
Linear-size Nonobtuse Triangulation of PolygonsMarshall Bern � Scott Mitchell y Jim Ruppert zAbstractWe give an algorithm for triangulating n-vertex polygonal regions (with holes) sothat no angle in the �nal triangulationmeasures more than �=2. The number of trianglesin the triangulation is only O(n), improving a previous bound of O(n2), and the worst-case running time is O(n log2 n). The basic technique used in the algorithm, recursivesubdivision by disks, is new and may have wider application in mesh generation. Wealso report on an implementation of our algorithm.1. IntroductionThe triangulation of a two-dimensional polygonal region is a fundamental problem arisingin computer graphics, physical simulation, and geographical information systems. Mostapplications demand not just any triangulation, but rather one with triangles satisfyingcertain shape and size criteria [9]. In order to satisfy these criteria, one typically allowstriangles to use new vertices, called Steiner points , that are not vertices of the input polygon.The number of Steiner points should not be excessive, however, as this would increase therunning time of computations.Throughout the application areas named above, it is generally true that large angles(that is, angles close to �) are undesirable. Babu�ska and Aziz [2] justi�ed this aversion forone important application area by proving convergence of the �nite element method [25]as triangle sizes diminish, so long as the maximum angle is bounded away from �. Theyalso gave an example in which convergence fails when angles grow arbitrarily at. (Anelementary example in which large angles spoil convergence is Schwarz's paradox [22].)Any bound smaller than � implies convergence in Babu�ska and Aziz's model, but abound of �=2 on the largest angle has special importance. First of all, any stricter non-varying requirement would also bound the smallest angle away from zero; for some inputs(such as a long, skinny rectangle) this forces the triangulation to contain a number of trian-gles dependent on the geometry|not just on the combinatorial complexity|of the input.Second, a nonobtuse triangulation is necessarily a (constrained) Delaunay triangulation [8].Third, a nonobtuse triangulation admits a perpendicular planar dual , that is, an embed-ding in which dual edges cross at right angles. Such an embedding is convenient for the�Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304yApplied and Numerical Mathematics Dept., Sandia National Laboratories, Albuquerque, NM 87185.This work was supported by the Applied Mathematical Sciences program, U.S. Department of EnergyResearch and by the U.S. Department of Energy under contract DE-AC04-76DP00789.zNASA Ames Research Center, M/S T045-1, Mo�ett Field, CA 94035. The author is an employee ofComputer Sciences Corporation, supported under NASA contract NAS 2-12961.1



\�nite volume" method [25]. Finally, a nonobtuse triangulation has better numerical prop-erties [3, 27]. In particular, Vavasis [27] recently proved that for �nite element problems withphysical characteristics that vary enormously over the domain, a nonobtuse mesh impliesfaster convergence of a certain numerical method.These properties have established nonobtuse triangulation as a desirable goal in �niteelement mesh generation. Several heuristic methods have been developed to compute nonob-tuse triangulations [4, 20]. Baker, Grosse, and Ra�erty [3] gave the �rst provably-correctalgorithm. Their algorithm also bounds the smallest angle away from zero, and hence nec-essarily uses a number of triangles dependent upon input geometry. See [16] for a morerecent algorithm of this type.From the point of view of theoretical computer science, however, it is important todetermine the inherent complexity of nonobtuse triangulation, apart from no-small-angletriangulation. Bern and Eppstein [8] devised a nonobtuse triangulation algorithm usingO(n2) triangles, where n is the number of vertices of the input domain. This result demon-strates a fundamental complexity separation between bounding large angles and boundingsmall angles. Bern, Dobkin, and Eppstein [7] later improved this bound to O(n1:85) forconvex polygons.In this paper, we improve these bounds to linear, using an entirely di�erent|and morewidely applicable|technique. Aside from sharpening the theory, our new algorithm boastsother advantages: it parallelizes, thereby placing nonobtuse triangulation in the class NC;and it does not use axis-parallel grids, so the output has no preferred directions. Ouralgorithm also improves results of Bern et al. [7] on no-large-angle triangulation. Thesuperseded results include an algorithm guaranteeing a maximum angle of at most 5�=6that uses O(n logn) triangles for simple polygons and O(n3=2) triangles for polygons withholes.2. Overview of the AlgorithmOur algorithm consists of two stages. The �rst stage (Section 3) packs the domain withnon-overlapping disks, tangent to each other and to sides of the domain. The disk packingis such that each region not covered has at most four sides (either straight sides or arcs), asshown in Figure 1(a). The algorithm then adds edges (radii) between centers of disks andpoints of tangency on their boundaries, thereby dividing the domain into small polygons asshown in Figure 1(b).The second stage (Section 4) triangulates the small polygons using Steiner points locatedonly interior to the polygons or on the domain boundary. Restricting the location of Steinerpoints ensures that triangulated small polygons �t together so that neighboring trianglesshare entire sides. Figure 1(c) shows the resulting all-right-triangle triangulation.This algorithm is circle-based, rather than grid-based like the previous polynomial-size nonobtuse triangulation algorithm [8]. Analogously, the problem of no-small-angletriangulation has grid-based [10] and circle-based [23] solutions. In retrospect, circle-basedalgorithms o�er a more natural way to bound angles, as well as meshes more intrinsic to theinput domain. This conclusion is supported by two more examples. In the second stage ofthis paper's algorithm, certain misshapen small polygons cause technical di�culties; theseare neatly solved by packing in more disks. (One of these additional disks is the second2



Figure 1. (a) Disk packing. (b) Induced small polygons. (c) Final triangulation.from the left along the bottom side of Figure 1(b).) In other recent work, Mitchell uses the\angle bu�ering" property of circles to give a triangulation, restricted to use only interiorSteiner points, with linear size and largest angle nearly as small as possible [18].3. Disk PackingIn this section, we describe the �rst stage of the algorithm. Let P denote the input: aregion of the plane bounded by a set of disjoint simple polygons with a total of n vertices.An arc-gon is a simple polygon with sides that are arcs of circles. The circles may havevarious radii, including in�nity (which implies a straight side).Throughout the disk-packing stage, we make use of the generalized Voronoi diagram(GVD), which is de�ned by proximity to both edges and vertices. The interior points ofpolygonal region P are divided into cells according to the nearest vertex of P , or the nearestedge (viewing each edge as an open segment). The resulting partition consists of a set ofbisectors, either line segments or parabolic arcs; it is essentially the same as the medialaxis [21]. The GVD can be similarly de�ned for arc-gons, or more generally for arbitrarycollections of points, segments, and circular arcs. The GVD of a collection of n points,segments, and arcs can be computed in time O(n logn) [13].The disk-packing stage consists of three smaller steps. First, one or two disks are placedat each vertex of the polygon. Second, holes in the polygon are connected to the boundaryby adding disks tangent to two holes, or to a hole and the outer boundary. Third, disksare added to the as-yet-uncovered regions (called remainder regions), recursively reducingtheir complexity until all have at most four sides.Disks at Corners. The �rst step preprocesses P so that we need only consider arc-gonswith angle 0 at each vertex. At every convex vertex of P , we add a small disk tangent toboth edges, as shown in Figure 2(a). At every concave vertex of P , we add two disks ofequal radii, tangent to the edges, and tangent to the angle bisector at the corner, as shown3



Figure 2. Adding disks at (a) convex and (b) concave corners of polygonal region P .in Figure 2(b). We choose radii small enough that disks lie within P , and none overlap(that is, intersect at interior points). This step isolates a small 3- or 4-sided remainderregion at each corner of P . The large remainder region is an arc-gon of 2n+r = O(n) sides,where n is the number of vertices of P and r is the number of concave corners.The �rst step can be implemented in time O(n logn) using the GVD of P . By checkingthe adjacencies of GVD cells, we can determine the nearest non-incident edge for eachvertex v of P ; one-eighth this distance gives a safe radius for the disks next to v. (Ourimplementation actually uses some other choices of radii.)Connecting Holes. The second step connects polygonal holes to the outer boundary byrepeatedly adding a disk tangent to two or more connected components of the boundary.(At this point, a step-one disk touching a hole boundary is considered to be part of thehole.) At the end, the large remainder region is bounded by a simply-connected arc-gonwith O(n) sides. Every corner of this arc-gon has angle 0, since each results from a tangency.The second step can be implemented in time O(n log2 n). We use a data structure thatanswers queries of the following form: given a query point p, which data object (vertex,edge, or disk) will be hit �rst by an expanding circle tangent to a vertical line through p(tangent at p and to the left of the line)? Such a query can be answered using Fortune's�-map [13], a sort of warped Voronoi diagram.The initial set of data objects includes the edges, vertices, and disks attached to theouter boundary of the input polygon. The �rst query point is the leftmost point on a hole.The answer determines a disk D entirely contained within the polygon, touching both thehole and the outer boundary. Disk D is inserted into the query data structure, along withthe vertices, edges and disks of the hole. Each subsequent query is performed using theleftmost point of all remaining holes. Altogether, the queries yield a set of disks connectingall holes and the exterior of the polygon.For a static set of data objects, the �-map can be built in time O(n logn) [13], andstandard planar subdivision search techniques [21] yield an O(logn) query time. In ourcase, the set of data objects is not �xed, since edges and a disk are added following eachquery. A trick due to Bentley and Saxe [5] allows dynamic insertions to the query structure,with query time O(log2 n) and amortized insert time O(log2 n). The trick is to divide the ndata objects among O(logn) data structures, one for each bit in the binary representationof n. A query searches all data structures in O(log2 n) time. An insertion rebuilds all thedata structures corresponding to bits that change. The total time required for n insertionsis O(n log2 n).Reducing to 3- and 4-Sided Remainder Regions. As shown in Figure 3, a disk tangentto three sides of an arc-gon must be centered at a vertex of the GVD. Such a disk divides4



Figure 3. A disk tangent to three edges of an arc-gon is centered at a vertex of the GVD.the region enclosed by the arc-gon into four pieces: the disk itself and three smaller regionsbounded by arc-gons. The �nal step of the disk-packing stage adds a linear number of disksand reduces all remainder regions to ones bounded by 3- and 4-sided arc-gons. After the�rst two steps, the only remainder region with more than four sides is simply connected;hence the edges of its GVD form a tree.Let A be a simply connected n-vertex arc-gon. To subdivide A, we add a disk tangent tothree sides, not all of which are consecutive. If three consecutive sides were used, no progresswould be made: the three resulting arc-gons would have 3, 3, and n sides. Non-consecutivesides guarantee that each resulting arc-gon will have at most n� 1 sides.Lemma 1. It is possible to reduce all remainder regions to at most 4 sides, by packingO(n) non-overlapping disks into arc-gon A.Proof: Each vertex of the GVD corresponds to a disk tangent to three sides of A. If Ahas at least �ve sides, then there is a vertex v of the GVD that is adjacent to two non-leafvertices of the GVD; a disk centered at v is tangent to three sides of A that are not allconsecutive.Now let d(n) be the maximum number of disks need to reduce an n-sided arc-gon to 3-and 4-sided remainder regions. We prove d(n) � n � 4 by induction on n. The base casesare d(3) = 0 and d(4) = 0.For the inductive step, notice that adding one disk produces three new arc-gons. (We cansimply ignore extra tangencies in the degenerate case of four or more tangencies.) Supposethe new arc-gons have k; l;m sides, respectively, with 3 � k � l � m. Since we are choosingnon-consecutive sides, as guaranteed by Lemma 1, m < n. Counting 1 for the added disk,we have that d(n) � 1 + d(k) + d(l) + d(m). Since the disk divides three sides, and is itselfdivided in three places, we have k + l+m = n + 6.First suppose k = 3. Since we are choosing non-consecutive sides, l � 4, sod(n) � 1 + d(3)+ d(l) + d(m)� 1 + 0+ (l� 4) + (m� 4)= (l+m)� 7 = (n+ 3)� 7 = n � 4:When k � 4, we have d(n) � 1 + d(k) + d(l) + d(m). By induction, d(n) � 1 + (k � 4) +(l� 4) + (m� 4), which is equal to (k + l+m)� 11 = (n+ 6)� 11 = n � 5.5



Figure 4. Triangulating regions with vertices of the polygonal region P .Finally we comment on running time. Any tree contains a vertex, called a centroid ,whose removal leaves subtrees of size at most two-thirds the original size. By choosing adisk centered at a centroid of the GVD of A, we split A into arc-gons A1, A2, and A3.We imagine splitting A1, A2, and A3 in parallel, so that altogether there will be O(logn)splitting stages, each involving a set of arc-gons of total complexity O(n). If we recomputeGVD's from scratch after each splitting stage, we obtain total time O(n log2 n). This canbe improved to O(n logn) by rebuilding GVD's in linear time, using an adaptation of [1].4. Triangulating the PiecesWe now describe the second stage of our algorithm. At this point, polygonal region P hasbeen partitioned into disks and remainder regions with three or four sides, either straightor circular arcs. Each circular arc of a remainder region R is naturally associated with apie-shaped sector, namely the convex hull of the arc and the center of the circle containingthe arc. We denote the union of R and its associated sectors by R+. These augmentedremainder regions de�ne a decomposition of P into simple polygons with disjoint interiors.In this section, we show how to triangulate each R+ region. All Steiner points will lieeither on straight sides of R (that is, along P 's boundary) or interior to R+. Thus wenever place Steiner points on the radii bounding sectors, and triangulated R+ regions will�t together at the end. Our triangulation method is given in three cases: remainder regionswith vertices of P , three-sided remainder regions, and four-sided remainder regions. The�rst two cases are easy, but the last is quite intricate. In all cases, triangulating a singleR+ region takes O(1) time, so altogether the running time of the second stage is O(n).Remainder Regions with Vertices of P . Every vertex of P was isolated by one or twodisks in the �rst step of the algorithm. The resulting regions R+ can be triangulated withat most four right triangles, as shown in Figure 4, by adding edges from the disk centers tothe points of tangency and the vertex of P .Three-Sided Remainder Regions. A three-sided remainder region R without a vertexof P is bounded by three circular arcs, so that arcs meet tangent at the vertices of R. Herewe are considering a straight side to be an arc of an in�nitely large circle. We call a Steinerpoint in an augmented remainder region R+ safe if it lies either interior to R+ or on theboundary of P .Lemma 2. If R is a three-sided remainder region, then R+ can be triangulated with atmost six right triangles, adding only safe Steiner points.6
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pFigure 5. Three-sided remainder regions: (a) with a straight side, (b) with only �nite-radius arcs.Proof: First assume that R has a straight side (necessarily at most one), and view R sothat this straight side forms a horizontal base. The augmented region R+ is a trapezoidwith two vertical sides, and a subdivision point p along its slanted top side. We cut per-pendicularly from p (that is, tangent to both arcs) across R until we hit the base, and thereadd a safe Steiner point s. We add edges from s to the centers of the arcs' circles to divideR+ into four right triangles, as shown in Figure 5(a).Now assume all the sides of R are arcs of �nite radius. Notice that R+ is a triangle withsubdivided sides. Moreover, the subdivision points along the sides of R+ are exactly thetangency points of the inscribed circle of R+. (This follows from the fact that the inscribedcircle makes each corner of R+ incident to two edges of equal length.) So we add the circle'scenter c and edges from c to all the vertices around R+, dividing R+ into six right triangles,as shown in Figure 5(b).Four-Sided Remainder Regions. A four-sided remainder region R is bounded by fourcircular arcs (possibly of in�nite radius) that meet tangent at the vertices of R. Lemma 3states two interesting properties of these regions.Lemma 3. The arcs of R have total measure 2�. The vertices of R are cocircular.Proof: If all arcs have �nite radius, then the sum of the measures of the arcs of R isidentical to the sum of the measures of the angles at the corners of R+. For straight sides,we imagine further augmenting R with \in�nite sectors" of angle 0.Next we show that the vertices are cocircular. Let C1 and C3 be �nite-radius circlescontaining opposite arcs of R. (Here notice that if R has two straight sides, they mustbe opposite.) Assume the two lines that are externally tangent to both C1 and C3 meetat a point x. There exists an inversive transformation ([11], pp. 77{95) of the projectiveplane that maps x to in�nity and hence the two external tangent lines to parallel lines.The transformed circles C01 and C 03, corresponding to C1 and C3, have equal size, so thevertices of the transformed remainder region R0 form an isosceles trapezoid. It is easy tosee that any isosceles trapezoid has cocircular vertices. The inverse of the original inversivetransformationmaps the circle containing the vertices ofR0 to a circle containing the verticesof R.Now if we are lucky, the region R+ can be triangulated with 16 right triangles, asshown in Figure 6. Here we have added the center c of the circle through R's vertices in7



Figure 6. The good case for four-sided remainder regions.order to form four kites (quadrilaterals with two adjacent pairs of equal-length sides). Thistriangulation, however, can fail in two di�erent ways: (1) if one of the arcs of R measuresmore than � (a reex arc), then the angles at the corresponding vertex of R+ will measuremore than �=2; and (2) if center c lies outside the convex hull of R, then it lies on thewrong side of one of the chords and will introduce unwanted intersections. Each of thesedi�culties will be handled by adding yet another disk.First assume R has a reex arc on circle C3. Add another disk C�, tangent to C3 andC1 (the circle containing the arc opposite C3), such that the center of C� lies on the linejoining the centers of C1 and C3. The new disk C�|unlike any of the disks used up until thispoint|may overlap an old disk and produce a self-intersecting remainder region, as shownin Figure 7. Lemma 3 still holds for self-intersecting remainder regions. Region R+, formedas before by adding the associated sectors to R, remains a simple polygon with subdivisionpoints on its sides, speci�cally a triangle with three subdivisions on one side and one oneach of the others. The next lemma shows how to triangulate R+ with a generalization ofthe method of Lemma 2.Lemma 4. Let R be a self-intersecting four-sided remainder region resulting from breakingup a reex four-sided remainder region by the addition of C�. Then R+ can be triangulatedwith at most 12 right triangles, adding only safe Steiner points.Proof: We may assume that all arcs of R have �nite radius. If R has a straight edge, wecan apply the triangulation to a region with an in�nite sector attached to the straight edgeand then simply remove the resulting in�nite strips.
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p SFigure 8. (a) Mutual tangents and mutual chord meet at a point. (b) Triangulation.Consider one of the arcs S next to C�. We claim that the lines tangent to S at itsendpoints and the mutual chord of C� and its opposite arc all meet at a single pointp interior to R, as shown in Figure 8(a). This claim allows the triangulation shown inFigure 8(b).Why is the claim true? For each of the three disks|C� , the opposite disk, and the onewith arc S|we de�ne a power function. The power function of a circle with center (xc; yc)and radius r is P (x; y) = (x � xc)2 + (y � yc)2 � r2: The power functions of two tangentcircles are equal along their mutual tangent line; the power functions of two overlappingcircles are equal along a line containing their mutual chord. The point p of the claim is thepoint at which all three power functions are equal.We now consider the second di�culty. Call a four-sided remainder region R centered ifthe convex hull of R contains the center c of the circle through R's vertices, and uncenteredotherwise. Let the arc of R with the longest chord lie along circle C1, and denote the othercircles by C2, C3, and C4, clockwise around R. (Circles through in�nity handle the caseof straight sides.) Assume that the line through the centers of C1 and C3 is vertical as inFigure 9. If R is uncentered, then c must lie below the chord on C1.Let t12 be the vertex of R at which C1 and C2 meet, and similarly de�ne t23, t34, andt41. For a disk C� tangent to both C1 and C3, let SL (= SL(C�) ) be the circular arcwith endpoints t12 and t23 that passes through the points at which C� meets C1 and C3.Lemma 3 guarantees that such an arc exists. Similarly de�ne Sr. Let cL and cr be thecenters of the circles containing SL and cr, respectively.Lemma 5. There exists a disk C�c tangent to C1 and C3, such that cL lies in the convexhull of the four points of tangency around SL and cr lies in the convex hull of the four pointsof tangency around Sr.Proof: First let C� be the disk that is tangent to C1 and C3 such that the center of C�lies on the line through the centers of C1 and C3.Centers cL and cr lie on a horizontal line through the center of C�, hence outside C1and C3. But the requirements of the lemma may be violated, because cr may lie outside thechord t34t41 of Sr (if Sr has measure less than �) or cL may lie outside the chord t12t23 of SL(if SL has measure less than �). We assert that both of these bad conditions cannot occur9
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SFigure 9. The trajectories of centers cL and cr as C� sweeps.at the same time. Why? It su�ces to show that the sum of the measures of SL and Sr isat least 2�. Angle 6 t23t�3t34, where t�3 is the point of tangency of C� and C3, measures atleast �=2, because the arc of R on C3 measures at most �. And 6 t12t�3t41 measures morethan �=2, because the center of the circle through the vertices of R lies below t12t41. Hencethe remaining angles at t�3 (those subtended by points on SL and Sr) sum to less than �.If neither bad condition occurs, then C� satis�es the conditions of the lemma, and weare done. But if one of the bad conditions does occur, then we sweep C� in the directionthat could cure the condition, while keeping C� tangent to both C1 and C3. If cr lies outsidet34t41, then we sweep C� to the left in Figure 9; the other case is symmetrical.During the leftward sweep, cr moves towards C1 along the perpendicular bisector oft34t41 and cL moves towards C2 along the perpendicular bisector of t12t23, as shown inFigure 9. These bisectors never intersect C3, so cL and cr can never lie outside their chordson C3. The chords of SL and Sr between tangency points on C� are never the longest chordson these arcs, so cL and cr also lie safely inside these chords throughout the sweep.As cr moves, it must pass pass through t34t41 and become good, before it reaches C1and becomes bad. By the arc-measure argument above, cr must cross inside t34t41 beforecL crosses outside t12t23. Hence at some point in the sweep, both cr and cL satisfy theconditions of the lemma, and the C� at this point is C�c .Lemma 5 breaks up uncentered, non-reex remainder regions, but unless C�c coincideswith the initial C� in the sweep, adding C�c creates a new reex remainder region. Thefollowing lemma �nesses this �nal di�culty (shall we say circularity?) by triangulatingboth new augmented regions at once.Lemma 6. Let R be a non-reex, uncentered, four-sided remainder region. Then R+ canbe triangulated into at most 28 right triangles, adding only safe Steiner points.Proof: Again we may assume that all arcs of R have �nite radius, as a solution to thiscase implies a triangulation for the case of straight sides.We start by adding the \centering" disk C�c , guaranteed by Lemma 5. As above, wedenote the tangent point of C�c and C1 by t�1 and the tangent point of C�c and C3 by t�3. Inaddition to t�1 and t�3, we add the following Steiner points: the centers c` and cr associatedwith arcs S` and Sr, and the midpoint m of segment t�1t�3. See Figure 10.10



mFigure 10. Triangulating R+ when R is uncentered.We triangulate by adding: all chords around S` and Sr; lines from c` to point m and tothe centers of C1, C2, and C3; and lines from cr to point m and to the centers of C3, C4,and C1. Finally we add an edge between the center of C1 and t�1 and between the centerof C3 and t�3.Resulting triangles come in sets of four, each set triangulating a kite by adding itsdiagonals. Hence all triangles are right. (Notice that C�c is treated somewhat di�erentlythan the other circles: we do not use its center. Nevertheless the four triangles around mform a kite, because t�1t�3 is the mutual chord of C�c , S2, and S4.)We have now completed the proof of our main theorem.Theorem 1. An n-vertex polygonal region can be triangulated with O(n) right triangles,in time O(n logn) for simple polygons and O(n log2 n) for polygons with holes.5. ImplementationWe implemented our algorithm within the Matlab environment [15]. The implementationdi�ers somewhat from the algorithm described in the text. We use several heuristics fordisk placement so as to reduce the number of triangles. Also we do not bother to computegeneralized Voronoi diagrams. Rather we use a simple O(hn) method to connect h holes tothe boundary, and we choose arbitrary disks touching three non-consecutive sides, ratherthan disks centered at GVD centroids. To keep the user entertained during the worst-caseO(n2) running time, we display color-coded disks and triangles as they are added.Experiments with a variety of polygonal regions show that an n-vertex input typicallyproduces about 20n triangles. (The maximum observed was about 25n for an input withn�3 reex corners.) Since a oating point representation entails roundo�, some of the rightangles present in the nonobtuse triangulation become slightly obtuse. The worst test casehad an angle of about �2 + 10�11 radians (Matlab retains 16 digits), so the implementationis fairly robust, which is somewhat surprising given that our implementation often placesvery small disks next to very large ones. 11



6. Parallelizing the AlgorithmWe now sketch the �rst NC algorithm for nonobtuse triangulation. We give a straightfor-ward though rather ine�cient algorithm, with parallel time O(log3 n) and processor require-ment O(n2). Both time and processors should be improvable. One bottleneck subproblemis the computation of the GVD of circular arcs; see [14] for the GVD of line segments.Theorem 2. An n-vertex polygonal region P (with holes) can be triangulated with O(n)right triangles in O(log3 n) time on O(n2) EREW PRAM processors.Proof: Using O(n2) processors|one for each vertex-edge pair|and time O(logn), we cancompute the nearest non-incident edge for each vertex and hence choose appropriate radii fordisks to pack into corners. The second step, connecting holes, is trickier. We �rst compute aminimum spanning tree (MST) of P 's holes; by this we mean the shortest set of line segmentsS, each segment with both endpoints on the boundary of P , such that the union of S and theexterior of P is a connected subset of the plane. Using O(n2) processors and time O(logn),we compute for each vertex the nearest edge lying on a di�erent connected component of P 'sboundary. We use this information to compute distances between connected components,and add to S the shortest component-joining line segment incident to each component. Thisreduces the number of components by at least a factor of two, so O(logn) such mergingsteps su�ces to complete the computation of S.Now it is not hard to show that no point of the plane is covered by more than O(1)diameter disks of segments in S. Hence there is a pairwise-disjoint set of diameter disksof cardinality a constant fraction of jSj [26]. It is not hard to �nd these disks in paralleltime O(logn) using separators. We repeat the process of computing the MST (of the newconnected components, holes plus disks) and �nding a large independent set of diameterdisks. After O(logn) cycles|for total time of O(log3 n)|we have reduced to a simply-connected arc-gon.The third step of the disk-packing stage uses the generalized Voronoi diagram in orderto �nd centroid disks. Using O(n2) processors and time O(log2 n), we can compute theGVD of a set of n circular arcs as follows. We compute the equal-distance curve (bisector)for each pair of arcs. Then for each arc a, we compute the piecewise-polynomial boundaryof a's cell recursively by dividing the set of bisectors into two equal halves and then mergingthe boundaries for each half. Two piecewise-polynomial boundaries of O(n) pieces can bemerged in time O(logn) on n processors. Once, the GVD has been computed, a centroidcan be found in time O(logn) by alternately removing leaves and merging degree-2 paths.Recall that the algorithm requires a \decomposition tree" of centroid disks of heightO(logn), so by simply recomputing the GVD after each centroid, we obtain an overall timefor the third disk-packing step of O(log3 n). Finally, the triangulation stage consists entirelyof local operations, so it is trivially parallelized.7. ConclusionWe have presented a new algorithm for nonobtuse triangulation of polygonal regions withholes. The number of triangles produced is linear in the number of vertices of the input,12



a signi�cant improvement over previous methods. This is of course worst-case optimal,resolving the question of the theoretical complexity of nonobtuse triangulation of polygons.One direction for further work is extending the algorithm to inputs more general thanpolygons with holes; these inputs occur in modeling domains made of more than one ma-terial. Currently, there is an algorithm for re�ning a triangulated simple polygon into anonobtuse triangulation with O(n4) triangles, and also an 
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