Developing a Practical Projection–Based Parallel Delaunay Algorithm

Guy Blelloch Gary L. Miller Dafna Talmor

Carnegie-Mellon University

Delaunay Triangulation.

- Given a set of points $P \in \mathbb{R}^2$ find their Delaunay triangulation.
- T is a Delaunay triangle if its circumcircle contains no points from P in its interior.
- Many applications; we are motivated by scientific computing applications such as mesh generation.

Goal of this Work _

Developing a practical parallel Delaunay algorithm that works well for a variety of distributions

Kuzmin

Sequential Delaunay Algorithms _____

Algorithm by:	Paradigm	Major Subroutines	
Shamos and Hoey [75]	divide and conquer	stitching two	
Guibas and Stolfi [83]		$\operatorname{subdiagrams}$	
Dwyer [87]	divide and conquer	stitching two	
	with bucketing	$\operatorname{subdiagrams}$	
Fortune [87]	sweepline	advancing a front	
		of Delaunay edges	
••••	incremental construction	planar point location	

Variety of theoretical paradigms:

All have been implemented and well-studied:

- Surveys by Su and Drysdale[95] and Fortune[90].
- Algorithms' run times within a factor of 2 of each other.
- Dwyer's algorithm:
 - Generally the best: run times, operation counts.
 - Guaranteed $O(n \log n)$.
 - On some distributions (e.g. uniform) expected O(n).
 - Bucketing: merge subsolutions into rows; merge rows.

Parallel Delaunay Algorithms ____

Algorithm	Paradigm	Major Subroutines	
Aggarwal et al. [88]	divide	parallelize	
	and conquer	stitching step	
Reif and Sen [89]	polling -	compute sub-diagram;	
	Randomized	divide with	
	divide and conquer	duplication	
Edelsbrunner	marriage	planar point	
and Shi [91]	before conquest:	location; 2D CH;	
	projection-based	linear programming	

• Variety of theoretical paradigms:

• Implementations not based on theory:

- Implementations based on bucketing algorithms and local search: Su[94], Merriam[92], Teng et al. [93]
- Efficient only for uniform distributions: performance degrades to $O(n^2)$ work for clustered points.
- Until now, no work addressed at general distributions.

• The problem: inefficiency of theoretical algorithms

- High constant factors can not be offset by available parallelism.
- We have to develop more efficient variants

Work–Efficiency

- Work: Total number of operations.
- Estimating Efficiency: Measuring the constant factors in work complexity.

program A is α -work efficient with respect to program B if $w(A) \leq \frac{1}{\alpha}w(B)$.

Work-efficiency in our case:

- The base-line we picked is Dwyer's program.
- Work : floating point operation count.
- Experimental measurements over our test-suite.

Restating our goal: developing a parallel Delaunay algorithm which is

- work-efficient with respect to Dwyer's algorithm over our test-suite.
- parallel.

Which Paradigm to pick? _

• Obstacles to efficiency:

Algorithm	obstacles	
Aggarwal et al.	complicated data structures	
"divide and conquer"	and subroutines	
Reif and Sen	study by Su: duplication causes	
"polling"	expansion factor of 6	
Edelsbrunner	complexity $O(n \log^2 n)$	
and Shi	subroutines: linear programming;	
"marriage before conquest"	planar point location; 2D convex hull	

• Our Algorithm:

- "Marriage before conquest".
- Projection-based.
- A simpler algorithm:
 - * solves a simpler problem: Edelsbrunner and Shi find 3D CH, we find 2D Delaunay triangulation.
 - \ast only subroutine used: 2D CH.

Algorithm: "Marriage before Conquest"

Algorithm: Projection–Based _____

Algorithm: Quality of Divide

- Lemma: If the path is derived from a parabola centered on a line L, then the left sub-problem is composed of points:
 - Left of L or
 - On the path.

Two important implications:

- 1. To decide if a point is in the left sub-problem, need only its orientation with respect to L (no planar point location).
- 2. If L is a median line, number of internal points is halved.

Algorithm: End Game (Theory)

- No internal points our strategy no longer $O(n \log n)$ work.
 - Edelsbrunner and Shi's strategy works till the end.
 - The strategy uses linear programming, ham sandwich cuts and planar point location.
- Finding triangulation of a polygon (theory):
 - -O(n) sequential algorithm by Wang and Chin [95].
 - Switch to other $O(n \log n)$ parallel algorithms.

Algorithm: Theoretical view _____

Our algorithm: using certain subroutines we get the first $O(n \log n)$ work projection-based algorithm.

$\underline{\text{Delaunay (P, B)}}$				
	depth	work		
If (no internal points) then return OTHER_DELAUNAY(P)	O(log ² n)	O(n log n)		
find median line L=(x,0) or L=(0,y) Q = projection(P)	O(log²n) O(1)	O(n) O(n)		
find Delaunay path H using Q: H= OVERMARS(Q)	O(log ² n)	O(n)		
split (P,B) into (P',B') and (P'',B'') return Delaunay(P',B') U Delaunay(P'',B'')	O(1)	O(n)		
	O(log³n)	O(n log n)		

Algorithm: Experimental view _____

Our implementation: worst case $O(n^2)$, efficient in practice.

Delaunay (P, B)	>		
	worst o depth	case ex work	kperimenta work
If (no internal points) then return OUR_END_GAME(B)	O(n)	O(n²)	O(nlogn)
find median line L=(x,0) or L=(0,y) Q = projection(P)	O(log²n) O(1)	O(n) O(n)	O(n) O(n)
find Delaunay path H using Q: H= OUR_CH(Q)	O(log²n)	O(nlogn)	O(n)
split (P,B) into (P',B') and (P'',B'') return Delaunay(P',B') U Delaunay(P'',B'')	O(1)	O(n)	O(n)
	O(n)	O(n ²)	O(nlogn)

Algorithm: End Game (Practice) _

- End–game subproblems: 10-20 points.
- Switch strategy once problem size is small.

Our strategy for finding a triangulation of a simple Delaunay polygon:

- Pick some node u, find one edge out of it.
- Cost: small constant factor O(n) work.
- Use edge to split into two Delaunay polygons.
- Worst case $O(n^2)$.

Algorithm: Convex Hull (Practice)

- Simple quickhull: $O(n^2)$.
- Guaranteed $O(n \log n)$ 2D CH:
 - Chan et al. [SODA 95]
 - An efficient version of Kirkpatrick and Seidel's ultimate convex hull.
- A hybrid algorithm:
 - Few levels of quickhull followed by the optimal algorithm:
 - Try to reduce problem size quickly using quickhull.
 - Switch to guaranteed method.

Experimental Techniques: Language

The NESL language:

- Nested data parallelism: well suited for irregular algorithms
- Good prototyping language:
 - Bridges between the PRAM model and the processor based model.
 - Measuring work and depth: complexity guarantees for primitives.
 - Portable to various parallel architectures.
 - Easy debugging on workstation.
 - Work in progress: compiled into C with MPI primitives.

Goals of the NESL implementation

- Measure work efficiency
- Measure parallelism (depth)

Experimental Techniques: Test Suite

- Scientific Computing Motivated
 - No artificial distributions
- Related to the uniform distribution via a Lipschitz function
- Easy to generate
 - No "one-sized" examples.

Uniform

Normal

Line

Kuzmin

Experimental Techniques: Measurements

We compare the number of floating point operations between our parallel program and Dwyer's implementation:

- Correlated with run–time for this type of programs.
- Can be used to compare programs with different primitives.
- Primitive counts do not account for the following:
 - Orientation test(CCW): costs 5.
 - -N orientation tests with the same line: cost 3N + 5.
- Particular implementation of Dwyer's known to be efficient.

Our experimentation shows our program is close to 0.5-work-efficient.

Experimental Results: Efficiency ____

- Our algorithm performs almost uniformly on the various distributions.
- Dwyer's smarter cuts and merge order bring less savings on the Line distribution.

Experimental Results:Depth

- Estimated the total depth of the call tree.
- Depth not strongly influenced by distribution.
- Parallelism = $\frac{\text{Work}}{\text{Depth}}$.
- E.g. for N = 131072 available parallelism is 45000.

Experimental Results: Work Division

- Convex Hull accounts for the largest portion of operations.
- Similar convex hull costs across the distributions.
- Similar over all work division across the distributions.

Conclusions and Continuations

Our contributions:

- We developed a parallel projection-based algorithm which is:
 - competitively work-efficient for a variety of distributions, even compared to the best sequential algorithms.
 - $-O(n \log n)$ work (theoretically).
- An application-driven representative test-suite.

Future work:

- Communication costs and run times:
 - On-going work: translating to C with MPI primitives (Jonathan Hardwick).
- Open Questions:
 - Experimentally observed 2D CH behaviour: O(n) expected run-time (for our test-suite).
 - Parallel Delaunay triangulation of simple polygons.

