
Surface and 3D Triangular Meshes from Planar Cross SectionsChandrajit L. BajajDepartment of Computer Science,Purdue University,West Lafayette, IN 47907 Edward J. Coyle Kwun-Nan LinSchool of Electrical Engineering,Purdue University,West Lafayette, IN 47907email: fbajaj@cs, coyle@ecn klin@csg.purdue.eduCorrespondent:Chandrajit L. Bajaj, Computer Science Dept., Purdue University, West Lafayette, IN 47907, Tel: (317)494-6531,Fax: (317)496-2567, http://www.cs.purdue.edu/people/bajajAbstract. This paper presents two unstructured mesh generation algorithms with a discussion of their imple-mentation. One algorithm is for the generation of a surface triangular mesh from a parallel stack of planarcross-sections (polygons). The other algorithm is for the construction of a 3D triangular (tetrahedral) mesh of thesolid region (polyhedron) bounded by the surface mesh and the planar cross-sections.Construction of a surface triangular mesh from planar contours is di�cult because of \correspondence", \tiling"and \branching" problems. We provide a simultaneous solution to all three of these problems. This is accomplishedby imposing a set of three constraints on the constructed surface mesh and then by deriving precise correspondenceand tiling rules from these constraints. The constraints ensure that the regions tiled by these rules obey physicalconstructs and have a natural appearance. Regions which cannot be tiled by these rules without breaking one ormore constraints are tiled with their medial axis (edge Voronoi diagram).Construction of the tetrahedral mesh of the solid region bounded by planar contours and the surface mesh is di�cultbecause the solid can be of high genus (several tunnels and holes) as well as have internal voids. We present anew algorithm to tetrahedralize the prismatoid bounded by two slices and the reconstructed tiling surfaces. Surfaceand tetrahedral meshing results are obtained with both synthetic and actual medical data.keywords. tiling, mesh generation, tetrahedralization1 IntroductionTechnologies such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound imaging allowmeasurements of internal properties of objects to be obtained in a nondestructive fashion. These measurements areusually obtained one slice at a time, where each slice is a 2D array of scalar values corresponding to measurementsdistributed over a plane passing through the object.Once these measurement slices have been obtained, one goal is to reconstruct boundary and �nite element modelsof substructure of the scanned data for quanti�cation, geometric and physical reasoning, and three dimensionalvisualization. Important goals in the construction of both surface triangular meshes and tetrahedral meshes (3D�nite elements) is to reduce the number of triangles and tetrahedra as well as assume that these �nite elements havegood aspect ratio [5, 30].In this paper we present implementations of two algorithms. One is to construct surface elements, and the other isto construct tetrahedral �nite elements from planar contour data. Our algorithms are not limited to the biomedical�eld. They are applicable to other areas where the input can be represented by a parallel stack of planar polygons(contours).The overview of previous work is discussed in Section 2. We present our surface mesh construction algorithm inSection 3, our tetrahedral mesh generation algorithm in Section 4, and implementation results in Section 5.1



slice chordstiling triangles(a) (b)Figure 1: (a) two slices of contours, (b) one possible surface mesh construction.2 Overview of Previous Approaches2.1 Boundary element mesh constructionThe task here is to construct surface meshes which interpolate the contours (polygons) on two adjacent slices. Eachslice contains zero or more non-intersecting polygons which may be nested. Fig. 1 shows two slices of contours and onepossible surface mesh construction. The boundary element mesh construction requires a solution to correspondence,tiling, and branching problems that we shall now address.The correspondence problem involves �nding the correct connections between the contours of adjacent slices. Bresleret al. [7] uses domain knowledge to constrain the problem. Meyers et al. [29] and Soroka [37] approximate thecontours by ellipses and then assemble them into cylinders to determine the correspondence. Wang et al. [38] checksthe overlapping area as the criterion for the correspondence.Tiling refers to the use of slice chords to triangulate the strip lying between contours of two adjacent slices intotriangles (Fig. 1(b)). There are two related issues. One is how to accomplish optimal tiling in terms of certainmetrics such as surface area, enclosed volume, etc. The other is the topological correctness of the tiling.The problem of mating points between contours into triangles is formalized by Keppel [25] into a graph searchproblem. Fuchs et al. [17] provide an e�cient algorithm to obtain metric optimal solutions based on an Euler tour ofa toroidal graph. Sloan et al. [36], Shinagawa et al. [35], Kehtarnavaz et al. [24] and Wang et al. [38] either improveFuchs' algorithm or develop new algorithms to �nd the minimum cost path. Some fast heuristic tiling methods aredeveloped by Christiansen et al. [12], Ganapathy et al. [18] and Ekoule et al. [15].When two corresponding contours are very di�erent, it is di�cult to obtain a topologically correct and natural tiling.Gitlin et al. [21] show one example in which two extremely di�erent polygons cannot be tiled to form a polyhedron.Even in a moderately dissimilar contour pair in which a polyhedron can be formed, the tiling algorithm may result inthe surface mesh self-intersecting and/or physically unlikely topologies. Algorithms [12, 13, 15, 17, 18, 24, 25, 36, 38]which attempt to tile all contour vertices to the adjacent slice might produce an unlikely topology in the cases ofvery di�erent contours. Boissonnat [6] and Barequet et al. [4] produce horizontal triangles which lie on the slice toavoid this problem.A branching problem occurs when a contour in one slice may correspond to more than one contour in an adjacentslice. Fig. 2(a) shows that contour C3 of slice S2 branches into C1 and C2 of slice S1. The branch processingapproaches which do not generate many intermediate contours can be classi�ed into the four methods shown in Fig.2(b)-(e). Our branching handling uses the method in Fig. 2(b).Christiansen et al. [12], Shantz [34] and Shinagawa et al. [35] use the method in Fig. 2(d). They dip down the middleof the bridge to model the saddle point of the branching region. Ekoule et al. [15] form an intermediate contourbetween two slices for the case of one-to-many branching. His method produces less distortion than the method ofFig. 2(d). Meyers et al. [29] use the scheme in Fig. 2(e). The branching processing result of Barequet's [4] approachis similar to Fig. 2(d) or (e) depending on whether bridges are added or not.
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(a) (b) (c) (d) (e)Figure 2: Branching contours: (a) branching contours on adjacent slices, (b)-(e) di�erent surface mesh constructions.
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qFigure 3: A Delaunay tetrahedron pqrs cuts across the surface mesh.Boissonnat [6] and Geiger [19] use a di�erent approach than tiling. They applies 3D Delaunay triangulation to thecontour vertices of two adjacent slices. The surface mesh of the polyhedron formed by the union of tetrahedra is thedesired mesh. Geiger's [19] branching handling is as in Fig. 2(c). Their approach has the the advantage of producingboth surface triangles and tetrahedra.2.2 Tetrahedral Mesh ConstructionThe construct of a 3D triangular (tetrahedral) mesh of a stack of planar cross-sections can be reduced to the followingsubproblem. Given the solid bounded by two adjacent contours and surface triangular meshes (referred to as aprismatoid), the goal is to tetrahedralize it with the additional constraint of a pre-triangulated top facet. Notethat except for an extreme contour pair, the top facet shall always be triangulated as it occurs as the bottom facetduring the triangulation of the upper prismatoid. The tetrahedralization is di�cult because the prismatoid can becomplicated by holes (non-convexity and higher genus). Furthermore, nice aspect ratio tetrahedron generation iscomplicated by having the contours in planar slices (i.e. multiple sets of points on a plane and so not in generalposition for three dimensions).Extensive research has been conducted in the unstructured tetrahedral mesh generation. Chazelle et. al [10], Field[16], Lo [27] and Bern et. al. [5] provide a good coverage of di�erent approaches toward automatic mesh generationfrom a polyhedron. These methods include subdivision, octree, Delaunay-based tetrahedral decompositions, andadvancing fronts.The Delaunay-based approaches [6, 8, 19, 39] and the advancing front approaches [9, 20, 22, 23, 26, 27, 28, 31, 32]receive much attention. Lo [27] discusses the di�culties of the Delaunay-based 3D mesh generations. They includesdegenerate tetrahedra and also tetrahedra intersecting the surface mesh. For example, Fig. 3 shows a case wherethe Delaunay tetrahedron pqrs cuts across the inner surface mesh. Recent research by Weatherill et al. [39] attempta solution to this problem. Their method subdivides the tetrahedra, which cut across the surface mesh, into sub-tetrahedra so the surface mesh is contained in the faces of new tetrahedra. This process of producing a 3D conformingDelaunay triangulations yields a large fragmentation with no polynomial upper bound.



r

p

q

2u

1u0u

v

1v

2v

0(a) (b)Figure 4: (a) An un-tetrahedralizable Sch�onhardt prism. (b) The advancing front approach could make it even moretwisted.We discuss prior advancing front approaches in slightly greater detail because our approach draws much from thisapproach. The following steps illustrate a simpli�ed advancing front approach.Step 1: form the initial frontStep 2: pick up a triangular face from the front.Step 3: select a vertex of the front or create a point to form a tetrahedron.Step 4: update the frontStep 5: if the remaining set of faces is not empty, go to step 2In step 1, the initial front is simply the triangular faces of an input polyhedron surface mesh. Step 2 has twovariations. One is in choosing a face sequentially from the set of boundary faces [26, 27]. The other is to pick up aface based on certain metrics of the tetrahedron to be formed [9].Step 3 has several variations. One is that additional data points (also called Steiner points) are created on the y asdone by most researches. The other is that Steiner points are created before applying the advancing front approach[26, 27]. In the �rst approach, the location of created Steiner points a�ects the shape of the mesh. George et al. [20]use a control �eld to guide the Steiner point insertion to avoid generating badly shaped elements when two fronts ofvery di�erent sized facets join.Our problem domain of tetrahedral mesh generation of prismatoids spanning adjacent planar contours has beenstudied by Lo [27] and Cavendish et al. [8]. They slice an arbitrary polyhedral object into a stack of prismatoids, andthereafter tetrahedralize each individual prismatoid. Lo's advancing front approach does not guarantee that a slicehave the same triangulation for both the upper and lower prismatoid. Cavendish et al. use 3D Delaunay triangulationto tetrahedralize the prismatoids. However, the boundary conformation problem (Fig. 3) is not addressed.It is believed that the advancing front approaches have exibility to form good tetrahedra. However, one criticism ofadvancing front approaches is that they lack a proof of correctness that the front will be ultimately joined correctly orthat the remaining part is un-tetrahedralizable. For example, a Sch�onhardt prism (Fig. 4(a)) [5, 33] can be so twistedthat it is un-tetrahedralizable using only vertices on the faces. However, it can be post-processed using Steiner pointsbetween two facets. The advancing front approach doesn't know that it is better to leave a Sch�onhardt prism forpost-processing. It keeps generating smaller tetrahedra. For example, the remaining part (Fig. 4(b)) may becomeeven more twisted in an advancing front scheme and become more di�cult to be post-processed.Our approach systematically studies the formation of un-tetrahedralizable shapes. It classi�es two most commoncategories of un-tetrahedralizable shapes so they can be better post-processed. Our study also provides rules toreduce the chance of generating un-tetrahedralizable remaining parts.



3 Surface Mesh Construction AlgorithmThis section briey describe our construction algorithm. Details are discussed in [2].We address correspondence, tiling and branching problems simultaneously by �rst de�ning a set of criteria for thedesired surface meshes. The criteria are also chosen to let the produced surface meshes correspond well with expectedphysical models.Criterion 1 The constructed surface meshes and solid regions form piecewise closed surfaces of polyhedra.Criterion 2 Any vertical line segment (perpendicular to the slice) between two slices intersects the constructed surfacemeshes at zero points, one point, or along line segment.Criterion 3 Re-sampling of the constructed surface meshes on the slice should produce the original contours.Criterion 1 prohibits such incorrect structures as self-intersecting surface meshes. Criterion 2 is used to avoid thegeneration of unlikely topologies. The motivation behind Criterion 3 is obvious.From these three criteria, we derive explicit tiling and correspondence rules. The correspondence rules determine thecorrespondences between contours on adjacent slices. The tiling rules prohibit those tilings which result in undesiredor nonsensical boundaries, and allow detection of branching regions and dissimilar portions of contours. We develop amultipass tiling algorithm to achieve reasonably good tiling. The algorithm is illustrated in Fig. 5. It �rst constructstilings for any regions not violating any of the tiling rules. The �rst pass constructs the optimal tiling triangles, andthe latter passes lower the optimality requirement to build more tiling triangles. Regions that violate these rulescorrespond to holes, branching regions and dissimilar portions of contours. They are processed by tiling to theirmedial axes which is placed at the mid-section of two slices.4 3D triangulation AlgorithmThe following is the general sketch of our algorithm. Detail are discussed in [1].We refer to a slice triangle as a triangle lying on either the top or the bottom slice of the prismatoid. A non-slicetriangle is called a side triangle. If a slice triangle contains two contour segments, it is a boundary triangle. A sidetriangle is either a type 0 or type 1 triangle if it contains a top or bottom contour segment, respectively. A linesegment is denoted as pq. It is convex if the two triangles sharing it form a convex angle (� �). Otherwise, it isreex.The triangulation of the top facet is �xed. The branching region is preprocessed to reduce our problem domain toa prismatoid. We �rst apply a 2D Delaunay triangulation to the bottom slice. We do not add Steiner points toimprove the triangulation quality [14, 11]. Ruppert et. al. [33] shows that the problem of deciding whether a givenpolyhedron can be tetrahedralized without adding Steiner points is NP-complete.The metric of a tetrahedron is based on its volume/surface ratio as used by Lo [27]. Suppose a boundary triangle4u1u2u3 is on the top slice as shown in Fig. 6 (a), there can be zero or more type 1 triangles between the two type0 triangles 4u1u2v1 and 4u2u3vn. Here, n is one plus the number of type 1 triangles. There are n di�erent ways toform tetrahedra containing these side triangles. Fig. 6 (b) and (c) show two examples. The formed tetrahedra mustbe totally inside the prismatoid and they cannot violate the protection rule described in the following paragraphs.The chosen way is based on the average metric as well as the worst metric of the generated tetrahedra. The metricof a boundary triangle is the best metric of the n ways.The prismatoid is broken into smaller prismatoids which has about 10-20 side triangles. This step is to dramaticallydecrease the tetrahedralization time as well as to eliminate through holes of the prismatoid. The cutting quadrilateralis chosen based on the minimum area criterion.The following sketch provides an outline of the tetrahedralization of each small prismatoid:Step 1: For each boundary triangle on both slices, calculate its metric.
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(g) (h) (i)Figure 5: (a) Two slices of contours. Thicker contours are from the top slice. The small circles denote vertices. (b)result of the �rst tiling pass. Only good tiling triangles are formed. (c) the result of all tiling passes. (d) top viewof untiled regions. (e) top view of untiled region triangulation by edge Voronoi diagram. (f) the perspective view of(e) with hidden lines removed. (g) the �nal result. (h) & (i) two di�erent shaded views of the constructed surfacemeshes shown in (g).
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3u(a) (b)Figure 7: Un-tetrahedralizable shapes de�ned in Theorem 1. (a) reex u2v2 (b) reex u2v1Step 2: Pick up the boundary triangle with the best metric and form one or more tetrahedra.Step 3: Update the front and go to Step 1.Step 4: If no boundary triangle is quali�ed in Step 2, we swap the bottom edge to have new boundary triangle to tryto make it tetrahedralizable. Goto Step 1.Step 5: If it is un-tetrahedralizable even after edge swapping, we post-process it.Our algorithm prohibits the formation of a tetrahedron not involving a boundary triangle. The reason is that usinga non-boundary triangle to form a tetrahedron complicates the remaining part. Based on our operators, we presentthe following theorem.Theorem 1 Let a top boundary triangle contain two contour segments u1u2 and u2u3 (see Fig. 7), and no more thanone type 1 triangle are between the two type 0 triangles containing u1u2 and u2u3. Further, let the bottom verticesof the two type 0 triangles be v1 and v2. No tetrahedron containing u1u2, u2u3 or vertex u2 can be further formed ifand only if all the following conditions are satis�ed.1. v1v2 is exactly one contour segment.2. One of the slice chords u2v1 and u2v2 is reex and the other is convex.3. Both u1v2 and u3v1 are not inside the prismatoid.Condition 2 of Theorem 1 can be derived from Condition 3. However we state it so it is easier to visualize theun-tetrahedralizable shapes. Fig. 7 shows the only two possible shapes which satisfy Theorem 1.We de�ne one protection rule based on Theorem 1 to reduce the chance of generating un-tetrahedralizable parts.The rule is that a new tetrahedron cannot satisfy condition 3 of Theorem 1 with respect to any boundary trianglewhich satis�es conditions 1 and 2. For example, if one boundary triangle has the shape of Fig. 7(a) and u1v2 istotally inside the prismatoid, it is tetrahedralizable. The rule states that any proposed tetrahedron cannot cut across4u1u2v2.



(a) (b)Figure 8: (a) Gouraud shading of the surface meshes. (b) The tiling of some slices.The bottom face of an un-tetrahedralizable remaining part usually has fewer vertices than the top facet does becausethe bottom face has the freedom to take any 2D triangulation. From Theorem 1, we classify two categories ofun-tetrahedralizable prismatoids. The two categories occur when the bottom facet is a line segment or a singletriangle. There are other cases where the bottom facet contains more than one single triangle. The classi�cationof un-tetrahedralizable prismatoids help their post-processing. If an un-tetrahedralizable part is not classi�ed, wepost-process it by convex decomposition [3, ?].5 ResultsThe algorithms have been implemented in C and C++, and run on Sun Sparc and Silicon Graphics Indigo2 work-stations.5.1 Results of surface mesh constructionFig. 5 illustrates the capabilities of our algorithm when many-to-many branching, dissimilar contours and holes arepresent. As can be seen from Fig. 5, C21 is constructed as a shallow hole since it has no corresponding contour on thebottom slice. The dissimilar portion of C41 tiles to its medial axis and forms a shallow hole with a link to C12 . Thisis a highly likely topology. Fig. 8(a) shows the Gouraud shading of the surface mesh construction of a pelvis. It alsocontains the top portion of femurs. The tiling of three cross sections pointed by the arrows of (a) is shown in Fig.8(b). The image volume contains 105 256*256 MRI slices.5.2 Results of 3D triangulationWe have tried our algorithm on several test cases. The protection rule works very well in preventing the generationof un-tetrahedralizable remaining parts. The only encountered un-tetrahedralizable case is a twisted cube whichwas manually designed. The un-tetrahedralizable remaining part is a Sch�onhardt prism (Fig. 4(a)) which falls inthe second group of our un-tetrahedralizable shape classi�cation. When the protection rule is disabled, some un-tetrahedralizable parts do happen. Edge swapping on the bottom slices is not required in our experiments whenthe protection rule is enabled. It implies that this algorithm is robust enough to work on prismatoids with bothpre-triangulated slices. This feature is required for the parallel processing of a set of prismatoids. Fig. 9(a) showstwo faces of looped contours. Fig. 9(b) shows the tiling result, and (c) shows the tetrahedral meshes. This examplefails the 3D Delaunay triangulation approaches [6, 19] and those that do not address the boundary conformationproblem [8].
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bottom (a) (b) (c)Figure 9: (a) two slices of nested contours. The thicker contours are on the bottom slice. (b) the surface meshconstruction. (c) the tetrahedral mesh. The tetrahedra are separated for easy viewing.6 ConclusionThis paper present mesh generation algorithms for reconstructing surface triangular meshes and tetrahedral meshesfrom a set of planar contours. Given any input data, the theoretical derivation of the correspondence and tiling rulesallowed our algorithm to generate a unique topology satisfying the desired surface mesh criteria. This new approachled to reconstructed triangular meshes which correspond well with the physical surface.As to the 3D triangulation, our approach systematically studies the formation of un-tetrahedralizable part andclassi�ed two most common categories of the un-tetrahedralizable shapes which can be further tetrahedralized bypost-processing. This study also provides rules to reduce the chance of generating un-tetrahedralizable polyhedralshapes when Steiner point inclusion is not allowed.References[1] C. Bajaj, E. Coyle, and K. Lin. 3D mesh generation for sliced polyhedra. Draft.[2] C. Bajaj, E. Coyle, and K. Lin. Arbitrary topology shape reconstruction from planar cross sections. To appearin Graphical Models and Image Processing.[3] C. Bajaj and T. K. Dey. Convex decomposition of polyhedra and robustness. SIAM J. Comput., 21(2):339{364,1992.[4] G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal slices. In Proc. 10th Annu. ACMSympos. Comput. Geom., pages 93{102, 1994.[5] M. Bern and D. Eppstein. Mesh Generation and Optimal Triangulation, Computing in Euclidean Geometry,edited by D.-Z. Du and F. K. Hwang, pages 23{90. World Scienti�c, 1992.[6] J. D. Boissonnat. Shape reconstruction from planar cross sections. (44):1{29, 1988.[7] Y. Bresler, J. A. Fessler, and A. Macovski. A Bayesian approach to reconstruction from incomplete projectionsof a multiple object 3D domain. IEEE Trans. on Patt. Anal. Mach. Intell., 11(8):840{858, Aug. 1989.[8] J. C. Cavendish, D. A. Field, and W. H. Frey. An approach to automatic three-dimensional �nite element meshgeneration. International Journal for Numerical Methods in Engineering, 21:329{37, 1985.[9] S. Chae and K. Bathe. On automatic mesh construction and mesh re�nement in �nite element analysis. Com-puters & Structures, 32(34):911{936, 1989.[10] B. Chazelle and L. Palios. Triangulating a non-convex polytope. Discrete Comput. Geom., 5:505{526, 1990.[11] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th Annu. ACM Sympos. Comput.Geom., pages 274{280, 1993.[12] H. N. Christiansen and T. W. Sederberg. Conversion of complex contour line de�nitions into polygonal elementmosaics. Computer Grapics, 12:187{192, Aug. 1978.[13] L. T. Cook, P. N. Cook, K. R. Lee, S. Batnitzky, B.Y.S. Wong, S. L. Fritz, J. Ophir, S. J. Dwyer III, L. R.Bigongiari, and A. W. Templeton. An algorithm for volume estimation based on polyhedral approximation.IEEE Trans. on Biomedical Engineering, BME-27(9):493{499, Sep. 1980.



[14] T. K. Dey, C. L. Bajaj, and K. Sugihara. On good triangulations in three dimensions. Internat. J. Comput.Geom. Appl., 2(1):75{95, 1992.[15] A. B. Ekoule, F. C. Peyrin, and C. L. Odet. A triangulation algorithm from arbitrary shaped multiple planarcontours. ACM Trans. Graphics, 10(2):182{199, Apr. 1991.[16] D. A. Field. The legacy of automatic mesh generation from solid modeling. Computer Aided Geometric Design,12:651{673, 1995.[17] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from planar contours. Communicationsof the ACM, 20(10):693{702, Oct. 1977.[18] S. Ganapathy and T. G. Dennehy. A new general triangulation method for planar contours. Computer Grapics,16:69{75, 1982.[19] B. Geiger. Three-dimensional modeling of human organs and its application to diagnosis and surgical planning.Technical report, 2105, INRIA, France, 1993.[20] P. L. George and E. Seveno. The advancing-front mesh generation method revisited. International Journal forNumerical Methods in Engineering, 37:3605{3619, 1994.[21] C. Gitlin, J. O'Rourke, and V. Subramanian. On reconstructing polyhedra from parallel slices. TechnicalReport 25, Dept. Comput. Sci., Smith College, Northampton, MA. 1993. Appeared/to appear in IJCGA.[22] H. Jin and R. I. Tanner. Generation of unstructured tetrahedral meshes by advancing front technique. Interna-tional Journal for Numerical Methods in Engineering, 36:1805{1823, 1993.[23] B. P. Johnston and J. M. Sullivan. A normal o�setting technique for automatic mesh generation in threedimensions. International Journal for Numerical Methods in Engineering, 36:1717{1734, 1993.[24] N. Kehtarnavaz, L. R. Simar, and R.J.P. De Figueiredo. A syntactic/semantic technique for surface reconstructionfrom cross-sectional contours. (42):399{409, 1988.[25] E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM J. Res. Develop., (19):2{11,Jan. 1975.[26] S. H. Lo. A new mesh generation scheme for arbitrary planar domains. International Journal for NumericalMethods in Engineering, 21:1403{1426, 1985.[27] S. H. Lo. Volume discretization into tetrahedra - II. 3D triangulation by advancing front approach. Computers& Structures, 39(5):501{511, 1991.[28] D. L. Marcum and N. P. Weatherill. Unstructured grid generation using iterative point insertion and localreconnection. AIAA Journal, 33(9):1619{1625, Sep. 1995.[29] D. Meyers, S. Skinner, and K. Sloan. Surfaces from contours. ACM Trans. Graphics, 11(3):228{258, Jul. 1992.[30] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. In Proc. 8th Annu. ACM Sympos.Comput. Geom., pages 212{221, 1992.[31] P. Moller. On advancing front mesh generation in three dimensions. International Journal for Numerical Methodsin Engineering, 38:3551{3569, 1995.[32] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and O. C. Zienkiewicz. Finite element euler computations inthree dimensions. International Journal for Numerical Methods in Engineering, 26:2135{2159, 1988.[33] J. Ruppert and R. Seidel. On the di�culty of tetrahedralizing 3-dimensional non-convex polyhedra. In Proc.5th Annu. ACM Sympos. Comput. Geom., pages 380{392, 1989.[34] M. Shantz. Surface de�nition for branching contour-de�ned objects. Computer Grapics, 15(2):242{270, Jul.1981.[35] Y. Shinagawa and T. L. Kunii. The homotopy model: a generalized model for smooth surface generation fromcross sectional data. The Visual Computer, 7:72{86, 1991.[36] K. R. Sloan and J. Painter. Pessimal guesses may be optimal: a counterintuitive search result. IEEE Trans. onPatt. Anal. Mach. Intell., 10(6):949{955, Nov. 1988.[37] B. I. Soroka. Generalized cones from serial sections. (15):154{166, 1981.[38] Y. F. Wang and J. K. Aggarwal. Surface reconstruction and representation of 3-D scenes. Pattern Recognition,19(3):197{207, 1986.[39] N. P. Weatherill and O. Hassan. E�cient three-dimensional Delaunay triangulation with automatic point creationand imposed boundary constraints. International Journal for Numerical Methods in Engineering, 37:2005{2039,1994.


