03/11/05
21:32:09

CS 61B Honmework 6
Due 3pm Friday, March 18, 2005

This homework will teach you about hash tables, hash codes, and conpression
functions. This is an individual assignnent; you may not share code with other
students.

Copy the Homework 6 directory by doing the follow ng, starting fromyour hone
directory. Don’t forget the "-r" switch in the cp command.

nkdi r hwé
cd hwe
cp -r $naster/hw hwe/*

Part | (6 points)

I mpl ement a cl ass cal | ed HashTabl eChai ned, a hash table w th chaining.
HashTabl eChai ned i npl ements an interface called Dictionary, which defines the
set of methods (like insert(), find() and renpve()) that a dictionary needs.
Both files appear in the "dict" package.

The nethods you will inplenment are a subset of those |listed on page 376 of
Coodrich and Tamassia (no iterators are used in this assignment), plus a
nmakeEnpty() nethod which renoves every entry froma hash table. There are al so
two HashTabl eChai ned constructors. One lets applications specify an estimte
of the nunber of entries that will be stored in the hash table; the other uses
a default size. Both constructors should create a hash table that uses a prine
nunber of buckets. (Several nethods for identifying prinme nunbers were

di scussed early in the semester.) In the first constructor, shoot for a | oad
factor between 0.5 and 1. |In the second constructor, shoot for around 100
buckets. Descriptions of all the nmethods nay be found in Dictionary.java and
HashTabl eChai ned. j ava.

Do not change Dictionary.java. Do not change any prototypes in

HashTabl eChai ned. j ava, or throw any checked exceptions. Mst of your solution
shoul d appear in HashTabl eChai ned.java, but other classes are permtted. You
will probably want to use a linked list code, of your choice. (Note that even
though the hash table is in the "dict" package, it can still use linked I|ist
code in a separate "list" package. There's no need to nove the list code into
the "dict" package.)

Look up the hashCode nmethod in the java.lang. Object API. Assune that the

obj ects used as keys to your hash table have a hashCode() nethod that returns a
"good" hash code between Integer. M N _VALUE and I nteger. MAX_VALUE (that is,

bet ween -2147483648 and 2147483647). Your hash table should use a conpression
function, as described in Section 8.2.4 of Goodrich and Tanassia, to map each
key’s hash code to a bucket of the table. Your conpression function should be
conput ed by the conpFunction() hel per nmethod i n HashTabl eChai ned.java (which
has "package" protection so we can test it). insert(), find(), and renove()
shoul d all use this conmpFunction() method.

The nethods find() and renmove() should return (and in the latter case,
renove) an entry whose key is equals() to the paraneter "key". Reference
equality is NOT required for a match.

readme

It is often useful to hash data structures other than strings or integers. For
exanpl e, game tree search can sonetinmes be sped by saving gane boards and their
eval uation functions, so that if the same game board can be reached by several
different sequences of noves, it will only have to be evaluated once. For this
application each game board is a key, and the value returned by the eval uation
function is the value stored alongside the key in the hash table. |If we search
the sanme ganme board again, we can |look up its evaluation function in the
dictionary, so we won’t have to calculate it tw ce.

The cl ass Sinpl eBoard represents an 8x8 checkerboard. Each position has one of
three values: 0, 1, or 2. Your job is to fill in two mi ssing nethods:

equal s() and hashCode(). The equal s() operation should be true whenever the
boards have the sane pieces in the sanme |locations. The hashCode() function
shoul d satisfy the specifications described in the java.lang. bject APl. In
particular, if two SinpleBoards are equal s(), they have the sane hash code.

You will be graded on how "good" your hash code and conpression function are.
By "good" we nean that, regardless of the table size, the hash code and
conpression function evenly distribute SinpleBoards throughout the hash table.
Your solution will be graded in part on how well it distributes a set of
random y constructed boards. Hence, the sumof all the cells is not a good
hash code, because it does not change if cells are swapped. The product of all
cells is even worse, because it’'s usually zero. Wiat's better? One idea is to
think of each cell as a digit of a base-3 nunber (with 64 digits), and convert
that base-3 nunmber to a single int. (Be careful not to use floating-point
nunbers for this purpose, because they roundoff the |east significant digits,
which is the opposite of what you want.)

Do not change any prototypes in SinpleBoard.java, or throw any checked
exceptions. The file Homework6Test.java is provided to help you test your
HashTabl eChai ned and your SinpleBoard together. Note that Homework6Test.java
does NOT test all the methods of HashTabl eChai ned; you should wite additional
tests of your own. Mreover, you will need to wite a test to see if your
hash code is doing a good job of distributing SinpleBoards evenly through the
tabl e.

Submitting your solution

Change (cd) to your hwe directory, which should contain SinpleBoard.java and
the dict directory (and optionally a list directory). The dict directory

shoul d contai n HashTabl eChai ned.j ava and any other .java files it uses (except
those in the list package). You're not allowed to change Dictionary.java, so
the ‘submit’ programwon’'t take it; nor will it take Homewor k6Test.java (though
you can change it as nuch as you like).

Make sure that your submi ssion conpile and runs on the _lab_ machines. From
your hwé directory, type "submit hwe". (Note that "submit" will not work if
you are inside the dict directory!) After submitting, if you realize your
solution is flawed, you may fix it and submit again. You may submit as often
as you like. Only the last version you submt before the deadline will be

gr aded.

