (compound) shell command—a loop—you must inform
gmake not to break it into 7 separate commands; that’s the purpose of the backslashes at the end of
each line. Also, in an ordinary shell script, I'd write ${ t est } rather than $${t est }. However,
gnake treats $ as a special character; to avoid confusion, gnake treats $$ as a single dollar sign
that is supposed to be included in the command.

5 Detailsof actions

By default, each action line specified in a rule is executed by the Bourne shell (as opposed to the
C shell, which, most unfortunately, is more commonly used here). For the simple makefiles we are
likely to use, thiswill make little difference, but be prepared for surprisesif you get ambitious.

46 P N. Hilfinger

The gmake program usually prints each action as it is executed, but there are times when thisis
not desirable. Therefore, a‘ @’ character at the beginning of an action suppressesthe default printing.
Here is an example of acommon use.

edit : $(0BJS)
@-cho Linking edit
@++ -g -0 edit $(0BIS)
@cho Done

Theresult of these actionsisthat when grmmak e executes thisfinal editing step for theedi t program,
the only thing you'll see printed isalinereading “Li nki ng edit...” and, at the end of the step,
alinereading “Done”.

When grmake encounters an action that returns a non-zero exit code, the UNIX convention for
indicating an error, its standard response isto end processing and exit. The error codes of action lines
that begin with a“-’ sign (possibly preceded by a‘@’) are ignored. Also, the - k switch to gnake
will cause it to abandon processing only of the current rule (and any that depend on its target) upon
encountering an error, alowing processing of “sibling” rulesto proceed.

6 Creating makefiles

A good way to create makefiles is to have a template that you include in your particular makefile.
Something like the example in Figure 1, for example. You have one or more of these for various uses
(C++ programs, Java programs, etc.). For any particular program, your makefile might then look like
the following example:

PROGRAM = edi t

CXX_SRCS = edit.cc kbd.cc commands. cc display.cc \
insert.cc search.cc files.cc utils.cc

i ncl ude $(HOVE)/1i b/ Makefile.std

We will maintain atemplate like thisin $MASTERDI R | i b/ Makefi | e. st d, which you include
with

i nclude $(MASTERDIR)/1i b/ Makefile. std

(always assuming, that is, that you use the standard class setup files, which set the environment
variablesMASTER and MASTERDIR to the CS61B home directory.)

Asafinal convenience, the - MMoption to gcc creates dependency linesfor C and C++ automat-
icaly. The template shown in Figure 1 uses this to automatically generate a file of dependencies.
modified makefile. The depend special target in in that file allows you to recreate the set of
dependencieswhen needed by typing ‘gmake depend'.

Basic Compilation Control with Grake

H*

Standard definitions for nake utility: C++ version.

Assunes that this file is included froma Mkefile that defines
PROGRAM t 0 be the name of the programto be created and CXX_SRCS
to the list of C++ source files that go into it.

the C++ conpiler), LOADLIBES (-1 options for the linker), LDFLAGS
(flags to the linker), and CXX (the C++ conpiler).

HOH HH KR

Targets defined:
all: Default entry. Conpiles the program
depend: Reconputes dependencies on .h files.

HHH R H

of the arguments given in the variable TESTS.
LOADLIBES = -1m

LDFLAGS = -g

CXX = g++

CXXFLAGS = -g -\Wal |

OBJS = $(CXX_SRCS: . cc=.0)

Default entry
al I : $(PROGRAM

$(PROGRAM) : $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) $(LOADLIBES) -0 $(PROGRAV)

cl ean:
/bin/frm-f $(0BIS) $(PROGRAM *~

test: $(PROGRAV)
for test in $(TESTS); do \
echo "Runni ng $(TESTPROGRAM) $${test} ..." ; \
if $(TESTPRORAM $${test}; then \
echo "Test succeeds."; \
el se echo "Test failed."; \
fi; \
done

nmake. depend:
rm-f make. depend
$(CXX) - MM $(CXX_SRCS) > nmke. depend

depend:
$(CXX) - MM $(CXX_SRCS) > nmke. depend

|f the make. depend file does not exist, gmake will use the rule
for make.depend above to create it.
i ncl ude make. depend

The including Makefile may subsequently override CXXFLAGS (flags to

clean: Renove back-up files and files that make can reconstruct.
test: Run the testing command in variabl e TESTPROGRAM for each

47

Figure 1: An example of astandard makefile definitions that can be included from a specific makefile

to compile many simple collections of C++ programs.

48 P N. Hilfinger

7 Makefileswith Java

To be honest, Javadoes not show the make utility at its best. The problemisthat Java doesnot really
allow the separation of header files from implementation files. For example, suppose file B. j ava
contains uses of methods or classes from A. j ava. From nmake’s perspective, we have to say that
B. cl ass dependson A. j ava. Thus, whenever amethod in A. j ava is changed, asfar as make
knows, B. j ava must be recompiled—even if the signatures and names of the classes, methods,
fieldsin A. j ava have not changed. Thereis often nothing for it at the moment but to write trivial
sets of dependency rules in which every . cl ass file depends on every . j ava file. Still, make is
useful for making the compilation process easy: you can till arrange for aplain gnake command to
compile everything that needs to be compiled. Thus, a Java program contained infilesMai n. j ava,
Car.java, Truck. java, andDri ve. j ava might use makefileruleslikethis:

PROGRAM = Mai n. cl ass
JAVA SRC = Main.java Car.java Truck.java Drive.java
JFLAGS = -g
This defines a newinplicit rule for getting .class files out of
.java files. This rule says: To nmake foo.class fromfoo.java,
send all files that foo.class depends on ($°) to javac.
% class: %java
javac $(JFLAGS) $°
CLASSES = $(JAVA SRC..java=.cl ass)
al l: $(CLASSES

$(CLASSES): $(JAVA SRQ

