02/10/14
15:19:54

CS 61B: Lecture 6
Monday, February 3, 2014

Today’s reading: Sierra & Bates pp. 282-285.

Last lecture, we used a loop to construct all the arrays that the top-Ievel
array references. This was necessary to construct a triangular array. But if
you want a rectangul ar nulti-dinensional array, rather than a triangul ar one,
Java can construct all of the arrays for you at once.

int[][] table = new int[x][y];

This declaration constructs an array of x references to arrays. It also
constructs x arrays of y ints. The variable "table" references the array of
arrays; and each entry in the array of arrays references one of the arrays of
ints. Al the arrays are constructed for you at once. Simlarly, Java can
construct three- or ten-dinmensional arrays for you, menory permnitting.

We coul d have used a square array to store Pascal’s Triangle, but that woul d
have unnecessarily wasted nmenory. |f you have enough nmenory, you m ght not
care.

Wien you declare a variable, you can also construct array entries by using
initializers.

Human

[]
int[][]

amanda, rishi, new Human("Paol 0")};

b ={
c ={{7, 3 2}, {x}, {8 5, 0, 0}, {y + z, 3}};

In the second exanpl e, Java constructs a non-rectangul ar two-di nensional array,
conposed of one array of arrays and four arrays of ints.
Qutsi de of declarations, you need a nore conplicated notation.

d=newint[] {3, 7};
f(newint[] {1, 2, 3});

Anot her subtlety of array declarations is the follow ng.
int[] a, b, c;

int a[], b, c[]1[];
int[] a, b[];

/1 a, b, and c all reference arrays.
/l ais 1D; c is 2D; b is not a reference/array.
/1 a references a 1D array; b references a 2D array.

Arrays of Objects

When you construct a multi-dinensional array, Java can construct all the arrays
for you. But when you construct an array of objects, Java does not construct
the objects autonatically. The array contains space for references to the

obj ects. You nust construct the objects yourself.

String[] sentence = new String[3];
sentence[0] = "Word";
sentence[2] = new String();

sentence |.+----- b I [1V N O [S S |
A il --- enpty String

06

main()’ s Paraneter

Wiat is the array of Strings that the nain() nethod takes as a paraneter?
It’s a list of conmand-1ine argunments sent to your Java program prepared for
you by Java. Consider the follow ng program

class Echo {
public static void main(String[] args) {

for (int i =0; i < args.length; i++) {
Systemout.printin(args[i]);
}
}
}

If we conpile this and type "java Echo kneel and worship Java", java prints
kneel L e
and args |.+---->| . | . | . | . |
wor shi p B T Femmmaan e, Homm
Java | | | |

v v v v

MORE LOOPS eeeeees eeee eeeeeean aaeee

========== | kneel | | and| |worship| |Javal

do" Loops

A "do" loop has just one difference froma "while" Ioop. |f Java reaches

a "do" loop, it _always_ executes the |loop body at |east once. Java doesn’t

check the | oop condition until the end of the first iteration. "do" |oops are

appropriate for any | oop you al ways want executed at |east once, especially if
the variables in the condition won't have neani ngful assignnents until the |oop
body has been executed.

do {
s = keybd. readLi ne();
process(s);
} while (s.length() > 0); // Exit loop if s is an enpty String.

The "break" and "continue" Statements

A "break" statement immediately exits the innernpost |oop or "swtch" statenent
encl osing the "break", and continues execution at the code follow ng the | oop
or "switch".

In the | oop exanpl e above, we might want to skip "process(s)" when s is a
signal to exit (in this case, an enpty String). W want a "tinme-and-a-half"

| oop--we want to enter the loop at a different point in the read-process cycle
than we want to exit the loop at. Here are two alternative |oops that do the
right thing. They behave identically. Each has a different disadvantage.

s = keybd. readLi ne();
while (s.length() > 0) {
process(s);

while (true) { /1 Loop forever.
s = keybd. readLi ne();
if (s.length() == 0) {

s = keybd. readLi ne(); br eak;
}
Di sadvantage: The line "s = keybd..."
is repeated twice. It’s not really

Di sadvant age: Sonewhat obfuscated for
the reader, because the loop isn’t
aligned with its natural endpoint.

a di sadvantage here, but if input

took 100 lines of code, the
duplication woul d make the code harder
to maintain. Wy? Because a
progranmer inproving the code m ght change one copy of the duplicated code
wi t hout noticing the need to change the other to natch.

|
|
|
|
|
| process(s);
|
|
|
|
|

02/10/14
15:19:54

Sone | oops have nore than one natural endpoint. Suppose we want to iterate the
read-process loop at nost ten tines. In the exanple at left below, the "break"
statement cannot be criticized, because the loop has two natural endpoints. W
could get rid of the "break" by witing the loop as at right below, but the
result is longer and harder to read.

for (int i =0; i <10; i++) {
s = keybd. readLi ne();
if (s.length() == 0) {
break;

| int i =0;
| do{
| s = keybd. readLi ne();
| if (s.length() > 0) {
| process(s);
process(s); | }

| i ++;
|} while ((i < 10) &&
| (s.length() > 0));

There are anti-break zeal ots who claimthat the loop on the right is the
"correct” way to do things. | disagree, because the left loop is clearly nore
readabl e.

Some of the zealots feel this way because "break" statements are a little bit
like the "go to" statements found in sonme | anguages |ike Basic and Fortran (and
the nmachi ne | anguage that mcroprocessors really execute). "go to" statements
allow you to junp to any line of code in the program It sounds |like a good
idea at first, but it invariably |eads to insanely unmaintainable code. For
exanpl e, what happens if you junp to the middle of a |oop? Turing Award w nner
Edsger Dijkstra wote a fanmous article in 1968 entitled "Go To Statenent

Consi dered Harnful", which is part of the reason why many nodern | anguages |ike
Java don't have "go to" statenents.

Both "break" and "return" are limted forms of "go to" statenents. Their
limtations prohibit the worst abuses of "go to". They allow control flowto
junmp in your programin ways that are straightforward to understand.

WARNING It’'s easy to forget exactly where a "break" statement will junp to.
For exanpl e, "break" does not junp to the end of the innernobst enclosing "if"
statement. An AT&T programmer introduced a bug into tel ephone switching
software in a procedure that contained a "swtch" statement, which contained an
"if" clause, which contained a "break", which was intended for the "if" clause,
but instead junped to the end of the "switch" statement. As a result, on
January 15, 1990, AT&T's entire U S. long distance service collapsed for eleven
hours. (That code was actually witten in C, but Java and C use identical
syntax and semantics for |oops, "switch", and "break".)

The "continue" statement is akin to the "break" statenent, except

(1) it only applies to loops, and

(2) it junps to the end of the | oop body but it doesn’t necessarily exit the
| oop; another iteration will commence if the |oop condition is satisfied.

Finally, | told you that "for" loops are identical to certain "while" |oops,
but there’s actually a subtle difference when you use "continue". Wat's the
difference between the follow ng two | oops?

int i =0; | for (int i =0; i < 10; i++) {
while (i < 10) { | if (condition(i)) {
if (condition(i)) { | conti nue;
continue; | }
| call (i);
call (i); |}
i+ |
|

06

Answer: when "continue" is called in the "while" loop, "i++" is not executed.
In the "for" |oop, however, i is increnmented at the end of _every_ iteration,
even iterations where "continue" is called.

Java’s "final" keyword is used to declare a value that can never be changed.
If you find yourself repeatedly using a nunerical value with some "neaning" in
your code, you should probably turn it into a "final" constant.

BAD: if (month == 2) {

GO0D: public final static int FEBRUARY = 2; /1 Usually near top of class.

if (month == FEBRUARY) {

Why? Because if you ever need to change the nunerical value assigned to
February, you'll only have to change one line of code, rather than hundreds.

You can’t change the value of FEBRUARY after it is declared and initialized.
If you try to assign another value to FEBRUARY, you'll have a conpiler error.

The custom of rendering constants in all-caps is |ong-established and was
inherited fromC. (The conpiler does not require it, though.)

For any array x, "x.length" is a "final" field.
You can declare |local paranmeters "final" to prevent them from bei ng changed.

void nyMethod(final int x) {

X = 3; /1 Conpiler ERROR Don't ness with X s!
}
"final" is usually used for class variables (static fields) and paraneters, but
it can be used for instance variables (non-static fields) and | ocal variables
too. It only makes sense for these to be "final" if the variable is declared

with an initializer that calls a nethod or constructor that doesn't always
return the sane val ue.

cl ass Bob {
public final long creationTime = SystemcurrentTineMI1is();

}

When obj ects of the Bob class are constructed, they record the tine at that
noment. Afterward, the creationTime can never be changed.

The _scope_ of a variable is the portion of the programthat can access the
variable. Here are sone of Java’s scoping rules.

- Local variables and paraneters are in scope only inside the nethod that
declares them Furthernore, a local variable is in scope only fromthe
vari abl e declaration down to the innernost closing brace that encloses it.
A local variable declared in the initialization part of a "for" loop is in
scope only in the | oop body.

- Cass variables (static fields) are in scope everywhere in the class,
except when shadowed by a | ocal variable or paraneter of the same nane.

- Instance variables (non-static fields) are in scope in non-static nethods
of the class, except when shadowed.

