Developing a Practical Projection-Based Parallel Delaunay Algorithm

Guy Blelloch
Gary L. Miller
Dafna Talmor

Carnegie-Mellon University

Delaunay Triangulation

- Given a set of points $P \in \mathbb{R}^{2}$ find their Delaunay triangulation.
- T is a Delaunay triangle if its circumcircle contains no points from P in its interior.
- Many applications; we are motivated by scientific computing applications such as mesh generation.

Goal of this Work

Developing a practical parallel Delaunay algorithm that works well for a variety of distributions

Kuzmin

Sequential Delaunay Algorithms

Variety of theoretical paradigms:

Algorithm by:	Paradigm	Major Subroutines
Shamos and Hoey [75] Guibas and Stolfi [83]	divide and conquer	stitching two subdiagrams
Dwyer [87]	divide and conquer with bucketing	stitching two subdiagrams
Fortune [87]	sweepline	advancing a front of Delaunay edges
\ldots	incremental construction	planar point location
	\vdots	\vdots

All have been implemented and well-studied:

- Surveys by Su and Drysdale[95] and Fortune[90].
- Algorithms' run times within a factor of 2 of each other.
- Dwyer's algorithm:
- Generally the best: run times, operation counts.
- Guaranteed $O(n \log n)$.
- On some distributions (e.g. uniform) expected $O(n)$.
- Bucketing: merge subsolutions into rows; merge rows.

Parallel Delaunay Algorithms

- Variety of theoretical paradigms:

Algorithm	Paradigm	Major Subroutines
Aggarwal et al. [88]	divide and conquer	parallelize stitching step
Reif and Sen [89]	polling - Randomized divide and conquer	compute sub-diagram; divide with duplication
Edelsbrunner and Shi [91]	marriage before conquest: projection-based	planar point location; 2D CH; linear programming

- Implementations not based on theory:
- Implementations based on bucketing algorithms and local search: Su[94], Merriam[92],Teng et al. [93]
- Efficient only for uniform distributions: performance degrades to $O\left(n^{2}\right)$ work for clustered points.
- Until now, no work addressed at general distributions.
- The problem: inefficiency of theoretical algorithms
- High constant factors can not be offset by available parallelism.
- We have to develop more efficient variants

Work-Efficiency

- Work: Total number of operations.
- Estimating Efficiency: Measuring the constant factors in work complexity.

> program A is α-work efficient with respect to program B if $w(A) \leq \frac{1}{\alpha} w(B)$

Work-efficiency in our case:

- The base-line we picked is Dwyer's program.
- Work : floating point operation count.
- Experimental measurements over our test-suite.

Restating our goal: developing a parallel Delaunay algorithm which is

- work-efficient with respect to Dwyer's algorithm over our test-suite.
- parallel.

Which Paradigm to pick?

- Obstacles to efficiency:

Algorithm	obstacles
Aggarwal et al. "divide and conquer"	complicated data structures and subroutines
Reif and Sen "polling"	study by Su: duplication causes expansion factor of 6
Edelsbrunner and Shi "marriage before conquest"	complexity $O\left(n \log ^{2} n\right)$ subroutines: linear programming; planar point location; 2D convex hull

- Our Algorithm:
- "Marriage before conquest".
- Projection-based.
- A simpler algorithm:
* solves a simpler problem: Edelsbrunner and Shi find 3D CH, we find 2D Delaunay triangulation.
* only subroutine used: 2D CH.

Algorithm: "Marriage before Conquest"

Algorithm: Projection-Based

Carnegie Mellon

Algorithm: Quality of Divide

- Lemma: If the path is derived from a parabola centered on a line L, then the left sub-problem is composed of points:
- Left of L or
- On the path.

Two important implications:

1. To decide if a point is in the left sub-problem, need only its orientation with respect to L (no planar point location).
2. If L is a median line, number of internal points is halved.

Algorithm: End Game (Theory)

- No internal points - our strategy no longer $O(n \log n)$ work.
- Edelsbrunner and Shi's strategy works till the end.
- The strategy uses linear programming, ham sandwich cuts and planar point location.
- Finding triangulation of a polygon (theory):
$-O(n)$ sequential algorithm by Wang and Chin [95].
- Switch to other $O(n \log n)$ parallel algorithms.

Algorithm: Theoretical view

Our algorithm: using certain subroutines we get the first $O(n \log n)$ work projection-based algorithm.

Delaunay (P, B)

	depth	work
(no internal points) then return OTHER_DELAUNAY(P)	$O\left(\log ^{2} n\right)$	$O(n \log n)$

find median line $L=(x, 0)$ or $L=(0, y)$ $Q=$ projection (P)	$O\left(\log ^{2} n\right)$ $O(1)$	$O(n)$ $O(n)$

find Delaunay path H using Q: $H=O V E R M A R S(Q)$	$O\left(\log ^{2} n\right)$	$O(n)$

split (P,B) into (P',B') and (P','B") return Delaunay(P',B') U Delaunay(P',','")	$O(1)$	$O(n)$

Algorithm: Experimental view

Our implementation: worst case $O\left(n^{2}\right)$, efficient in practice.

Delaunay (P, B)

If (no internal points) then return OUR_END_GAME(B)	$O(n)$	$O\left(n^{2}\right)$	$O(n \operatorname{logn})$

find median line $L=(x, 0)$ or $L=(0, y)$ $Q=$ projection(P)	$O\left(\log ^{2} n\right)$ $O(1)$	$O(n)$ $O(n)$	$O(n)$ $O(n)$

| findDelaunay path H using Q:
 H= OUR_CH(Q)
 $O\left(\log ^{2} n\right)$ | $O(n \operatorname{logn})$ | $O(n)$ |
| :---: | :---: | :---: | :---: |

split (P,B) into (P',B') and (P', $\left.B^{\prime \prime}\right)$ return Delaunay(P', $\left.B^{\prime}\right)$ U Delaunay($\left.P^{\prime \prime}, B^{\prime \prime}\right)$	$O(1)$	$O(n)$	$O(n)$

Algorithm: End Game (Practice)

- End-game subproblems: 10-20 points.
- Switch strategy once problem size is small.

Our strategy for finding a triangulation of a simple Delaunay polygon:

- Pick some node u, find one edge out of it.
- Cost: small constant factor $O(n)$ work.
- Use edge to split into two Delaunay polygons.
- Worst case $O\left(n^{2}\right)$.

Algorithm: Convex Hull (Practice)

- Simple quickhull: $O\left(n^{2}\right)$.
- Guaranteed $O(n \log n) 2 \mathrm{D} \mathrm{CH}:$
- Chan et al. [SODA 95]
- An efficient version of Kirkpatrick and Seidel's ultimate convex hull.
- A hybrid algorithm:
- Few levels of quickhull followed by the optimal algorithm:
- Try to reduce problem size quickly using quickhull.
- Switch to guaranteed method.

Experimental Techniques: Language

The NESL language:

- Nested data parallelism: well suited for irregular algorithms
- Good prototyping language:
- Bridges between the PRAM model and the processor based model.
- Measuring work and depth: complexity guarantees for primitives.
- Portable to various parallel architectures.
- Easy debugging on workstation.
- Work in progress: compiled into C with MPI primitives.

Goals of the NESL implementation

- Measure work efficiency
- Measure parallelism (depth)

Experimental Techniques: Test Suite

- Scientific Computing Motivated
- No artificial distributions

- Related to the uniform distribution via a Lipschitz function
- Easy to generate
- No "one-sized" examples.

Experimental Techniques: Measurements

We compare the number of floating point operations between our parallel program and Dwyer's implementation:

- Correlated with run-time for this type of programs.
- Can be used to compare programs with different primitives.
- Primitive counts do not account for the following:
- Orientation test(CCW): costs 5 .
- N orientation tests with the same line: cost $3 N+5$.
- Particular implementation of Dwyer's known to be efficient.

Our experimentation shows our program is close to 0.5 -work-efficient.

Experimental Results: Efficiency

- Our algorithm performs almost uniformly on the various distributions.
- Dwyer's smarter cuts and merge order bring less savings on the Line distribution.

Experimental Results:Depth

- Estimated the total depth of the call tree.
- Depth not strongly influenced by distribution.
- Parallelism $=\frac{\text { Work }}{\text { Depth }}$.
- E.g. for $N=131072$ available parallelism is 45000.

Experimental Results: Work Division

- Convex Hull accounts for the largest portion of operations.
- Similar convex hull costs across the distributions.
- Similar over all work division across the distributions.

Conclusions and Continuations

Our contributions:

- We developed a parallel projection-based algorithm which is:
- competitively work-efficient for a variety of distributions, even compared to the best sequential algorithms.
$-O(n \log n)$ work (theoretically).
- An application-driven representative test-suite.

Future work:

- Communication costs and run times:
- On-going work: translating to C with MPI primitives (Jonathan Hardwick).
- Open Questions:
- Experimentally observed 2D CH behaviour: $O(n)$ expected run-time (for our test-suite).
- Parallel Delaunay triangulation of simple polygons.

