03/05/14
22:35:15

CS 61B: Lecture 18
Wednesday, March 5, 2014

Today's reading: Sierra & Bates, pp. 80-84.

ENCAPSULATI ON

A _nodule_ is a set of nethods that work together as a whole to perform sonme
task or set of related tasks. A npbdule is _encapsulated_ if its inplenentation
is conpletely hidden, and it can be accessed only through a docunented
interface.

As you know, an abstract data type (ADT) is an encapsul ated data structure.

Not all encapsul ated nodul es are ADTs, though. Algorithns (like list sorters)
and applications (like network routing software) can al so be encapsul ated, even
if they are distinct fromthe data structures they use.

So far, 1’'ve discussed encapsul ation as a way of preventing "evil tanperers”
fromcorrupting your data structures. Wo are these evil tanperers?
Sonetines, they’'re your coworkers, or other programrers who will work on a
project long after you're gone. Oten the evil tanperer is you.

A Cautionary Tale

Doug Whol e, a progranmer at a Silicon Valley startup, inplenments a singly-
linked list much |ike the one you used in Homework 3, but all its fields are
public. Doug also wites application code that uses |linked lists. One day,
Doug needs to wite code that splices the second node out of a list. It would
only take one line, and he doesn't foresee ever needing to use the sane
operati on anywhere else. Being |lazy, Doug doesn’t feel |ike adding a new
method to the List class. |Instead, he just does the work directly.

public class ListMngler {
[l otsa code]

/* Gosh, | am s0000000000000000000 tired. */
list.head. next = |list. head. next.next;

[l otsa nore code]

}

Two years |ater, another programmer, Jeannie Yess, decides to inprove the speed
of their list data structure. After careful thought, she decides to reprogram
the List class so that it uses doubly-linked lists internally. A "previous"
field is added to ListNode, and the List methods are rewitten.

Jeanni e tests her new List inplenentation extensively, and can find no bugs.
But when she replaces Doug’s List class with her own, the conpany’s |andnark
Li st Mangl er application repeatedly produces the wong results. After tw |ong
days of debugging, Jeannie discovers the culprit: Doug s single |ine of code.

This kind of bug is one of the nmost difficult to find and fix. [It’s also very
common in comercial software systems, and it can have far-reaching effects.

You see, Doug’s line of code is not the only one that reads or nodifies the
list data structure directly. Jeannie still has to debug 100,000 |ines of
Doug’ s code in other failing applications, as well as 500,000 |ines nore
witten by other programmers who also directly nanipul ated ListNodes. The List
i nprovenent project is abandoned.

18

A Renedy: Encapsul ation
You "encapsul ate" a nodul e by defining an interface
through which the outside world can use, inspect, or Ao~
manipulate it. Recall that the interface is the set of |11
prototypes and behaviors of the nethods (and sonetines ------- Interface-------
[
[viIv

Appl i cations

fields) that access the nodule or data structure.

|
|
Think of a nodule or an ADT as a cl osed box. |
Data can ONLY go in and out through the interface. |
QG her attenpts to access the internals of the nodule |
or ADT are outl awed. |

|
|
|
Modul e or |
Abstract Data Type |

|

Why encapsul ation is your friend:

[1] The inplenmentation is independent of the functionality. A progranmer
who has the docunentation of the interface can inplenment a new version
of the nodul e or ADT independently. A new, better inplenentation can
replace an old one.

[2] Encapsul ation prevents Doug fromwiting applications that corrupt a
nodul e’s internal data. |In real-world progranm ng, encapsul ation
reduces debugging time. A lot.

[3] ADTs can guarantee that their invariants are preserved.

[4] Teammork. Once you've rigorously defined interfaces between nodul es,
each programmer can independently inplenment a nodul e w thout having
access to the other nodules. A large, conplex progranm ng project can
be broken up into dozens of pieces.

[5] Docunentation and maintainability. By defining an unanbi guous
interface, you make it easier for other programrers to fix bugs that
arise years after you' ve left the conpany. Many bugs are a result of
unforeseen interactions between nodules. |f there’'s a clear
specification of each interface and each nodul e’ s behavior, bugs are
easier to trace.

[6] When your Project 2 doesn't work, it will be easier to figure out which
teammate to bl ane.

An interface is a CONTRACT between nodule witers, specifying exactly how they
wi || comruni cate.

Enf orci ng Encapsul ati on

Many | anguages of fer only one construct for enforcing the encapsul ation of
ADTs: sel f-discipline.

As we’ve seen, Java offers facilities that fortify your self-discipline,
especi al |y Java packages and the "private", package, and "protected" nodifiers
for field and method decl arations.

Java’'s facilities aren’t always enough, though. There are circunstances in

which you Il want to have multiple nodules in the sane package. For instance,
in Project 2 it would be reasonable to put all your nodules in the "player"
package. |If you do that, you' Il have to fall back on self-discipline. This

neans defining your nodules and interfaces before you start programming, and
resisting the tenptation to | et one nodul e snoop through or change another
nodul e’ s data structures.

One way to find this self-discipline is, wherever one nodul e uses another, to
have a different team menber work on each nodule. [If neither team nenber
reveals their code to the other, it’s nuch harder to yield to tenptation.

03/05/14
22:35:15

Mbdul es and Interfaces in Project 2

In Project 2, you are required to divide the programmi ng task into nodul es,
define interfaces between them and docunment these interfaces in your GRADER
file, before you start programming. This will allow you to work as a team

The gane-playing programyou will wite for — ceeemomaaaaaaann

Project 2 can easily be broken down into a | Machi nePl ayer |
nunber of nodules. Four likely exanples are = --------ooooon
illustrated at right. Your MachinePlayer, its nodul es |

gane tree search (with al pha-beta pruning), the = = ------mmommmmnn
board eval uation function, and the nodul e that | gane tree search |

identifies winning networks can all be e
i npl ement ed conpl etely independently, even | |
though they will ultinmately work together.

You shoul d probably break your Machi nePl ayer
down into a few nore nodul es than this (the | |
proj ect README gives a few nbre suggestions), but = -----mmmmmn
don't try to break it up too rmuch. You will | network identifier |
reach a point where it is no |longer possible to

subdi vi de any npdul e into pieces that are

i ndependent and communi cate through _sinple_ interfaces.

You might still be confused: what exactly _is_ a npdule? |It’s a collection of
net hods that provide some functionality through a single (hopefully el egant)
interface. The main difference between a nodule and a class is this:

- A _rmodule_ is organized around the _functionality_ it provides.
- A _class_ is organized around a _data_storage_unit_. (Renmenber that an
object is a repository of data.)

The concept of nodules is a bit abstract for several reasons.

- A nodul e can be made up of several classes, or a class could be made up of
several nodul es. Modul e boundari es and cl ass boundari es can be independent
of each other.

o Wiy woul d a nodul e have several classes? Because it might inplenent
a data structure made up of several classes of objects. For exanple,
a List ADT has a |list object and node objects. A Gaph ADT has a graph
obj ect, vertices, and edges.

o Wiy woul d a class have several nodul es? Because a single class of
obj ect might support nany independent operations. The gane tree search
and the evaluation function above both operate on a Network gane board,
but they are independent enough of each other that you coul d change
the inplementation of one w thout changing the other. (O course, if
you change the way a gane board is represented, you' |l have to change
both inplementations.)

- A nodul e may include many nethods, or as few as one. (But not every nethod
needs its own nodul e!)

- A package may contain one nodul e or many.

For Project 2, you should docunent your nodules and interfaces as foll ows.

- List the nodul es.
- For each nodule, specify its interface.

o Recall that an interface includes the prototype(s) for the nethods by
whi ch the npdul e can be called. This list does not necessarily include
all the nethods in the nmodule! It only includes the nmethods that are
avail abl e for _external _ callers (outside the nodul e).

o An interface also includes, for each prototype, a coment that
describes precisely the nodul e’ s behavior froman _external _ observer’s
point of view Your description does not need to state how the nodul e
is inmplenented, though. For instance, a nodule that does gane tree

18

search should say that it returns a good, |legal nove, but it does not
need to say that it does al pha-beta pruning. (It’s not forbidden to
say this, though.) Likew se, you should state that the "network
identifier" determ nes whether a ganme board contains a w nning network
for a given player, but the interface does not need to specify what
algorithmis used to | ook for w nning networks. (A description of the
al gorithm shoul d be included in the coments _in_ the inplenmentation,
but it is not part of the _interface_.)

o The behavi or coment shoul d al so describe, for each prototype, every
paraneter and the return value (if any), and how they are interpreted.
Here you are neking a _contract_ that your nodule will speak a certain
| anguage when it communicates with external callers.

Here’s a short exanple of an interface you might put in your GRADER file.
(You are not required to inplenent it this way; this is just an exanple.
O her nmodules will probably require | onger behavioral descriptions.)

/**
* hasVal i dNet wor k() determ nes whether "this" GanmeBoard has a valid network
* for player "side". (Does not check whether the opponent has a network.)
* A full description of what constitutes a valid network appears in the
* project "readme" file.
*
* Unusual conditions:
* If side is neither MachinePl ayer. COWUTER nor Machi nePl ayer . OPPONENT,
* returns fal se.
* | f GanmeBoard squares contain illegal values, the behavior of this
* method is undefined (i.e., don't expect any reasonabl e behavior).
*
* (@aram side i s Machi nePl ayer. COWUTER or Machi nePl ayer. OPPONENT
* @eturn true if player "side" has a winning network in "this" GanmeBoard;
* fal se otherwi se.
**/

protected bool ean hasVal i dNet wor k(i nt si de)

Your description of how a nodul e behaves shoul d be conpl ete and unanbi guous,
and shoul d take into account unusual and erroneous inputs and circunstances.
(It’s sonetines okay if your npdul e doesn’t handl e an erroneous input well, but
you shoul d docunent that.) Wen you and your partners are witing the
interfaces for each nodule, think carefully about whether you believe these
interfaces will really allow all the nodules to do everything they need to do.

Wien you design your interfaces, they should appear (prototypes and behavi oral
descriptions both) in both the GRADER file and in the code itself. Once

you’ ve finished, decide which team nenbers will inplenent which nodul es, and
start programm ng.

You may find your teamreturning to nodify the interfaces after a first attenpt
at programm ng, but that’'s okay. Just be sure to change the docunmentation (in
bot h GRADER and the code comrents) to reflect your new design decisions.

| reconmend you wite a draft of your interfaces this week so you' Il have |lots
of time to program The interfaces in the GRADER file are worth 10% of your
project score. You will need to show themto your TA next week in Lab 8.

