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Delaunay Triangulation� Given a set of points P 2 IR2 �nd theirDelaunay triangulation.� T is a Delaunay triangle if its circumcirclecontains no points from P in its interior.� Many applications; we are motivated byscienti�c computing applications such as meshgeneration.
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Goal of this WorkDeveloping a practical parallel Delaunay algorithmthat works well for a variety of distributions
Uniform Normal Line Kuzmin
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Sequential Delaunay AlgorithmsVariety of theoretical paradigms:Algorithm by: Paradigm Major SubroutinesShamos and Hoey [75] divide and conquer stitching twoGuibas and Stol� [83] subdiagramsDwyer [87] divide and conquer stitching twowith bucketing subdiagramsFortune [87] sweepline advancing a frontof Delaunay edges� � � incremental construction planar point location... ...All have been implemented and well{studied:� Surveys by Su and Drysdale[95] and Fortune[90].� Algorithms' run times within a factor of 2 of each other.� Dwyer's algorithm:{ Generally the best: run times, operation counts.{ Guaranteed O(n log n).{ On some distributions (e.g. uniform) expected O(n).{ Bucketing: merge subsolutions into rows; merge rows.
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Parallel Delaunay Algorithms� Variety of theoretical paradigms:Algorithm Paradigm Major SubroutinesAggarwal et al. [88] divide parallelizeand conquer stitching stepReif and Sen [89] polling - compute sub-diagram;Randomized divide withdivide and conquer duplicationEdelsbrunner marriage planar pointand Shi [91] before conquest: location; 2D CH;projection{based linear programming� Implementations not based on theory:{ Implementations based on bucketing algorithms and localsearch: Su[94], Merriam[92],Teng et al. [93]{ E�cient only for uniform distributions:performance degrades to O(n2) work for clustered points.{ Until now, no work addressed at general distributions.� The problem: ine�ciency of theoretical algorithms{ High constant factors can not be o�set by availableparallelism.{ We have to develop more e�cient variants
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Work{E�ciency�Work: Total number of operations.� Estimating E�ciency: Measuring theconstant factors in work complexity.program A is �{work e�cient with respect toprogram B if w(A) � 1�w(B).Work{e�ciency in our case:� The base{line we picked is Dwyer's program.�Work : oating point operation count.� Experimental measurements over our test-suite.Restating our goal: developing a parallelDelaunay algorithm which is� work-e�cient with respect to Dwyer's algorithmover our test-suite.� parallel.
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Which Paradigm to pick?� Obstacles to e�ciency:Algorithm obstaclesAggarwal et al. complicated data structures\divide and conquer" and subroutinesReif and Sen study by Su: duplication causes\polling" expansion factor of 6Edelsbrunner complexity O(n log2 n)and Shi subroutines: linear programming;\marriage before conquest" planar point location; 2D convex hull� Our Algorithm:{ \Marriage before conquest".{ Projection{based.{ A simpler algorithm:� solves a simpler problem: Edelsbrunnerand Shi �nd 3D CH, we �nd 2D Delaunaytriangulation.� only subroutine used: 2D CH.
Carnegie
Mellon 6



Algorithm: \Marriage before Conquest"
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Algorithm: Projection{Based
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Algorithm: Quality of Divide� Lemma: If the path is derived from a parabola centered on aline L, then the left sub{problem is composed of points:{ Left of L or{ On the path.Two important implications:1. To decide if a point is in the left sub-problem, need only itsorientation with respect to L (no planar point location).2. If L is a median line, number of internal points is halved.
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Algorithm: End Game (Theory)� No internal points - our strategy no longer O(n log n) work.{ Edelsbrunner and Shi's strategy works till the end.{ The strategy uses linear programming, ham sandwich cutsand planar point location.� Finding triangulation of a polygon (theory):{ O(n) sequential algorithm by Wang and Chin [95].{ Switch to other O(n logn) parallel algorithms.
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Algorithm: Theoretical viewOur algorithm: using certain subroutines we get the�rst O(n log n) work projection{based algorithm.
( , )P BDelaunay

return Delaunay(P’,B’) U Delaunay(P’’,B’’)

OTHER_DELAUNAY(P)

O(n)

O(n)

O(n)

O(n)

Q = projection(P)

O(n log n)O(log  n)

find median  line   L=(x,0) or  L=(0,y) 2

O(1)

O(1)

find  Delaunay path H using Q:

depth work 

O(log  n)

split  (P,B) into (P’,B’) and (P’’,B’’)

O(log  n)

2

2

3O(log n)     O(n log n)

If ( no internal points )  then return

H= OVERMARS(Q)
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Algorithm: Experimental viewOur implementation: worst case O(n2), e�cient inpractice.
( , )P BDelaunay

return Delaunay(P’,B’) U Delaunay(P’’,B’’)

Q = projection(P)
find median  line   L=(x,0) or  L=(0,y) 2

O(1)

O(1)

find  Delaunay path H using Q:

work 

OUR_END_GAME(B)
O(n)

H= OUR_CH(Q)

O(n)

O(n)

O(n)

O(n  )

split  (P,B) into (P’,B’) and (P’’,B’’)

O(n)

2

work 

O(nlogn)

O(n)

O(nlogn)

O(n)

O(n)

O(n)

O(n  )

2

O(log  n)

O(log  n)

2 O(nlogn)

experimental

If ( no internal points )  then return

depth
worst case
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Algorithm: End Game (Practice)� End{game subproblems: 10-20 points.� Switch strategy once problem size is small.Our strategy for �nding a triangulation of asimple Delaunay polygon:� Pick some node u, �nd one edge out of it.� Cost: small constant factor O(n) work.� Use edge to split into two Delaunay polygons.�Worst case O(n2).
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Algorithm: Convex Hull (Practice)� Simple quickhull: O(n2).� Guaranteed O(n log n) 2D CH:{ Chan et al. [SODA 95]{ An e�cient version of Kirkpatrick andSeidel's ultimate convex hull.� A hybrid algorithm:{ Few levels of quickhull followed by theoptimal algorithm:{ Try to reduce problem size quickly usingquickhull.{ Switch to guaranteed method.
uniform

non

uniform
non

uniform
non

Quickhull Chan et al. Hybrid

uniform          
uniform          

uniform          
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Experimental Techniques: LanguageThe NESL language:� Nested data parallelism: well suited for irregularalgorithms� Good prototyping language:{ Bridges between the PRAM model and theprocessor based model.{ Measuring work and depth: complexityguarantees for primitives.{ Portable to various parallel architectures.{ Easy debugging on workstation.{Work in progress: compiled into C with MPIprimitives.Goals of the NESL implementation� Measure work e�ciency� Measure parallelism (depth)
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Experimental Techniques: Test Suite� Scienti�c Computing Motivated{ No arti�cial distributions� Related to the uniform distribution via aLipschitz function� Easy to generate{ No \one{sized" examples.
Uniform Normal Line Kuzmin
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Experimental Techniques: MeasurementsWe compare the number of oating pointoperations between our parallel program andDwyer's implementation:� Correlated with run{time for this type ofprograms.� Can be used to compare programs with di�erentprimitives.� Primitive counts do not account for thefollowing:{ Orientation test(CCW): costs 5.{ N orientation tests with the same line: cost3N + 5.� Particular implementation of Dwyer's known tobe e�cient.Our experimentation shows our programis close to 0:5-work-e�cient.
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Experimental Results: E�ciency� Our algorithm performs almost uniformly onthe various distributions.� Dwyer's smarter cuts and merge order bring lesssavings on the Line distribution.
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Experimental Results:Depth� Estimated the total depth of the call tree.� Depth not strongly inuenced by distribution.� Parallelism = WorkDepth.� E.g. for N = 131072 available parallelism is45000.
0 5 10 15

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Problem Size

D
ep

th
 E

st
im

at
es

uniform - *

kuzmin - o

normal - +

line - x

Carnegie
Mellon 19



Experimental Results: Work Division� Convex Hull accounts for the largest portion ofoperations.� Similar convex hull costs across thedistributions.� Similar over all work division across thedistributions.
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Conclusions and ContinuationsOur contributions:�We developed a parallel projection{basedalgorithm which is:{ competitively work-e�cient for a variety ofdistributions, even compared to the bestsequential algorithms.{ O(n log n) work (theoretically).� An application{driven representative test{suite.Future work:� Communication costs and run times:{ On{going work: translating to C with MPIprimitives (Jonathan Hardwick).� Open Questions:{ Experimentally observed 2D CH behaviour:O(n) expected run{time (for our test-suite).{ Parallel Delaunay triangulation of simplepolygons.
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