04/09/14
11:16:24

CS 61B: Lecture 30
Wednesday, April 9, 2014

The need to sort nunbers, strings, and other records arises frequently. The
entries in any nodern phone book were sorted by a conputer. Databases have
features that sort the records returned by a query, ordered according to any
field the user desires. GCoogle sorts your query results by their "rel evance".
W’ ve seen that Kruskal’'s algorithmuses sorting. So do hundreds of other

al gorithns.

Sorting is perhaps the sinplest fundamental problemthat offers a huge variety
of algorithms, each with its own inherent advantages and di sadvantages. W' I|
study and conpare eight sorting algorithns.

Insertion Sort
Insertion sort is very sinple and runs in Qn*2) tine. W enploy alist S, and
maintain the invariant that Sis sorted.

Start with an enpty list S and the unsorted list | of n input itemns.
for (each itemx in 1) {
insert x into the list S, positioned so that S renains in sorted order.

}

S may be an array or a linked list. If Sis alinked list, then it takes
Theta(n) worst-case time to find the right position to insert each item |[If S
is an array, we can find the right position in Qlog n) time by binary search,
but it takes Theta(n) worst-case time to shift the larger itens over to nake
roomfor the newitem |In either case, insertion sort runs in Theta(n"2)

wor st-case time--but for a different reason in each case.

If Sis an array, one of the nice things about insertion sort is that it’s an
in-place sort. An _in-place_sort_ is a sorting algorithmthat keeps the sorted
items in the same array that initially held the input items. Besides the input
array, it uses only (1) or perhaps O(log n) additional menory.

To do an in-place insertion sort, we partition the array into two pieces: the
left portion (initially enpty) holds S, and the right portion holds |I. Wth
each iteration, the dividing line between S and | npves one step to the right.

1071319151 => | 71[3] 915 => [3]7][9]5] =>[3]7[9][5] => |3]5]7]9][

If the input list | is "alnpst" sorted, insertion sort can be as fast as
Theta(n)--if the algorithmstarts its search fromthe _end_ of S. In this
case, the running tine is proportional to n plus the nunber of _inversions_.
An inversion is a pair of keys j < k such that j appears after k in I.

I could have anywhere fromzero to n (n - 1) / 2 inversions.

If Sis a balanced search tree (like a 2-3-4 tree or splay tree), then the
running time is in Q(n log n); but that’'s not what conputer scientists nmean
when they discuss "insertion sort." This is our first Q'n log n) sorting
algorithm but we'll pass it by for others that use | ess menory and have
smal l er constants hidden in the asynptotic running time bounds.

30

Sel ection Sort

Sel ection sort is equally sinple, and also runs in quadratic time. Again we
enmploy a list S, and maintain the invariant that Sis sorted. Now, however, we
wal k through I and pick out the smallest item which we append to the end of S.

Start with an enpty list S and the unsorted list | of n input items.
for (i =0; i <n; i++) {

Let x be the itemin | having smallest key.

Rermove x froml.

Append x to the end of S.

Whether S is an array or linked list, finding the smallest itemtakes Theta(n)
tine, so selection sort takes Theta(n”2) tine, even in the best case! Hence,
it’s even worse than insertion sort.

If Sis an array, we can do an in-place selection sort. After finding the
itemin | having snallest key, swap it with the first itemin I, as shown here.

1071319181 => |3][7]915] => [3]5][97] =>[3]5]7]1[9] =>[3]5]7]9][

If | is a data structure faster than an array, we call it...

04/09/14
11:16:24

Heapsort

Heapsort is a selection sort in which | is a heap.

Start with an enpty list S and an unsorted list | of n input itens.
toss all the itens in | onto a heap h (ignoring the heap-order property).
h. bot t omUpHeap() ; /1 Enforces the heap-order property
for (i =0; i <n; i++) {
x = h.removeM n();
Append x to the end of S.

bot t omJpHeap() runs in linear tine, and each rembveM n() takes Q(log n) tine.
Hence, heapsort is an Q'n log n)-time sorting algorithm

There are several ways to do heapsort in place; |'Il describe just one.

Mai ntain the heap _backward_ at the _end_ of the array. This nekes the
indexing a little nore conplicated, but not substantially so. As itens are
renoved fromthe heap, the heap shrinks toward the end of the array, making
roomto add itens to the end of S.

bot t omJpHeap() renoveM n() renmoveM n() renmoveM n() renmoveM n()
5 3 5 7 9

[71319151 =>1[9I57[3] =>[3][9]7I5] =>[3[5][9]7] =>[3[5[7]1[9] => [|3]5]7]9][

Heapsort is excellent for sorting arrays, but it is an awkward choice for
linked lists. The easiest way to heapsort a linked list is to create a new
array of n references to the listnodes. Sort the array of references (using
the keys in the listnodes for conparisons). Wen the array is sorted, link all
the listnodes together into a sorted |ist.

The array of references uses extra nmenory. There is another Q(n | og n)
algorithmthat can sort linked lists using very little additional menory.

30

Mer gesort
Mergesort is based on the observation that it’s possible to nerge two sorted
lists into one sorted list in linear time. |In fact, we can do it wth queues:

Let QL and @2 be two sorted queues. Let Q be an enpty queue.
while (neither QL nor Q is enpty) {
iteml = QL. front();
iten2 = Q.front();
nove the smaller of itenl and iten2 fromits present queue to end of Q

concatenate the remai ni ng non-enpty queue (QL or @) to the end of Q

The nerge routine is a kind of selection sort. At each iteration, it chooses
the item having snallest key fromthe two input lists, and appends it to the
output list. Since the two input lists are sorted, there are only two itens to
test, so each iteration takes constant tine. Hence, nerging takes Q(n) tine.

Mergesort is a recursive divide-and-conquer algorithm in which the nerge
routine is what allows us to reunite what we divided:

Start with the unsorted list | of n input itens.

Break | into two halves 11 and 12, having ceiling(n/2) and floor(n/2) itens.
Sort 11 recursively, yielding the sorted list Si.

Sort 12 recursively, yielding the sorted |ist S2.

Merge S1 and S2 into a sorted list S

The recursion bottoms out at one-itemlists. How long does nergesort take?
The answer is nmade apparent by exanmining its recursion tree.

[0 1131415 7] 819 ?
"""" ;T
[31 51 719 0] 1] 4] 8 i
/ ------- \ ------ / ------- \ /> 1+ ceiling(log2 n) levels
[31 71 151 9 |41 8 0] 1 I
VY YT
[71 131 19 15 14] 18] |0l |1] I
.
(Note that this tree is not a data structure. |It’s the structure of a sequence
of recursive calls, like a ganme tree.)

Each level of the tree involves Q(n) operations, and there are O(log n) |evels.
Hence, nmergesort runs in Q(n log n) tine.

What nekes nergesort a nenory-efficient algorithmfor sorting linked lists
makes it a menory-inefficient algorithmfor sorting arrays. Unlike the other
sorting algorithms we’ve considered, nergesort is not an in-place algorithm
There is no reasonably efficient way to nerge two arrays in place. |Instead,
use an extra array of Q(n) size to tenporarily hold the result of a merge.

