Developing a Practical Projection-Based

Parallel Delaunay Algorithm

Guy E. Blelloch

Gary L. Miller

Dafna Talmor

Computer Science Department
Carnegie Mellon University
{blelloch,glmiller,talmor}@cs.cmu.edu

Abstract

In this paper we are concerned with developing a practi-
cal parallel algorithm for Delaunay triangulation that works
well on general distributions, particularly those that arise
in Scientific Computation. Although there have been many
theoretical algorithms for the problem, and some implemen-
tations based on bucketing that work well for uniform distri-
butions, there has been little work on implementations for
general distributions.

We use the well known reduction of 2D Delaunay trian-

gulation to 3D convex hull of points on a sphere or paraboloid.

A variant of the Edelsbrunner and Shi 3D convex hull is
used, but for the special case when the point set lies on ei-
ther a sphere or a paraboloid. Our variant greatly reduces
the constant costs from the 3D convex hull algorithm and
seems to be a more promising for a practical implementation
than other parallel approaches. We have run experiments
on the algorithm using a variety of distributions that are
motivated by various problems that use Delaunay triangu-
lations. Our experiments show that for these distributions
we are within a factor of approximately two in work from
the best sequential algorithm.

1 Introduction

Delaunay triangulation along with its dual, the Voronoi Dia-
gram, is an important problem in many domains, including
imaging, computer vision, terrain modeling, and meshing
for solving PDEs. In many of these domains the triangu-
lation is a bottleneck in the computation time, making it
important to develop fast algorithms. There are now many
sequential algorithms available for Delaunay triangulation
along with efficient implementations. Su and Drysdale [23]
present an excellent experimental comparison of several such
algorithms. The development of parallel algorithms is not as
advanced. As a first step researchers have developed many
theoretical parallel algorithms [7, 1, 8, 26, 20, 12]. How-
ever, there have been very few efficient implementations,
and these few depend on having a uniform distribution of
points [16, 24, 22]. Attempts to implement the theoretically
good algorithms have met with limited success [22]. There
are several obstacles to constructing good practical parallel

Delaunay triangulation algorithms: (1) the known parallel
solutions are highly irregular and dynamic, (2) they require
significant inter-processor communication, and (3) they have
very large constants in their asymptotical work analysis even
if we ignore communication costs.

Our goal was to develop a practical parallel algorithm
that works on general distributions. Since there are many
different parallel machines with very different characteristic
we tried to design our criteria for success in a machine inde-
pendent way. Also, since reducing the total work executed
by a parallel algorithm (point 3 above) is a prerequisite to
getting a practical parallel algorithm, we decided that an
initial goal should be to construct a parallel algorithm that
does little work beyond the best sequential algorithm. To
quantify the constants in the work required by an algorithm,
we say algorithm A is o work-efficient compared to algo-
rithm B if A performs at most 1/« times the number of
operation of B. For example, the standard tree-algorithm
for prefix sums [15] is 50% work-efficient relative to the se-
quential prefix sums, since for n values the parallel version
requires 2n — 2 operations whereas the sequential requires
only n—1. The goal is to design parallel algorithms that are
as close as possible to 100% work-efficient relative to the best
sequential algorithm. Some natural measures of work that
we considered included: floating point operations, memory
references, comparisons, and data movement. We settled on
floating point operations as our primary measure of work be-
cause it is machine independent and is reasonably correlated
with runtime for this class of algorithms.

In most Delaunay algorithms although the asymptotic
work for n points is bound by O(nlogn) the actual work
can depend significantly on the distribution of the points.
Because of this, when considering o work-efficiency we need
to state results relative to particular distributions (this was
not necessary for the prefix sums example since the work
is only dependent on the data size). For the results to be
useful it is necessary to select a “representative” set of distri-
butions. Our selection of point distributions was motivated
by scientific domains and includes some highly nonuniform
distributions. The four distributions we use are discussed in
Section 3.1 and pictured in Figure 6.

We considered a variety of parallel Delaunay algorithms
with the goal of getting high o work-efficiency on the data
set distributions. The most promising algorithm we consid-
ered uses a projection based approach, loosely based on the
Edelsbrunner and Shi [11] approach for 3D Convex Hulls.
Our algorithm does O(nlog n) work and has O(log® n) depth
(parallel time) on a CREW PRAM if we use Overmars and

Van Leeuwen’s linear-work subroutine for 2-d convex hulls
on sorted input [18]. However, by using subroutines that
are not known to be theoretically optimal we significantly
reduce both the experimental work and depth over our data
set. We implemented several variants of our algorithm and
ran experiments on our distributions to measure operation
counts (floating-point operations) and parallel depth. We
compared the operation counts to Dwyer’s algorithm [10],
which is the best of the sequential Delaunay algorithms stud-
ied by Su and Drysdale [23]. Our algorithm is approximately
50% work-efficient relative to Dwyer’s if it is Tun all the way
to the end. Furthermore, if the algorithm is used as a coarse
partitioner to break a problem into components that can
then be solved independently on a set of processors using
Dwyer’s algorithm, then the algorithm is very close to 100%
work efficient. Finally, the point distribution has little effect
on the total work, suggesting that our algorithm is reason-
ably robust across a variety of nonuniform distributions.

1.1 Background and choices

Many of the algorithms for Delaunay triangulation, both
parallel and sequential, are based on the divide-and-conquer
paradigm. These algorithms can be characterized by the
relative costs of the divide and merge phases. An early se-
quential approach developed by Shamos and Hoey [21] (for
Voronoi diagrams) and refined by Guibas and Stolfi [13] (for
Delaunay triangulation), is to divide the point set into two
subproblems using a median, then to find the Delaunay di-
agram of each half, and finally to merge the two diagrams.
The merge phase does most of the work of the algorithm and
runs in O(n) time, so the whole algorithm runs in O(nlog n)
time. Unfortunately, these original versions of the merge
were highly sequential in nature. Aggarwal et al. [1] first
presented a parallel version of the merge phase, which lead
to an algorithm with O(log® n) depth. However, this algo-
rithm was significantly more complicated than the sequen-
tial version, and was not work efficient—the merge required
O(nlog n) work. Goodrich, Cole and O’Dunlaing improved
the method making it work efficient [8], but it remains ham-
pered by messy data structures, and as it stands can be
ruled out as a promising candidate for implementation.’
Reif and Sen [20] developed a randomized parallel divide-
and-conquer paradigm, called “polling”. They solve the
more general 3D Convex-hull problem, which can be used
for finding the Delaunay triangulation. In their algorithm
a sample of the points is used to split the problem into a
set of smaller independent subproblems. For this algorithm,
the work is concentrated in the divide phase, and merging
simply glues the solutions together. The size of the sample
ensures even splitting with high probability. A point can ap-
pear in more than one subproblem and so to avoid blow-up
trimming techniques are used. A simplified version of this
algorithm was considered by Su [22]. His findings show that
whereas the paradigm does indeed evenly divide the prob-
lem, the expansion factor is close to 6 on all the distributions
he considered. This will lead to an algorithm that is at best
1/6 work-efficient, and therefore, pending further improve-
ments, is not a likely candidate for implementation. Dehne
et al derive a similar algorithm based on sampling [9]. They
show that the algorithm is communication efficient when
n > p°t¢ (only O(n/p) data is sent and received by each

Twe note, however, that there certainly could be simplifications
that make it easier to implement.

processor). The algorithm is quite complicated, however,
and it is unclear what the constants in the work are.

Edelsbrunner and Shi [11] present a 3D convex hull al-
gorithm based on the 2D algorithm of Kirkpatrick and Sei-
del [14]. The algorithm divides the problem by first using
linear programming to find a facet of the 3D convex hull
above a splitting point, then using projection onto vertical
planes and 2D convex hulls to find two paths of convex-hull
edges. These paths are then used to divide the problem
into four subproblems, using planar point location to de-
cide for each point which of the subproblems it belongs to.
The merge phase again simply glues the solutions. The al-
gorithm takes O(nlog® k) time where h is the number of
facets in the solution. When applied to Delaunay triangula-
tion the algorithm takes O(nlog®n) time since the number
of facets will be ©(n). This algorithm can be parallelized
without much difficulty since all the sub-steps have known
parallel solutions, giving a depth (parallel time) of O(log® n)
and work of O(nlog? k). Ghouse and Goodrich [12] showed
how the algorithm could be improved to O(log? n) depth
and O(min(nlog? k, nlog n)) work using randomization and
various additional techniques. The improvement in work
makes the algorithm asymptotically work-efficient for Delau-
nay triangulation. However, these work bounds were based
on switching to the Reif and Sen algorithm if the output size
was large. Therefore, when used for Delaunay triangulation,
the Ghouse and Goodrich algorithm simply reduces to the
Reif and Sen algorithm.

1.2 Our algorithm and experiments

The complicated subroutines in the Edelsbrunner and Shi
approach, and the fact that it requires O(nlog®n) work
when applied to Delaunay triangulation, initially seems to
rule it out as a reasonable candidate for a parallel implemen-
tation. We note, however, that by restricting ourselves to a
point set on the surface of a sphere or parabola (sufficient for
Delaunay triangulation) the algorithm can be greatly sim-
plified. Under this assumption, we developed an algorithm
that only needs a 2D convex-hull as a subroutine, removing
the need for linear programming and planar point location.
Furthermore our algorithm only makes cuts parallel to the
z or y axis allowing us to keep the points sorted and use an
O(n) work 2D convex-hull. These improvements reduce the
theoretical work to O(nlogn) and also greatly reduce the
constants. This simplified version of the Edelsbrunner and
Shi approach seemed a promising candidate for experimen-
tation: it does not suffer from unnecessary duplication, as
points are duplicated only when a Delaunay edge is found,
and it does not require complicated subroutines, especially
if one is willing to compromise on non theoretically-optimal
components, as discussed below.

Through alternating rounds of experimentation and al-
gorithmic design, we refined this initial algorithm. We im-
prove the basic algorithm from a practical point of view by
using the 2D convex-hull algorithm of Chan et al [6]. This
algorithm leads to a non optimal theoretical work since it
runs in worst case O(nlog h) work (instead of linear), but in
practice our experiments showed that it runs in linear work,
and has a smaller constant than the provably linear work
algorithm. Our final algorithm is not only simple enough
to be easily implemented, but is also highly parallel and
performs work comparable to efficient sequential algorithms
over a wide range of distributions. The algorithm can also
be used to partition the problems into processors, and solv-

ing each subproblem using the sequential algorithm on each
processor, with the work for the coarse partitioning being
negligible.

The algorithm was implemented and evaluated in the
NESL parallel programming language [4]. The emphasis
of our study is on measuring the algorithms in a manner
as implementation-independent as possible. Hence, we seek
to quantify the number of operations, recursion levels, etc.,
rather than run times.

The rest of the paper is organized as follows: in sec-
tion 2 we discuss the algorithm, justify our design choices
theoretically, and mention some of the details of the im-
plementation, such as the data structures. In section 3 we
describe the test-bed, and present the experimental results.

A preliminary version of this work was presented at
the MST Workshop on Computational Geometry [3]. The
earlier version only included the basic algorithm. Here we
have optimized the basic algorithm, included an optimized
end-game, and a systematic comparison of our optimized
code with the best sequential code we know of.

2 Projection-based Delaunay

The goal of this section is to present our algorithm, concen-
trating on the theoretical motivations for our design choices.
Our claim is that these choices lead to a parallel algorithm
which is not only efficient, but simple to implement as well,
and therefore we also present in some detail the data struc-
tures we use.

The basic algorithm uses a divide-and-conquer strategy.
Each subproblem is determined by a region R which is the
union of a collection of Delaunay triangles. The region R is
represented by the following information: (1) the polygonal
border B of the region and (2) the set of points P of the re-
gion, composed of internal points and points on the border.
Note that the region may not be connected. At each call, we
divide the region into two regions using a median line cut of
the internal points, and a corresponding path of Delaunay
edges. The new path separates Delaunay triangles whose cir-
cumcenter is to the left of the median line, from those whose
center is to the right of the median line. We then determine
the new border of Delaunay edges for each subproblem by
merging the old border with the new path. Since we are
using a median cut, our algorithm guarantees that the num-
ber of internal points is reduced by a factor of at least two
at each call. This simple separation is at the heart of our
algorithm being efficient. Unlike early divide-and-conquer
strategies for Delaunay triangulation which do most of the
work when returning from recursive calls [21, 13, 8], this
algorithm does all the work before making recursive calls.

To find the separating path (which we call H), we project
the points onto a paraboloid whose center is on the median
line £, then project the points horizontally onto a vertical
plane whose intersection with the x-y plane is £ (see Figure
2). The 2D lower convex hull of those projected points, is the
required new border path H. In general, the structure of ‘H
may be more complicated. We discuss this below. Figure 1
gives a more detailed description of the algorithm. Once
the subproblem has no more internal points, we move to the
end-game strategy to be described later in this section.

Correctness of the median splits: We now show the Delau-
nay path H is related to the median line £ in the following
sense:

Algorithm: DELAUNAY(P, B)

Input: P, a set of points in R?,

B, a set of Delaunay edges of P which is the border of a
region in R? containing P.

Output: The set of Delaunay triangles of P which are
contained within B.

Method:

1. If all the points in P are on the boundary B, return
END_GAME(B).

2. Find the point ¢ that is the median along the axis
of all internal points (points in P and not on the
boundary). Let £ be the line z = ¢5.

3. Let P' = {(py —qy,|lp = alI*) | (b=, py) € P}. These
points are derived from projecting the points P onto
a 3D paraboloid centered at ¢, and then projecting
them onto the vertical plane through the line L.

4. Let H = LowErR_CoNVEX_HULL(P'). H is a path of
Delaunay edges of the set P. Let Py be the set of
points the path H consists of, and H is the path H
traversed in the opposite direction.

5. Create two subproblems:

o Pl = {pec Plpisleft of L} U Py
=1{p € P|p1s right o U Py
PE Plp is night of L} U P
¢ B = BoRDER_MERGE(B, H)
B = BorDER_MERGE(B, H)

6. Return DeELAUNAY(PY, BY) U DELAUNAY(PT, BT)

Figure 1: The projection-based parallel algorithm. Initially B is
the convex hull of P. The algorithm as described cuts along the =
axis, but in general we can switch between z and y cuts, and all
our implementations switch on every level. The algorithm uses the
three subroutines END_GaME, LowER_CoNVEX_HULL, and Bor-
DER_MERGE, which are described in the text.

Lemma 1 There is no point in P which is left(right) of the
line L, but right(left) of H.

This implies that we can determine whether a point not on
H 1s left or right of H by comparing it against the line £, a
simpler computational task.

Proof outline: Lemma 1 is easily seen to be true in a much
more general setting. Let @@ be a convex body in R® with
boundary Q. A point ¢ in Q is said to be light if it is
visible from the z direction, i.e., the ray {¢ + aZ|a > 0}
does not intersect @}, where £ = (1,0, 0). We say the point ¢
is dark if the ray {¢ — a&|o > 0} does not intersect Q. The
boundary between light and dark is called the silhouette. In
the case when @ is our paraboloid then the silhouette is just
the image of the line £. In general the silhouette is all
those points that lie on a supporting plane whose normal is
also normal to &.

If we further assume that the points P are contained
in @ with convex hull P we can define the light, dark, and
silhouette points of P. In the case when @ is our paraboloid
then the silhouette in general will consist of faces and edges
of P. For ease of exposition, we assume no faces appear on
the silhouette. We also assume that the points are in general
position, i.e. that all faces are triangular. H is then a simple

N
N
N
| Ei%&
By
Ly

i
i
AM!
[\
4

[—

0
i
A
=2
W

N V2

¥
,\g'

;

NS
A

=/
W

i
}

—

a) Median line £ and path H.

& /’
\.\

the paraboloid points projected onto
the vertical plane.

Figure 2: This figure shows the median line, all points projected on a parabola centered at a point on that line, and the horizontal projection
onto the vertical plane through the median line. The result of the lower convex hull in the projected space, H, is shown in highlighted edges

on the plane.

path .

Clearly no point ¢ € QN P can be light as a point in Q
but dark as a point in P because P in contained in Q. This
is exactly what Lemma 1 states and thus proves the lemma.
O

We now return to the case where the points P lie on
the paraboloid. We give a simple characterization of when
a face on P is light, dark or on the silhouette in term of its
circumscribing circle.

Definition 1 A Delaunay triangle is called a left, right,
meddle triangle with respect to a line L, if the circumcen-
ter of its Delaunay circle lies left of, right of, or on the line
L respectively

Lemma 2 A face F is dark, light, or on the silhouette if
and only iof its triangle in the plane is left, right, or middle
respectively.

Proof: The face F' supporting plane is of the form ax + by —
z = ¢ with normal n = (a,b,—1). Now F is dark, light,
or on the silhouette if and only if @ < 0, ¢ > 0, or a = 0
respectively. The vertical projection of the intersection of
this plane, and the paraboloid, is described by z2+¢* = az+
by-+c, or by (75—(1/2)2—1—(3/—(1/2)2 = c—|—(a/2)2—|—(b/2)2. This
is an equation describing a circle whose center is (a/2,5/2
and contains the three points of the triangle. Hence, this is
the Delaunay triangle’s circumcenter and this circumcenter
is simply related to the normal of the corresponding face of
the convex hull. a

Therefore the only time that a triangle will cause a face
to be on the silhouette is when its circumcenter is on L.
For ease of exposition, we assume the following degeneracy
condition: No vertical or horizontal line contains both a
point and a circumcenter.

Analysis: We now consider the total work and depth of the
algorithm. Our bounds are based on an CREW PRAM. The
costs depend on the three subroutines END_(GAME,
LowER_CoONVEX_HULL, and BORDER_MERGE. In this sec-
tion we briefly describe subroutines that lead to theoretically
reasonable bounds, and in the following sections we discuss
variations for which we do not know how to prove strong
bounds on, but work better on our data sets.

Lemma 3 Using a parallel version of Overmars and Van
Leeuwen’s algorithm for the LOWER_CONVEX_HULL and

Goodrich, Cole and O’Dunlaing’s algorithm [8] for the END_GAME,

our method runs in O(nlogn) work and O(log®n) depth.

Proof: We first note that since our projections are always
on a plane perpendicular to the z or y axis, we can keep our
points sorted relative to these axes with linear work (we can
keep the rank of each point along both axis and compress
these ranks when partitioning). This allows us to use Over-
mars and Van Leeuwen’s linear-work subroutine for 2D con-
vex hulls on sorted input. Since their algorithm uses divide-
and-conquer and each divide stage takes O(log n) sequential
time, the full algorithm runs with O(log® n) depth. The
other subroutines in the partitioning are the median, pro-
jection and BORDER_MERGE These can all be implemented
within the bounds of the convex hull (BORDER_MERGE is
discussed later in this section). The total cost for partition-
ing n points is therefore O(n) work and O(log® n) depth.

As discussed earlier, when partitioning a region (P, B)
the number of internal points within each partition is at
most half as many as the number of internal points in (P, B).
The total number of levels of recursion before there are no
more internal points is therefore at most log n. Furthermore,
the total border size when summed across all instances on
a given level of recursion is at most 6n. This is because 3n
is a imit on the number of Delaunay edges in the final an-
swer, and each edge can belong to the border of at most two
instances (one on each side). Since the work for portion-
ing a region is linear, the total work needed to process each
level is O(n) and total work across the levels is O(nlogn).
Similarly, the depth is O(log?® n).

This is the cost to bring us down to components which
have no internal points (just borders). To finish off we need
to run the END_GAME. If the border is small (our experi-
ments indicate that the average size is less than 10), it can
be solved by any technique, and if the border is large, then
the Goodrich, Cole and O’Dunlaing algorithm [8] can be
used. a

Border merge: We now discuss how the new Delaunay path
is merged with the old border, to form two new borders. The
geometric properties of these paths, combined with the data
structure we use lead to a simple and elegant O(n) work O(1)
time intersection routine.

The set of points is represented using a vector. The
border B is represented as an unordered set of triplets.

X

\V/ \/ N
/s NI/

Figure 3: The six cases for merging the new and old border. The
old border is in thick lines, and the partitioning path in dotted lines.
The convention in the drawings (and the program) is the interior lies
left of the border, when proceeding in the direction of the arrows.
The resulting two new borders are in thin lines, with the new left
border marked with double arcs, and the new right border with a
single arc.

M

Each triplet represents a corner of the border, in the form
(za, T, zb) where 1,, 1s an index to the middle corner pomt
1q 18 an index to the preceding point on the border, i is
an index to the following point. Note that the border could
have pinch point, i.e. B could contain two triplets with the
same middle point (see Figure 4).

The 2D convex-hull algorithm returns a new border
path, H, also represented as a set of triplets. H and B
have the following properties:

¢ No two edges cross since both B and H are subsets of
the set of Delaunay edges of P.

e His a simple path anchored at its end points on B.

The border merge can be computed by considering only
the local structure of H and B, that is, by intersecting the
pairs of triplets of equal middle index, one representing the
shape of the new border near the point, the other repre-
senting the shape of the old border. The existence of pinch
points in B does not affect this simple procedure, as each
triplet belonging to the pinched corner can be intersected in-
dependently with the new border. Since the new border has
distinct ¢,,’s the number of corner intersections computed is
at most the number of corners in the old border.

Figure 3 shows the six different cases for the intersection
of the old and new triplets. The core of the border merge is
therefore a routine receiving two triplets, identifying which
of the six cases they fall into, and returning a set of new left
border triplets and right border triplets.

2D convex hull: The 2D convex hull is a central to our al-
gorithm, and is, in fact, the most expensive component. We
considered a few candidates for the convex hull algorithm:
(1) Overmars’ [18], which is O(n) work for sorted points.
(2) Kirkpatrick and Seidel’s O(nlog h) algorithm [14], and
its much simplified form as presented by Chan et al [6]. (3)
A simple worst case O(n?) quickhull algorithm, as in [19, 5].

In [18] it was shown how to compute the convex-hull
of pre-sorted points in sequential O(n) work, and the par-
allel extension is straightforward. Since we can pre-sort the
point set, and maintain the ordering through the x and y
cuts we perform, using Overmars’ will give us a linear run-
time for each convex hull invocation. Unfortunately, prelim-
inary experimentation with Overmars’ proved it to be quite

expensive compared to quickhull. Indeed, we estimate that
quickhull (with some additional point pruning heuristics) is
of experimental work O(n) and O(log n) depth over the dis-
tributions arising in our Delaunay algorithm and data set.?

Using quickhull, our algorithm compared favorably with
efficient sequential algorithms, and a preliminary version of
this paper contained comparisons based solely on this sim-
ple algorithm. Nonetheless, some of our distributions, in
particular the Kuzmin distribution, were more costly in the
convex-hull phase (seemed to have higher constants) than
the others. Quickhull advances by using the furthest point
heuristic, and for extremely skewed distributions, the fur-
thest point does not always provide a balanced split. To
solve the problem and improve performance, we combined
a randomized version of Chan et al’s algorithm with the
quickhull algorithm. Running the quickhull for a few levels
makes quick progress when possible and prunes out a large
fraction of the points. Switching to the Chan et al algo-
rithm, guarantees balanced cuts which might be necessary
for point sets that did not yield to quickhull.

The end-game: Once the subproblems have no internal
points, we switch to the end-game strategy. The basic form
of the end-game is quicksort in flavor, since at each itera-
tion a random point is picked, which then gives a Delaunay
edge that partitions the border in two. As with quicksort,
the partition does not guarantee that the subproblems are
balanced. For the end-game we first need to decompose the
border into a set of simple cycles, since the borders can be
disjoint and have pinch points (see Figure 4). The border
can be split by joining the corners into a linked list and using
a list-ranking algorithm (we currently use pointer jumping).
After this step each subproblem is a simple cycle, repre-
sented by an ordered list of point indices.

T =0

Figure 4: One of the border subproblems, created by running the
basic algorithm until all the points are on the border

The core of the end-game is to find one new Delau-
nay edge, and use this edge to split the cycle into two new
simple cycles. We find this edge using an efficient O(n)
work O(1) time routine. We use a well known duality: the
set of Delaunay neighbors of a point ¢ is equal to the set
of points on the 2D convex hull after inverting the points
around ¢g. The inversion takes the following form: P =
{(p—aq)/llp—4qll | p € P}. Since we are looking for one
Delaunay neighbor only, rather than the full set, we do not
need to compute the convex hull, but rather just pick an
extremal point. For example, if ¢ belongs to a convex cor-
ner (pa,q,ps), we can draw a line between p, and py and
find the furthest point pg from that line, which will be on
the convex hull (See Figure 5). If pg is either pq or ps, then
then (pa, py) must be a new Delaunay edge, otherwise (g, pa)
is a new Delaunay edge. For concave corners we can proceed
similarly.

?We note that this work may seem to violate the lower bound of
O(nlogh) for finding a 2-d convex hull [14], given that our output
sizes h are typically on the order of O(y/n). This bound, however, is
a worst-case analysis based on artificial distributions.

(a) A border piece. The point highlighted, ¢, is the
one singled for expansion in the end-game.

(b) The same set of points after inversion around g.

Figure 5: Starting in (a) with a border subproblem, we look for
a new Delaunay edge of a point q. We do that by using inversion
around g to move to the dual problem of finding convex-hull edges,
as in (b), drawn in thick lines. The new Delaunay edge we pick is
to the point farthest from the line between the points preceding and
following g, shown in a thin line.

Comparison to Edelsbrunner and Shi Here we explain how
our algorithm differs from the original algorithm presented
by Edelsbrunner and Shi. We partition the points and bor-
der by finding a median, computing a 2D convex hull of a
simple projection of the points, and then using some simple
local operations for merging the borders. Since Edelsbrun-
ner and Shi are solving the more general problem of 3D
convex hull, they have to (1) find a 4-partition using 2 in-
tersecting lines in the XY plane, (2) use linear programming
to find the face of the convex-hull above the intersection, (3)
compute two convex hulls of projections of the points (4),
Merge the borders, and (5) use point location to determine
which points belong to which partition. Each of these steps
is more complex than ours.

We can get away with the simpler algorithm since in our
projection in 3D, all points lie on a surface of a parabola.
This allows us to easily find a face of the convex-hull (we just
use the median point), and to simply partition the points
using a median line. Furthermore, our partitions can all be
made parallel to the # or y axis, which allows us to keep
our points sorted along the cut for the convex-hull. With
this we can use a linear work algorithm for the convex hull,
as discussed. This is not possible with the Edelsbrunner
and Shi algorithms since in their algorithm it is necessary

to make cuts in arbitrary directions in order to get the 4-
partition. On the down side, our partition is not as good as
the 4-partition of Edelsbrunner and Shi since it only guar-
antees that the internal points are well partitioned (the bor-
der could be badly partitioned). This means we have to
switch algorithms when no internal points remain. Our ex-
periments show, however, that for all our distributions the
average size of components when switching is less than 10,
and the maximum size is rarely more than 50 (this assumes
we are alternating between z and y cuts).

We note that proving the sufficiency of the median test
for the divide phase was the insight that motivated our
choice of the projection-based algorithm for implementation.
This work was also motivated by the theoretical algorithms
presented in [17].

3 Experiments

To evaluate our algorithm, we implemented it and instru-
mented the implementation to measure several quantities.
The quantities we measure include the total work (floating-
point operations), the parallel depth, the number and sizes
of subproblems on each level, and the relative work of the
different subroutines. The total work is used to determine
how work-efficient the algorithm is compared with a good
sequential algorithm, and the ratio of work to parallel-depth
is used to estimate the parallelism available in the algorithm.
We use the other measures to better understand how the al-
gorithm is effected by the distributions, and how well our
heuristic for splitting works. We have also used the mea-
sures extensively to improve our algorithm and have been
able to improve our convex-hull by a factor of 3 over our
initial naive implementation.

We measured the different quantities over four data set
distributions, for sizes varying from 2!° to 2!7. For each dis-
tribution, each data set, and each size we ran five instances
of the distribution (seeded with different random numbers)
The results are presented using median values and intervals
over these experiments, unless otherwise stated. Our inter-
vals are defined by the outlying points (the minimum and
the maximum over the relevant measurements). We defined
a floating point operation as a floating point comparison or
arithmetic operation, though our instrumentation contains a
break down of the operations into the different classes. The
data files are available upon request if a different definition
of work is of interest. Although floating-point operations
certainly do not account for all costs in an algorithm they
have the important advantage of being machine independent
(at least for machines that implement the standard IEEE
float instructions) and seem to have a strong correlation to
running time [23].

3.1 Data Distributions

The design of the data set is always of great importance for
the experimentation and evaluation. Our goal is to test our
algorithm on distributions that are non uniform, and yet
representative of real-world problems. We therefore picked
distributions from different domains, such as the distribu-
tion of stars in a flat galaxy (Kuzmin) or point sets origi-
nating from the mesh generation domain, where Delaunay
triangulation plays an important role. Many of these distri-
butions fall under the class of Lipschitz distributions—that
is, the density function’s derivative is bounded by a con-
stant. This allows for arbitrary refinements of the triangles

(a) The Kuzmin distribution. (b) The line distribution.

(c¢) The normal distribution. (d) The uniform distribution.

Figure 6: Our test-suite of distributions for 1000 points. For the Kuzmin distribution, the figure shows a small region in the center of the
distribution (otherwise almost all points appear to be at one point at the center).

sizes, but allows for certain probabilistic restrictions on the
aspect ratios of the triangles and number of neighbors of
points. An analysis of the expected extremes for the uniform
distribution can be found in a paper by Bern, Eppstein and
Yao [2]. Lipschitz distributions can be interesting enough
to defy standard uniform distribution handling techniques
such as bucketing. Our distributions are shown in Figure 6
and summarized here.

e The Kuzmin distribution: this distribution is used
by astrophysicists to model the distribution of star
clusters in flat galaxy formations [25]. This is a radi-
ally symmetric distribution, whose density falls quickly
as 1 increases, providing us with a good example of
convergence to a point. The accumulative probability
function, as a function of the radius r is:

1

M(r)=1 e

e Line singularity: this distribution was defined by us
as an example of a distribution that has a convergence
area (points very densely distributed along a line seg-
ment) and yet the density function is Lipschitz. We
define this probability distribution using a constant
b > 0, and a transformation from the uniform dis-
tribution. Let 4 and v be two independent, uniform
random variables, then the transformation is:

b

=) =G

)

in our experiments, we set b = 0.001.

e Normal distribution: points (z, y) such that « and y
are independent samples from the normal distribution.
The normal distribution is also radially symmetric, but
its density at the center is much smaller than in the
Kuzmin distribution.

e Uniform distribution: points picked at random in
a unit square. It is important to include a uniform
distribution in our experiments for two reasons: to
contrast the behavior of the algorithm over the uni-
form distribution and the non-uniform distributions,
and also to form common ground for comparison with
other relevant work.

3.2 Experimental Results

Work: To estimate the work of our algorithm, we compare
the floating-point operation counts to Dwyer’s sequential al-
gorithm [10]. This algorithm is a variation of Guibas and
Stolfi’s divide-and-conquer algorithm, which is careful about
the cuts in the divide-and-conquer phase so that for quasi-
uniform distributions the expected run time is O(nloglog n),
and on the rest is at least as efficient as the original algo-
rithm. In a recent paper, Su and Drysdale [23] have experi-
mented with a variety of sequential Delaunay algorithm, and
Dwyer’s algorithm performed as well or better than all oth-
ers across a variety of distributions. It is therefore a good
target to compare to. We use the same code for Dwyer’s
algorithm as used in [23].

Figure 7 shows a comparison of float-counts of our algo-
rithm and Dwyer’s for all our distributions. The values are
median value for each size, the error intervals are too small
to be noticeable. For the uniform, normal and Kuzmin dis-
tributions our algorithm is about 50% work efficient relative
to Dwyer’s (does a factor of about 2 more work). For the
line distribution, Dwyer’s cuts bring less savings, and our
algorithm is close to 100% work efficient.

Our algorithm performs almost uniformly on the line,
normal and uniform distribution, but the Kuzmin distribu-
tion 1s slightly more expensive. To understand the varia-
tion among the distributions we studied the breakdown of
the work into the components of the algorithm—finding the
median, computing 2D convex hulls, intersecting borders,
and the end-game. Figure 8 shows the breakdown of float
counts for a representative example of size 2'7. These rep-
resent the total number of floating-point operations used
by the components across the full algorithm. As the figure
shows, the work for all but the convex-hull is approximately
the same across distributions (varies by less than 10%). For
the convex-hull, the Kuzmin data set requires about 25%
more work than the uniform distribution. Our experiments
show that this is because after the paraboloid lifting and pro-
jection, the convex-hull removes fewer points in early steps
and therefore requires more work. In an earlier version of
our implementation in which we used a simple quickhull in-
stead of the balanced algorithm [6], Kuzmin was 75% more
expensive than the others.

Depth: We now consider the depth (parallel time) of the
algorithm. The depth was determined by measuring the
total depth of the call tree (always taking the maximum

7

x 10
16 T
line - x
normal - +
14 . Dwyer ----- b
kuzmin - o 4

Parallel Algorithm ——

uniform - *
12

=
o

Float Counts
(o2

_©
-7+
6 ex
4 i
2 i
0 .
0 2 4 6 8 10 12 14
Problem Size x 10°
4 :
line - x
ask normal - + i
kuzmin - o
uniform - *
al i
25 1
5
8
g
2 Z’W 1
6
2
S15F E
lw i
0.5- —
0
0 2 4 6 8 10 12 14
Problem Size x 10
Figure 7: A comparison of the parallel algorithm vs. Dwyer’s

algorithm in terms of the number of float operation performed, for
varying distributions and problem sizes.

depth over parallel calls, and summing depth over sequential
calls). Figure 3.2 shows the depth as a function of problem
size for the four distributions. As can be seen, the depth is
also not strongly effected by the distribution. As some of
the constants in the depth calculation for the different parts
are estimated, the figure should be studied for the trends it
shows.

Effectiveness of our divide: To investigate the divide-and-
conquer behavior of the algorithm and how well our heuris-
tic for separating point sets works, we look at the size of
the maximal subproblem at each level (see Figure 10). A
parallel algorithm should quickly and geometrically reduce
the maximal problem size. As mentioned earlier, the theory
tells us that the number of internal points is decreased by a
factor of at least two every level, but provides no guarantees
for the number of points on the border of each subproblem.
Figure 10 shows the total size including the border. As can
be seen, the size goes down uniformly. The discontinuity
at around level twenty represents the move from the basic
algorithm to the end game strategy.

1.6

1.4r

. normal
uniform

line

kuzmin

End Game
1.2r- —

1ir | Border Intersect

0.8r —

0.61

0.4r 2d Convex Hull

|| Pick Median,

The four distributions over 131072 nodes

Figure 8: Float counts partitioned according to the different algo-
rithmic parts, for each distribution.

5000

line - x
4500 normal - + B
kuzmin - o

40001 yniform - * 7

3500

w

=}

S

S
T

2000

Depth Estimates
N
(4
o
o
T

=
o
o
=}

10001 b

10 15
Problem Size x10°

Figure 9: The depth of the algorithm for the different distributions
and problem sizes.

Another estimate of work: A different kind of work esti-
mate, which abstracts away from the 2D convex-hull costs,
can be obtained by looking at the sum of the problem sizes
at each level, see Figure 11. Finding the median cut and
intersecting the new border with old perform work linear in
this quantity.

This figure also provides a way to estimate the quality
of the cuts we are performing, since the points expanded
by each cut are duplicated, and thus counted twice in the
sum of problem sizes. For example, a simple median cut
of the line distribution taken in the wrong direction can
cause more points to be exposed as border points (and thus
duplicated) early on. The line distribution does indeed seem
to be slightly more expensive, but the agreement on the work
among the distributions is surprisingly good. The curves
corresponding to the end game work are even more similar,
though shifted from each other. The shift occurs because
each distribution reached termination of the basic algorithm
at a different iteration.

o
S}

line ---
kuzmin -
normal ——— §
uniform —

,_\
S
T

Basic Algorithm

,ﬁ
=N
T

End Game E

i
o,
T

Size of Maximal Sub-Problem on Log Scale

.
5 10 15 20 25 30 35 40
Iteration

Figure 10: The maximal piece size as a function of iteration for
our algorithm on a representative example of 2'7 points from each
distribution. The piece size includes both internal points and border
points. The graph shows that our separator and our endgame work
quite well for all the distributions.

x 10

line ——-

3.51 kuzmin -
normal ———
uniform ——

Basic Algorithm

151

Sum of Sub Problem Sizes
N
T

0.51

0 5 10 15 20 25 30 35 40
Iteration

Figure 11: Sum of the sizes of all the subproblems per iteration,
on a representative 217 points example from each distribution.

The algorithm as a coarse partitioner: Finally, we provide
support to the fact that the algorithm can be used very effi-
ciently to divide the problem into a number of subproblems,
and then switch to a sequential algorithm. To do that, we
present the accumulative float counts (work) per iteration on
217 points, versus the cost of the sequential algorithm, see
Figure 12. In general, at level ¢ the number of subproblems
is 2",

4 Concluding Remarks

In this paper we described the development of an experi-
mentally work efficient parallel Delaunay triangulation al-
gorithm. Owur starting point was a divide and conquer al-
gorithm, resembling Edelsbrunner and Shi’s [11] 3D convex-
hull approach specialized to the Delaunay triangulation case.
Our simpler algorithm relies on two subroutines: to compute
lower 2D convex-hull, and to compute the Delaunay trian-
gulation of simple edge cycles. Depending on our choices for

x10°

2
line ---
1.8 kuzmin - - q
normal ——-
L6F uniform —— 7
141
@
€
5
S12f
]
2 . N ST T =
Lok Basic Algorithm ,7 End Game q
(3
2 W,
] .7
>0.8[7 b
2 7,
= [A e e
(s}
0.6 27 |
- ~
e
0.4f L2 4
s
.
&
0.2k /, 4
P
77
0 I I I I I I I
0 5 10 15 20 25 30 35 40

Iteration

Figure 12: The cumulative work in float counts per iteration, for a
representative 217 points example from each distribution. The idea
is to see how much work is it to divide the problem into 2° problems
in level 7, versus the median cost of the sequential algorithm.

these two subroutines, we can obtain either an asymptoty-
cally optimal algorithm, or an experimentally work efficent
algorithm. Investigating the trade-offs between the two is
the theme of this research.

The main results are:

e Our experimentation demonstrates that the constants
of our algorithm are small enough for the measured
work to be competitive with the best sequential algo-
rithm we know of. In particular, depending on the
point distribution we range from being .4 to .9 work-
efficient relative to Dwyer’s algorithm.

o We provide a variant of our algorithm which is of
O(nlog n) work. This is contrast with the upper bound
of O(nlog® n), given by the Edelsbrunner and Shi [11]
for their algorithm applied to the Delaunay triangula-
tion case.

e Our algorithm is highly parallel. The ratio of work to
parallel time is approximately 10* for 10° points. For a
machine with a modest number of processors (eg. 100),
this should give plenty of options of how to parallelize
the algorithm to reduce communication.

e Our algorithm is well suited for partitioning a data
set into a set of subproblems that each can then be
solved independently, since it is a divide and conquer
algorithm with a trivial conquer phase, consisting of
simply gathering the solutions of the smaller subprob-
lems, much like quicksort. We show partitioning into a
small set of subproblems does not require much work,
and our algorithm used as a coarse partitioner would
be close to 100%-efficient.

Our experiments and measurements showed that the
algorithm performs almost equally well across a set of very
different and highly non-uniform distributions. The vari-
ations that were observed across the distributions can be
attributed to the performance of the 2D convex-hull sub-
routine used. This provides strong motivation for a study
of different parallel 2D convex-hull implementations.

5 Acknowledgments

This research was sponsored in part by the Wright Labora-
tory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330. It was also
supported in part by NSF, under Grant numbers CCR-
9258525 (Blelloch) and CCR-9505472 (Miller and Talmor).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of Wright Laboratory or the U. S.
Government.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and
C. Yap. Parallel computational geometry. Algorithmica,
3(3):293-327, 1988.

[2] Marshall Bern, David Eppstein, and Frances Yao. The ex-
pected extremes in a Delaunay triangulation. Inter. J. of
Computational Geometry and Appl., 1(1):79-91, 1991.

[3] G. Blelloch, G.L. Miller, and D. Talmor. Parallel Delaunay
triangulation implementation. In MST workshop on Compu-
tational geometry, Cornell, Oct 1994.

[4] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hard-
wick, Jay Sipelstein, and Marco Zagha. Implementation of a
portable nested data-parallel language. Journal of Parallel
and Distributed Computing, 21(1):4-14, April 1994.

[5] Guy E. Blelloch and James J. Little. Parallel solutions to ge-
ometric problems in the scan model of computation. Journal
of Computer and System Sciences, 48(1):90-115, February
1994.

[6] Timothy M. Y. Chan, Jack Snoeyink, and Chee-Keng Yap.
Output-sensitive construction of polytopes in four dimen-
sions and clipped voronoi diagrams in three. In Sizth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages
282-291. ACM-SIAM, 1995.

[7] A. Chow. Parallel Algorithms for Computational Geometry.
PhD thesis, University of Illinois, 1980.

[8] R. Cole, M. T. Goodrich, and C. O’Dunlaing. Merging free
trees in parallel for efficient voronoi diagram construction.
In International Colloguium on Automata, Languages and
Programming, pages 32—45, July 1990.

[9] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar.
A randomized parallel 3d convex hull algorithm for coarse
grained multicomputers. In Proc. ACM Sympos. Parallel
Algorithms Architectures., pages 27-33, 1995.

[10] R.A. Dwyer. A simple divide-and-conquer algorithm for con-
structing delaunay triangulations in O(nloglogn) expected
time. In 2nd Symposium on Computational Geometry, pages
276—284, 1986.

Herbert Edelsbrunner and Weiping Shi. An O(nlog? k) time
algorithm for the three-dimensionaal convex hull problem.
SIAM J. Computing, 20:259-277,1991.

[12] M. Ghouse and M. T. Goodrich. In-place techniques for
parallel convex hull algorithms. In Proc. 3rd ACM Sympos.
Parallel Algorithms Architect., pages 192—203, 1991.

[13] L. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of voronoi dia-
grams. ACM Transactions on Graphics, 4(2):74-123, 1985.

[14] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex
hull algorithm? SIAM J. Comput., 15:287-299, 1986.

Richard E. Ladner and Michael J. Fischer. Parallel prefix
computation. Journal of the Association for Computing Ma-
chinery, 27(4):831-838, October 1980.

[11

[15

[16] M. L. Merriam. Parallel implementation of an algorithm
for delaunay triangulation. In First European Computa-
tional Flutd Dynamics Conference, pages 907-912, Septem-
ber 1992.

[17] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel
Walkington. A Delaunay based numerical method for three
dimensions: generation, formulation and partition. In Pro-
ceedings of the 27th Annual ACM Symposium on Theory of
Computing, 1995.

[18] Mark H. Overmars and Jan Van Leeuwen. Maintenance of
configurationsin the plane. Journal of Computer and System
Sciences, 23:166—204, 1981.

[19] Franco P. Preparata and Michael Jan Shamos. Computa-
tional Geometry An Introduction. Texts and Monographs in
Computer Science. Springer-Verlag, 1985.

[20] J.Reif and S. Sen. Polling: A new randomized sampling tech-
nique for computational geometry. In Proceedings of the 21th
Annual ACM Symposium on Theory of Computing, 1989.

[21] M.I. Shamos and D. Hoey. Closest-point problems. In 16th
Annual Symposium on Foundations of Computer Science,
pages 151-162. IEEE, Oct 1975.

[22

Peter Su. Efficient parallel algorithms for closest point prob-
lems. PhD thesis, Dartmouth College, 1994. PCS-TR94-238.

[23] Peter Su and Robert L. Drysdale. A comparison of sequen-
tial delaunay triangulation algorithms. In Proceedings of the
eleventh Annual Symposium on Computational Geometry,
pages 61-70, Vancouver, June 1995. ACM.

[24] Y. Ansel Teng, Francis Sullivan, Isabel Beichl, and Enrico
Puppo. A data-parallel algorithm for three-dimensional De-
launay triangulation and its implementation. In SuperCom-
puting 93, pages 112-121. ACM, 1993.

[25] A. Toomre. On the distribution of matter within highly flat-
tened galaxies. The astrophysical journal, 138:385-392, 1963.

[26] B. C. Vemuri, R. Varadarajan, and N. Mayya. An efficient
expected time parallel algorithm for Voronoi construction. In
Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 392—400, June 1992.

