
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 2002

The GJDB Debugger

A debugger is a program that runs other programs, allowing its user to exercise some
degree of control over these programs, and to examine them when things go amiss. Sun
Microsystems, Inc. distributes a text-based debugger, called JDB, with its Java Developer’s
Kit (JDK). I have modified JDB to make its commands look pretty much like GDB, the GNU
Debugger1, which handles C, C++, Pascal, Ada, and a number of other languages. The result
is called GJDB (g’jay dee bee)2. Perhaps the most convenient way to use it is through the
interface supplied with Emacs.

GJDB is dauntingly chock-full of useful stuff, but for our purposes, a small set of its
features will suffice. This document describes them.

1 Basic functions of a debugger

When you are executing a program containing errors that manifest themselves during execu-
tion, there are several things you might want to do or know.

• What statement or expression was the program executing at the time of a fatal error?

• If a fatal error occurs while executing a function, what line of the program contains the
call to that function?

• What are the values of program variables (including parameters) at a particular point
during execution of the program?

• What is the result of evaluating a particular expression at some point in the program?

• What is the sequence of statements actually executed in a program?

• When does the value of a particular variable change?

1The recursive acronym GNU means “GNU’s Not Unix” and refers to a larger project to provide free
software tools.

2This document applies to GJDB version ????.

1

2 P. N. Hilfinger

These functions require that the user of a debugger be able to examine program data, to
obtain a traceback (a list of function calls that are currently executing sorted by who called
whom), to set breakpoints where execution of the program is suspended to allow its data to
be examined, and to step through the statements of a program to see what actually happens.
GJDB provides all these functions. It is a symbolic or source-level debugger, creating the
fiction that you are executing the Java statements in your source program rather than the
machine code they have actually been translated into.

2 Preparation

In this course, we use a system that compiles (translates) Java programs into executable files
containing bytecode, a sort of machine language for an idealized virtual machine that is consid-
erably easier to execute than the original source text. This translation process generally loses
information about the original Java statements that were translated. A single Java statement
usually translates to several machine statements, and most local variable names are simply
eliminated. Information about actual variable names and about the original Java statements
in your source program is unnecessary for simply executing your program. Therefore, for a
source-level debugger to work properly, the compiler must retain some of this superfluous
information (superfluous, that is, for execution).

To indicate to our compiler (javac) that you intend to debug your program, and therefore
need this extra information, add the -g switch during both compilation. For example, if you
are compiling an application whose main class is called Main, you might compile with

javac -g Main.java

This sample command sequence produces a class file Main.class containing the transla-
tion of the class Main, and possibly some other class files.

3 Starting GJDB

To run this under control of gjdb, you can type

gjdb Main

in a shell. You will be rewarded with the initial command prompt:

[-]

This provides an effective, but unfrilly text interface to the debugger. I don’t actually recom-
mend that you do this; it’s much better to use the Emacs facilities described below. However,
the text interface will do for describing the commands.

4 Threads and Frames

When GJDB starts, your program has not started; it won’t until you tell GJDB to run it
(you tell the program is not started from GJDB’s prompt, which will be [-]). After the

The GJDB Debugger 3

program has started and before it exits, GJDB will see a set of threads, each one of which is
essentially a semi-independent program. If you haven’t encountered Java threads before, the
part of your program that you usually think of as “the program” will be the main thread,

appropriately named main. However, there will also be a bunch of system threads (running
various support activities), that GJDB will tell you about if asked, but which will generally
not be of interest. GJDB can examine one thread at a time; which one being indicated by
the prompt:

[-] Means there are no threads; the program has not been started.

[?] Means the program is started, but GJDB is not looking at any particular thread. You’ll
may see this if you interrupt your program.

name[n] Means that GJDB is looking at thread name, and at frame #n (see below) within
that thread.

At any given time, a particular thread is in the process of executing some statement inside
a function (method)3. To arrive inside that method, the program had to execute a method
call in a statement of some other method (or possibly the same, in the case of recursion), and
so on back to the mysterious system magic that started it all. In other words, in each thread,
there is a sequence of currently active method calls, each of which is executing a particular
statement, and each of which also has a bunch of other associated information: parameter
values, local variable values and so forth. We refer to each of these active calls as frames,

or sometimes stack frames, because they come and go in last-in-first-out order, like a stack
data structure. Each has a current location, which is a statement or piece of a statement that
is currently being executed in that call (sometimes called a program counter or, confusingly,
PC). The most recent, or top frame is the one that is executing “the next statement in the
program,” while each of the other frames is executing a (so-far incomplete) method call.

For example, consider the simple class Example on page 4. Suppose we start the program
with command-line argument 5, and are stopped at statement (E). Then (for the main thread)
GJDB sees frames #0–#5, as follows:

Frame# Method Location Variables

0. report (E) x: 2

1. ilog (C) x: 1, a: 2

2. ilog (D) x: 2, a: 1

3. ilog (D) x: 5, a: 0

4. process (B) x: "5"

5. main (A) args: { "5" }

5 GJDB Commands

This section describes the commands available under GJDB. Except where noted, one uses
them when the program being debugged by GJDB is stopped. You can abbreviate most

3Even when your program is initializing a field in a record, which doesn’t look as if it’s inside a method, it
is actually executing a part of either a constructor or a special “static initializer” method (which you’ll see in
certain listings under the name <clinit>).

4 P. N. Hilfinger

class Example {

public static void main (String[] args) {

for (int i = 0; i < args.length; i += 1)

process (args[i]); // (A)

}

void process (String x) {

ilog (Integer.parseInt(x), 0); // (B)

}

void ilog (int x, int a) {

if (x <= 1)

report (a); // (C)

else

ilog (x/2, a+1); // (D)

}

int report (int x) {

System.out.println (x); // (E)

}

}

Figure 1: A sample program to be debugged. Assume that it is stored in file Example.java.

commands with a sufficiently long prefix. For example, p is short for print, and b is short
for break.

5.1 Basic Commands

The following basic commands give you enough to pinpoint where your program blows up,
and usually to find the offending bad pointer or array index that is the immediate cause of the
problem (of course, the actual error probably occurred much earlier in the program; that’s
why debugging is not completely automatic.) Personally, I usually don’t need more than this;
once I know where my program goes wrong, I often have enough clues to narrow down my
search for the error. You should at least establish the place of a catastrophic error before
seeking someone else’s assistance.

help command

Provide a brief description of a GJDB command or topic. Plain help lists the possible
topics.

run command-line-arguments

Starts your program as if you had typed

java Main command-line-arguments

The GJDB Debugger 5

to a Unix shell. GJDB remembers the arguments you pass, and plain run thereafter
will restart your program from the top with those arguments. By default, the standard
input to your program will come from the terminal (which causes some conflict with
entering debugging commands: see below). However, you may take the standard input
from an arbitrary file by using input redirection: adding < filename to the end of the
command-line-arguments uses the contents of the named file as the standard input (as
it does for the shell). Likewise, adding > filename causes the standard output from your
program to go to the named file rather than to the terminal, and >& filename causes
both the standard output and the standard error output to go to the named file.

where

Produce a backtrace—the chain of function calls that brought the program to its current
place. The commands bt and backtrace are synonyms.

up

Move the current frame that GJDB is examining to the caller of that frame. Very often,
your program will blow up in a library function—one for which there is no source code
available, such as one of the I/O routines. You will need to do several ups to get to the
last point in your program that was actually executing. Emacs (see below) provides the
shorthand C-c< (Control-C followed by less-than), or the function key f3.

up n Perform n up commands (n a positive number).

down

Undoes the effect of one up. Emacs provides the shorthands C-c> and function key f4.

down n Perform n down commands (n a positive number).

frame n Perform ups or downss as needed to make frame #n the current frame.

thread T Make thread T the current thread that GJDB is examining. T may either be the
name or the number of a thread (as reported by info threads, below).

print E

prints the value of E in the current frame in the program, where E is a Java expression
(often just a variable). For example

main[0] print A[i]

A[i] = -14

main[0] print A[i]+x

A[i]+Main.x = 17

This tells us that the value of A[i] in the current frame is -14 and that when this value
is added to Main.x, it gives 17. Printing a reference value is less informative:

main[0] p args

args = instance of java.lang.String[3] (id=172)

6 P. N. Hilfinger

This tells you that args contains a pointer to a 3-element array of strings, but not what
these strings are.

print/n E also prints the value of expression E in the current frame. If E is a reference value,
however, it also prints the subcomponents (fields or array elements) of the referenced
object to n levels. Plain print without this specification is equivalent to print/0, and
does not print subcomponents. Printing subcomponents to one level means printing
each subcomponent of E’s value as if by print/0. Printing to two levels prints means
printing each subcomponent as if by print/1, and so forth recursively. For example,

main[0] print/1 args

args = instance of java.lang.String[3] (id=172) {

"A", "B", "C"

}

main[0] p T

T = instance of Tree(id=176)

main[0] p/1 T

T = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178)

}

main[0] p/2 T

T = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178) {

label: "B"

left: null

right: instance of Tree(id=180)

}

}

dump E

Equivalent to print/1 E.

dump/n E

Equivalent to print/n E.

info locals Print the values of all parameters and local variables in the current frame.

info threads List all current threads.

quit

Leave GJDB.

The GJDB Debugger 7

5.2 More Advanced Commands

The next bunch of commands allow you to actively stop a program during normal operation.

suspend and C-f

When a program is run from a Unix shell, C-c will terminate its execution (usually).
At the moment, unfortunately, it will also do this to GJDB itself. When debugging,
you usually want instead to simply stop the debugged program temporarily in order to
examine it. When the standard input is redirected from a file (using ‘<’; see the run

command), you can simply use suspend to stop the program (and then use continue

or resume to restart). When the program is running and standard input comes from
the terminal, things get complicated: how does GJDB know a command from program
input. If you are using GJDB mode (see §7), then C-c C-c will do the trick in this case.
Otherwise, if you are running in an ordinary shell, use C-f following by return. And
finally, if you are running in a shell under Emacs, use C-qC-f followed by return.

break place

Establishes a breakpoint; the program will halt when it gets there. The easiest break-
points to set are at the beginnings of functions, as in

[-] break Example.process

Set breakpoint request Example:8

(using the class Example from §4). Use the full method name (complete with class and
package qualification), as shown. You will either get a confirming message as above
(saying that the system set a breakpoint at line 8 of the file containing class Example),
or something like

Deferring BP RatioCalc.main [unresolved].

when you set a breakpoint before the class in question has been loaded. This means
that the breakpoint will be set when (and if) the class in which it occurs is loaded. A
place may also indicate a line number in a class, so that you may break on any line of
a program. For example, to place a breakpoint at line 13 (point (C)) of the program in
Figure 2, type

[-] b Example:13

(and as you can see, I have abbreviated ‘break’ as ‘b’ just to show it’s legal). Emacs
allows you to set breakpoints of this sort with the mouse (see §7).

Breakpoints in anonymous classes are a bit tricky; their names generally have the form
“C$n” where C is the name of the outermost class enclosing them, and n is some integer.
The problem is that you don’t generally know the value of n. GJDB therefore allows
“C.0” as a class name, meaning “any anonymous class inside C.”

When you run your program and it hits a breakpoint, you’ll get a message and prompt
like this:

8 P. N. Hilfinger

Breakpoint hit: thread="main", Example.main(), line=4, bci=22

main[0]

(Here, “bci” indicates a position within the bytecode translation of the method; it is
not generally very useful).

command N Add (or delete) commands to breakpoint number N that will be executed when-
ever the breakpoint is hit (assuming any conditions on the breakpoint are satisfied).
Prompts for commands to be typed in on subsequent lines, ending with a line contain-
ing just the word end. To delete commands, simply make this trailing end be the only
line.

command As for ‘command N ’, above, using the latest breakpoint set as N .

condition N cond Make breakpoint number N conditional, so that the program only stops
if cond, which must be a boolean expression, evaluates to true.

condition N Make breakpoint number N unconditional.

delete

Removes breakpoints. This form of the command gives you a choice of breakpoints to
delete, and is generally most convenient.

info break Lists current breakpoints and any conditions or commands on them.

info watch Lists current watchpoints (as set by the watch command).

info catch Lists current exceptions intercepted by GJDB, as set by the catch command.

cont or continue
Continues regular execution of the program from a breakpoint or other stop.

step

Executes the current line of the program and stops on the next statement to be executed.

next

Like step, except that if the current line of the program contains a function call (so
that step would stop at the beginning of that function), does not stop in that function.

finish

Does nexts, without stopping, until the current method (frame) exits.

watch P.field Stop the program whenever the indicated field is assigned to by the program. P

may either be the name of a class, or an expression in parentheses. If P is a class name,
then all assignments to the given field (of any instance of P) are caught. If P has the
form (E), where E is a non-null reference-valued expression, then E is evaluated to yield
a reference to an object and only assignments to the indicated field of that particular
object are watched (however, if the indicated field is static, then all assignments to the
field are watched). It is the value of E at the time the watch command is entered that

The GJDB Debugger 9

matters. For example, after ‘watch (L).next,’ changes to the variable L will have no
effect on which object is observed.

watch access P.field Stop the program whenever the indicated field is read by the program
(that is, its value is used).

watch all P.field Stop the program whenever the indicated field is read or assigned to by
the program.

unwatch. . . Same arguments as watch, but removes the watchpoints set by the corresponding
watch command.

unwatch Remove watchpoints. Provides a choice of which to remove, as for delete.

catch class Stop the program at the point where an exception of type class is thrown. GJDB
will stop automatically at the throw of any exception that will not be caught. It will
not normally stop on exceptions that are caught by the program. The catch command
directs GJDB to stop on the throw of class even if it will be caught. The class should
be fully qualified, as in java.io.IOException.

ignore Stop catching exceptions. This form of the command gives you a choice of exceptions
to ignore.

6 Common Problems

Name unknown. When you see responses like this:

main[0] print x

Name unknown: x

main[0] print f(3)

Name unknown: f

check to see if the variable or method in question is static. A current limitation of the debugger
is that you must fully qualify such names with the class that defines them, as in

main[0] print Example.f(3)

Beware also that fully qualified names include the package name.

Ignoring breakpoints. For a variety of reasons, it is possible for a program to miss a
breakpoint that you thought you had set. Unfortunately, GJDB is not terribly good at the
moment at catching certain errors. In particular, it will tell you that a breakpoint has been
deferred, when in fact it will never be hit due to a class name being misspelled.

10 P. N. Hilfinger

7 GJDB use in Emacs

While one can use gjdb from a shell, nobody in his right mind would want to do so. Emacs

provides a much better interface that saves an enormous amount of typing, mouse-moving,
and general confusion. Executing the Emacs command M-x gjdb starts up a new window
running gjdb, and enables a number of Emacs shortcuts, as well as providing a Debug menu
for issuing many GJDB commands. This command prompts for a command string (typically
gjdb classname) and (for certain historical reasons) creates a buffer named *gud-classname*.
Emacs intercepts output from gjdb and interprets it for you. When you stop at a breakpoint,
Emacs will take the file and line number reported by gjdb, and display the file contents,
with the point of the breakpoint (or error) marked. As you step through a program, likewise,
Emacs will follow your progress in the source file. Other commands allow you to set or delete
breakpoints at positions indicated by the mouse.

The following table describes the available commands. On the left, you’ll find the text
command line, as described in §5. Next comes the Debug menu button (if any) that invokes
the command. This menu applies both to the GJDB buffer and to buffers containing .java

files. Next come the Emacs shortcuts: sequences of keys that run the commands. The short-
cuts are slightly different in the GJDB buffer as opposed to buffers containing source (.java)
files, so there are two columns of shortcuts. The last column contains further description.
Finally, here are a few reminders about Emacs terminology:

1. In shortcuts, C-x means “control-x,” S-x means “shift-x” and fn refers to one of the
function keys (typically above the keyboard).

2. The point, in Emacs, refers to the location of the cursor; there is one for each buffer.
You can set the point using the usual motion commands when in the buffer, or by simply
clicking the mouse at the desired spot.

3. The region in any given buffer is a section of text (usually shadowed or highlighted so
that you can tell where it is). One convenient way to set it is by dragging the mouse
over the text you want included while holding down the left mouse button.

The GJDB Debugger 11

Table 1: Summary of Commands for Program Control

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

next Step Over f6 or
C-c

C-n

f6 Execute to the next statement of the pro-
gram; if this statement contains func-
tion calls, execute them completely before
stopping. [See Note 3, below]

step Step Into f5, or
C-c C-s

f5 Execute to the next statement of the pro-
gram; if this statement calls a function,
stop at its first line. [See Note 3, below]

finish Finish Function f7 or
C-c C-f

f7 Execute until the current function call re-
turns.

continue Continue f8 or
C-c C-r

f8 Continue execution of stopped program.

suspend Interrupt C-c C-c Interrupt execution of program and sus-
pend its threads.

C-f Interrupt C-c C-c Same as suspend, but works in cases
where the debugged program is running
and GJDB is passing input to it from the
terminal.

break class:line# Set Breakpoint C-x Set a breakpoint at the point (in an Emacs
source buffer) or at the indicated class and
line number (command line).

delete class:line# Clear Breakpoint Remove a breakpoint at the point (in an
Emacs source buffer) or at the indicated
class and line number.

delete Delete selected breakpoints.
catch class Set program to halt whenever exception

class is thrown.
ignore Stop catching selected exceptions.

watch C.f

watch access C.f

watch all C.f

watch (E).f

watch access (E).f

watch all (E).f































The first three forms set program to halt
when (any instance of) field f of class
C is accessed. Without a modifier, only
assignments to f are tracked. With the
modifier access, only uses of f ’s value
are tracked. The modifier all tracks both
types of access. The last three forms are
the same, but apply only to the object ref-
erenced by E at the time the command is
executed.

unwatch Delete selected watchpoints.
run Run (Re)start the program, using the last set

of command-line arguments.
- Start Debugger Run gjdb on the class in this buffer.
quit Quit Leave GJDB.

12 P. N. Hilfinger

Table 2: Summary of Commands for Examining a Program

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

print expr Print f9 f9 Evaluate expr and print, without showing
any subcomponents of the value. Emacs
commands apply either to the contents of
the region, or if it is inactive, to the vari-
able, field selection, or function call at or
after the point.

dump expr Print Details S-f9 S-f9 Evaluate expr and print, also printing
any components (array elements or fields).
With Emacs, gets the expression to print
as for print.

up View Caller f3 or
C-c <

f3 Move the debugger’s current focus of at-
tention up one frame; if looking at frame
n at the moment, we switch to frame n−1.

down View Callee f4 or
C-c >

f4 Move the debugger’s current focus of at-
tention down one frame (from frame n to
frame n + 1). Opposite of up.

where Print a backtrace, showing all active sub-
program calls.

thread T Make thread T be the one that GJDB is
currently examining, where T is a thread
name or thread number.

info locals Print (as for the print command) the val-
ues of all local variables in the current
frame.

info threads List all threads in the program.
info watch List current watchpoints.
info break List current breakpoints.
info catch List current exceptions intercepted.
- Refresh Re-arrange Emacs’ windows as needed to

display the current source line that GJDB
is looking at.

	Basic functions of a debugger
	Preparation
	Starting GJDB
	Threads and Frames
	GJDB Commands
	Common Problems
	GJDB use in Emacs

