
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

Basic Compilation Control with Gmake

Even relatively small software systems can require rather involved, or at least tedious, sequences
of instructions to translate them from source to executable forms. Furthermore, since translation takes
time (more than it should) and systems generally come in separately-translatable parts, it is desirable
to save time by updating only those portions whose source has changed since the last compilation.
However, keeping track of and using such information is itself a tedious and error-prone task, if done
by hand.

The UNIX make utility is a conceptually-simple and general solution to these problems. It
accepts as input a description of the interdependencies of a set of source files and the commands
necessary to compile them, known as a makefile; it examines the ages of the appropriate files; and it
executes whatever commands are necessary, according to the description. For further convenience, it
will supply certain standard actions and dependencies by default, making it unnecessary to state them
explicitly.

There are numerous dialects of make, both among UNIX installations and (under other names)
in programming environments for personal computers. In this course, we will use a version known as
gmake1. Though conceptually simple, the make utility has accreted features with age and use, and
is rather imposing in the glory of its full definition. This document describes only the simple use of
gmake.

1 Basic Operation and Syntax

The following is a sample makefile2 for compiling a simple editor program, edit, from eight .cc
files and three header (.h) files.

Makefile for simple editor

edit : edit.o kbd.o commands.o display.o \

1For “GNU make,” GNU being an acronym for “GNU’s Not Unix.” gmake is “copylefted” (it has a license that requires
free use of any product containing it). It is also more powerful than the standard make utility.

2Adapted from “GNU Make: A Program for Directing Recompilation” by Richard Stallman and Roland McGrath, 1988.

39

40 P. N. Hilfinger

insert.o search.o files.o utils.o
g++ -g -o edit edit.o kbd.o commands.o display.o \

insert.o search.o files.o utils.o -lg++

edit.o : edit.cc defs.h
g++ -g -c -Wall edit.cc

kbd.o : kbd.cc defs.h command.h
g++ -g -c -Wall kbd.cc

commands.o : command.cc defs.h command.h
g++ -g -c -Wall commands.cc

display.o : display.cc defs.h buffer.h
g++ -g -c -Wall display.cc

insert.o : insert.cc defs.h buffer.h
g++ -g -c -Wall insert.cc

search.o : search.cc defs.h buffer.h
g++ -g -c -Wall search.cc

files.o : files.cc defs.h buffer.h command.h
g++ -g -c -Wall files.cc

utils.o : utils.cc defs.h
g++ -g -c -Wall utils.cc

This file consists of a sequence of nine rules. Each rule consists of a line containing two lists of names
separated by a colon, followed by one or more lines beginning with tab characters. Any line may be
continued, as illustrated, by ending it with a backslash-newline combination, which essentially acts
like a space, combining the line with its successor. The ‘#’ character indicates the start of a comment
that goes to the end of the line.

The names preceding the colons are known as targets; they are most often the names of files
that are to be produced. The names following the colons are known as dependencies of the targets.
They usually denote other files (generally, other targets) that must be present and up-to-date before
the target can be processed. The lines starting with tabs that follow the first line of a rule we will call
actions. They are shell commands (that is, commands that you could type in response to the Unix
prompt) that get executed in order to create or update the target of the rule (we’ll use the generic term
update for both).

Each rule says, in effect, that to update the targets, each of the dependencies must first be updated
(recursively). Next, if a target does not exist (that is, if no file by that name exists) or if it does exist
but is older than one of its dependencies (so that one of its dependencies was changed after it was
last updated), the actions of the rule are executed to create or update that target. The program will
complain if any dependency does not exist and there is no rule for creating it. To start the process off,
the user who executes the gmake utility specifies one or more targets to be updated. The first target
of the first rule in the file is the default.

In the example above, edit is the default target. The first step in updating it is to update all the
object (.o) files listed as dependencies. To update edit.o, in turn, requires first that edit.cc and
defs.h be updated. Presumably, edit.cc is the source file that produces edit.o and defs.h

Basic Compilation Control with Gmake 41

is a header file that edit.cc includes. There are no rules targeting these files; therefore, they merely
need to exist to be up-to-date. Now edit.o is up-to-date if it is younger than either edit.cc
or defs.h (if it were older, it would mean that one of those files had been changed since the last
compilation that produced edit.o). If edit.o is older than its dependencies, gmake executes the
action “g++ -g -c -Wall edit.cc”, producing a new edit.o. Once edit.o and all the
other .o files are updated, they are combined by the action “g++ -g -o edit ” to produce
the program edit, if either edit does not already exist or if any of the .o files are younger than the
existing edit file.

To invoke gmake for this example, one issues the command

gmake -f makefile-name target-names

where the target-names are the targets that you wish to update and the makefile-name given in the
-f switch is the name of the makefile. By default, the target is that of the first rule in the file. You
may (and usually do) leave off -f makefile-name, in which case it defaults to either makefile or
Makefile, whichever exists. It is typical to arrange that each directory contains the source code
for a single principal program. By adopting the convention that the rule with that program as its
target goes first, and that the makefile for the directory is named makefile, you can arrange that, by
convention, issuing the commandgmakewith no arguments in any directory will update the principal
program of that directory.

It is possible to have more than one rule with the same target, as long as no more than one rule for
each target has an action. Thus, we can also write the latter part of the example above as follows.

edit.o : edit.cc
g++ -g -c -Wall edit.cc

kbd.o : kbd.cc
g++ -g -c -Wall kbd.cc

commands.o : command.cc
g++ -g -c -Wall commands.cc

display.o : display.cc
g++ -g -c -Wall display.cc

insert.o : insert.cc
g++ -g -c -Wall insert.cc

search.o : search.cc
g++ -g -c -Wall search.cc

files.o : files.cc
g++ -g -c -Wall files.cc

utils.o : utils.cc
g++ -g -c -Wall utils.cc

edit.o kbd.o commands.o display.o \
insert.o search.o files.o utils.o: defs.h

kbd.o commands.o files.o : command.h
display.o insert.o search.o files.o : buffer.h

42 P. N. Hilfinger

The order in which these rules are written is irrelevant. Which order or grouping you choose is largely
a matter of taste.

The example of this section illustrates the concepts underlying gmake. The rest of gmake’s
features exist mostly to enhance the convenience of using it.

2 Variables

The dependencies of the target edit in 1 are also the arguments to the command that links them.
One can avoid this redundancy by defining a variable that contains the names of all object files.

Makefile for simple editor

OBJS = edit.o kbd.o commands.o display.o \
insert.o search.o files.o utils.o

edit : $(OBJS)
g++ -g -o edit $(OBJS)

The (continued) line beginning “OBJS =” defines the variable OBJS, which can later be referenced
as “$(OBJS)” or “$ OBJS ”. These later references cause the definition of OBJ to be substituted
verbatim before the rule is processed. It is somewhat unfortunate that both gmake and the shell use
‘$’ to prefix variable references; gmake defines ‘$$’ to be simply ‘$’, thus allowing you to send ‘$’s
to the shell, where needed.

You will sometimes find that you need a value that is just like that of some variable, with a certain
systematic substitution. For example, given a variable listing the names of all source files, you might
want to get the names of all resulting .o files. We can rewrite the definition of OBJS above to get
this.

SRCS = edit.cc kbd.cc commands.cc display.cc \
insert.cc search.cc files.cc utils.cc

OBJS = $(SRCS:.cc=.o)

The substitution suffix ‘:.cc=.o’ specifies the desired substitution. We now have variables for both
the names of all sources and the names of all object files without having to repeat a lot of file names
(and possibly make a mistake).

Variables may also be set in the command line that invokes gmake. For example, if the makefile
contains

edit.o: edit.cc
g++ $(DEBUG) -c -Wall edit.cc

Then a command such as

gmake DEBUG=-g ...

Basic Compilation Control with Gmake 43

will cause the compilations to use the -g (add symbolic debugging information) switch, while leaving
off the DEBUG=-g will not use the -g switch. Variable definitions in the command lines override
those in the makefile, which allows the makefile to supply defaults.

Variables not set by either of these methods may be set as UNIX environment variables. Thus,
the sequence of commands

setenv DEBUG -g
gmake ...

for this last example will also use the -g switch during compilations.

3 Implicit rules

In the example from 1, all of the compilations that produced.o files have the same form. It is tedious
to have to duplicate them; it merely gives you the opportunity to type something wrong. Therefore,
gmake can be told about—and for some standard cases, already knows about—the default files and
actions needed to produce files having various extensions. For our purposes, the most important is
that it knows how to produce a file .o given a file of the form .cc, and knows that the .o file
depends on the file .cc. Specifically, gmake automatically introduces (in effect) the rule

.o : .cc
$(CXX) -c -Wall $(CXXFLAGS) .cc

when called upon to produce .o when there is a C++ file .cc present, but no explicitly specified
actions exist for producing .o. The use of the prefix “CXX” is a naming convention for variables
that have to do with C++. It also creates the command

: .o
$(CXX) $(LDFLAGS) .o $(LOADLIBES) -o

to tell how to create an executable file named from .o.
As a result, we may abbreviate the example as follows.

Makefile for simple editor

SRCS = edit.cc kbd.cc commands.cc display.cc \
insert.cc search.cc files.cc utils.cc

OBJS = $(SRCS:.cc=.o)

CC = gcc

CXX = g++

CXXFLAGS = -g

44 P. N. Hilfinger

LOADLIBES = -lm

edit : $(OBJS)
edit.o : defs.h
kbd.o : defs.h command.h
commands.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

There are quite a few other such implicit rules built into gmake. The -p switch will cause gmake
to list them somewhat cryptically, if you are at all curious. We are most likely to be using the rules
for creating .o files from .cc (C++) files. It is also possible to supply your own default rules and to
suppress the standard rules; for details, see the full documentation, which is available on our systems
through the C-h i command in Emacs.

4 Special actions

It is often useful to have targets for which there are never any corresponding files. If the actions for
a target do not create a file by that name, it follows from the definition of how gmake works that the
actions for that target will be executed each time gmake is applied to that target. A common use is
to put a standard “clean-up” operation into each of your makefiles, specifying how to get rid of files
that can be reconstructed, if necessary. For example, you will often see a rule like this in a makefile.

clean:
rm -f *.o

Every time you issue the shell command gmake clean, this action will execute, removing all .o
files.

Another possible use is to provide a standard way to run a set of tests on your program—what are
typically known as regression tests—to see that it is working and has not “regressed” as a result of
some change you’ve made. For example, to cause the command

make test

to feed a test file through our editor program and check that it produces the right result, use:

test: edit
rm -f test-file1
./edit < test-commands1
diff test-file1 expected-test-file1

Basic Compilation Control with Gmake 45

where the file test-commands1 presumably contains editor commands that are supposed to pro-
duce a file test-file1, and the file expected-test-file1 contains what is supposed to be
in test-file1 after executing those commands. The first action line of the rule clears away any
old copy of test-file1; the second runs the editor and feeds in test-commands1 through the
standard input, and the third compares the resulting file with its expected contents. If either the second
or third action fails, make will report that it encountered an error.

Figure 1 illustrates a more general set-up. Here, the makefile defines the variable TESTPROGRAM
to be the name of any arbitrary testing command, and TESTS to be a list of argument sets to give the
test program. The makefile also includes the template shown in the figure. Suppose that my makefile
includes this template and also the definitions

TESTPROGRAM = ./test-edit

TESTS = "test-commands1 test-file1 expected-test-file1" \
"test-commands2 test-file2 expected-test-file2"

Then gmake test will run

./test-edit test-commands1 test-file1 expected-test-file1

./test-edit test-commands2 test-file2 expected-test-file2

and will report which tests succeed and which fail. The script test-edit in this case could be

#!/bin/sh
$1: command file. $2: output file.
$3: standard for the output file.
rm -f $2
The following command runs the editor and compares the output
against the standard. This script returns normally if the editor
returns normally and diff finds no differences.
./edit < $1 && diff $2 $3

Of course, doing things this fancy requires that you learn a fair amount about the shell language (the
Bourne shell, in this case).

The definition of the test target in Figure 1 illustrates the advanced use of shell commands in
a makefile. Because the action is a single (compound) shell command—a loop—you must inform
gmake not to break it into 7 separate commands; that’s the purpose of the backslashes at the end of
each line. Also, in an ordinary shell script, I’d write ${test} rather than $${test}. However,
gmake treats $ as a special character; to avoid confusion, gmake treats $$ as a single dollar sign
that is supposed to be included in the command.

5 Details of actions

By default, each action line specified in a rule is executed by the Bourne shell (as opposed to the
C shell, which, most unfortunately, is more commonly used here). For the simple makefiles we are
likely to use, this will make little difference, but be prepared for surprises if you get ambitious.

46 P. N. Hilfinger

The gmake program usually prints each action as it is executed, but there are times when this is
not desirable. Therefore, a ‘@’ character at the beginning of an action suppresses the default printing.
Here is an example of a common use.

edit : $(OBJS)
@echo Linking edit ...
@g++ -g -o edit $(OBJS)
@echo Done

The result of these actions is that when gmake executes this final editing step for the edit program,
the only thing you’ll see printed is a line reading “Linking edit...” and, at the end of the step,
a line reading “Done”.

When gmake encounters an action that returns a non-zero exit code, the UNIX convention for
indicating an error, its standard response is to end processing and exit. The error codes of action lines
that begin with a ‘-’ sign (possibly preceded by a ‘@’) are ignored. Also, the -k switch to gmake
will cause it to abandon processing only of the current rule (and any that depend on its target) upon
encountering an error, allowing processing of “sibling” rules to proceed.

6 Creating makefiles

A good way to create makefiles is to have a template that you include in your particular makefile.
Something like the example in Figure 1, for example. You have one or more of these for various uses
(C++ programs, Java programs, etc.). For any particular program, your makefile might then look like
the following example:

PROGRAM = edit

CXX_SRCS = edit.cc kbd.cc commands.cc display.cc \
insert.cc search.cc files.cc utils.cc

include $(HOME)/lib/Makefile.std

We will maintain a template like this in $MASTERDIR/lib/Makefile.std, which you include
with

include $(MASTERDIR)/lib/Makefile.std

(always assuming, that is, that you use the standard class setup files, which set the environment
variables MASTER and MASTERDIR to the CS61B home directory.)

As a final convenience, the -MM option to gcc creates dependency lines for C and C++ automat-
ically. The template shown in Figure 1 uses this to automatically generate a file of dependencies.
modified makefile. The depend special target in in that file allows you to recreate the set of
dependencies when needed by typing ‘gmake depend’.

Basic Compilation Control with Gmake 47

Standard definitions for make utility: C++ version.

Assumes that this file is included from a Makefile that defines
PROGRAM to be the name of the program to be created and CXX_SRCS
to the list of C++ source files that go into it.
The including Makefile may subsequently override CXXFLAGS (flags to
the C++ compiler), LOADLIBES (-l options for the linker), LDFLAGS
(flags to the linker), and CXX (the C++ compiler).

Targets defined:
all: Default entry. Compiles the program
depend: Recomputes dependencies on .h files.
clean: Remove back-up files and files that make can reconstruct.
test: Run the testing command in variable TESTPROGRAM for each
of the arguments given in the variable TESTS.

LOADLIBES = -lm

LDFLAGS = -g

CXX = g++

CXXFLAGS = -g -Wall

OBJS = $(CXX_SRCS:.cc=.o)

Default entry
all: $(PROGRAM)

$(PROGRAM) : $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) $(LOADLIBES) -o $(PROGRAM)

clean:
/bin/rm -f $(OBJS) $(PROGRAM) *˜

test: $(PROGRAM)
for test in $(TESTS); do \

echo "Running $(TESTPROGRAM) $${test} ..." ; \
if $(TESTPROGRAM) $${test}; then \

echo "Test succeeds."; \
else echo "Test failed."; \
fi; \

done

make.depend:
rm -f make.depend
$(CXX) -MM $(CXX_SRCS) > make.depend

depend:
$(CXX) -MM $(CXX_SRCS) > make.depend

If the make.depend file does not exist, gmake will use the rule
for make.depend above to create it.
include make.depend

Figure 1: An example of a standard makefile definitions that can be included from a specific makefile
to compile many simple collections of C++ programs.

48 P. N. Hilfinger

7 Makefiles with Java

To be honest, Java does not show the make utility at its best. The problem is that Java does not really
allow the separation of header files from implementation files. For example, suppose file B.java
contains uses of methods or classes from A.java. From make’s perspective, we have to say that
B.class depends on A.java. Thus, whenever a method in A.java is changed, as far as make
knows, B.java must be recompiled—even if the signatures and names of the classes, methods,
fields in A.java have not changed. There is often nothing for it at the moment but to write trivial
sets of dependency rules in which every .class file depends on every .java file. Still, make is
useful for making the compilation process easy: you can still arrange for a plain gmake command to
compile everything that needs to be compiled. Thus, a Java program contained in files Main.java,
Car.java, Truck.java, and Drive.java might use makefile rules like this:

PROGRAM = Main.class

JAVA_SRC = Main.java Car.java Truck.java Drive.java

JFLAGS = -g

This defines a new implicit rule for getting .class files out of
.java files. This rule says: To make foo.class from foo.java,
send all files that foo.class depends on ($ˆ) to javac.
%.class: %.java

javac $(JFLAGS) $ˆ

CLASSES = $(JAVA_SRC:.java=.class)

all: $(CLASSES)

$(CLASSES): $(JAVA_SRC)

