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ello{ and Shang-Hua TengkAbstra
tA sliver is a tetrahedron whose four verti
es lie 
lose toa plane and whose orthogonal proje
tion to that planeis a 
onvex quadrilateral with no short edge. Slivers arenotoriously 
ommon in 3-dimensional Delaunay trian-gulations even for well-spa
ed point sets. We show thatif the Delaunay triangulation has the ratio property in-trodu
ed in [15℄ then there is an assignment of weightsso the weighted Delaunay triangulation 
ontains no sliv-ers. We also give an algorithm to 
ompute su
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sively 
onsider meshes made up of tetrahedral 
ells. Weuse mathemati
al terminology whenever reasonable andde�ne a tetrahedral mesh as a simpli
ial 
omplex in R3 .The fa
e-to-fa
e property of the mesh is impli
it be
ausea simpli
ial 
omplex requires that any two simpli
es areeither disjoint or meet in a 
ommon triangle, edge, orvertex. We also require that every triangle, edge, andvertex in the mesh is fa
e of a tetrahedron in the mesh.A spatial domain is typi
ally given in terms of itsboundary 
onstru
ted using a 
omputer-aided designsystem. The tetrahedral mesh generation problem as-sumes the boundary is pie
ewise linear and asks for the
onstru
tion of a tetrahedral mesh that 
overs the spa-tial domain de�ned by that boundary. The size andshape of the triangles and tetrahedra are important be-
ause it relates to the 
onvergen
e and stability of nu-meri
al methods su
h as the �nite element analysis, seeStrang and Fix [20℄.Probably the most 
ommon tetrahedral meshes areDelaunay triangulations, whi
h are named after BorisDelaunay [7℄ and are also known as duals to Voronoidiagrams, whi
h are named after Georges Voronoi [22℄.They are supported by fast algorithms both for 
on-stru
tion and for maintenan
e under lo
al 
hanges. Inthis paper we make essential use of a somewhat larger
lass of tetrahedral meshes referred to as weighted De-launay triangulations. This 
lass has been studied ex-tensively in the geometry literature where its meshes areknown as regular triangulations [3℄ and also as 
oherenttriangulations [12℄. The fast algorithms for Delaunaytriangulations extend with minor modi�
ation to thelarger 
lass of weighted Delaunay triangulations [9℄.Previous work. The generation of meshes with well-shaped triangles in R2 is reasonably well understood.Bern, Eppstein and Gilbert prove that quad-tree de
om-positions 
an be used to generate meshes free of badlyshaped triangles that adapt to the lo
al density of in-put spe
i�
ations [2℄. Ruppert proves the same for hisversion of the Delaunay re�nement method [18℄. Exper-imental studies suggest the latter method adapts better



to input spe
i�
ations and outperforms the quad-treeapproa
h with smaller meshes and smoother variationof edge length.The generation of meshes of well-shaped tetrahedrain R3 seems 
onsiderably more diÆ
ult. The extensionof the quad-tree and the Delaunay re�nement methodsto R3 both en
ounter signi�
ant diÆ
ulties. Mit
helland Vavasis [16℄ use o
t-trees to tetrahedrize a polyhe-dral volume without bad quality tetrahedra. Dey, Bajajand Sugihara [8℄ and Shew
hu
k [19℄ extend the Delau-nay re�nement algorithm to R3 but fail to address theproblem of slivers.The disturbing presen
e of slivers in 3-dimensionalDelaunay triangulations has been re
ognized at leastsin
e the experimental study of Cavendish, Field andFrey [4℄. Talmor [21℄ notes that even well-spa
ed ver-ti
es do not prevent slivers. Chew [5℄ sket
hes an al-gorithm that eliminates slivers by adding points in arandomized manner.Results. The main result of this paper is a methodthat eliminates slivers without adding any new pointand without moving any point of the given set. In-tuitively, the method applies physi
al pressure andsqueezes the Delaunay triangulation. Most slivers giveway to the pressure and disappear. The remaining sliv-ers migrate to the boundary where they 
an be peeledo�. Unfortunately, the boundary may 
hange as a resultof the treatment, and we have to resort to boundary en-for
ement heuristi
s des
ribed in the mesh generationliterature. We suppress the distra
tion of boundary ef-fe
ts by 
onsidering periodi
 point sets S 2 R3 . In otherwords, we 
hoose a �nite set S0 � [0; 1)3 and dupli
ateit within ea
h integer unit 
ube: S = S0+Z3, where Z3is the three-dimensional integer grid. The sliver elimina-tion method assumes the points are distributed so ea
htetrahedron in the Delaunay triangulation has the ra-tio property introdu
ed by Miller et al. [15℄: the radiusof the 
ir
umsphere is bounded from above by a 
on-stant times the length of the shortest edge. If ne
essarythe ratio property 
an be generated by adding points at
ir
um
enters of violating Delaunay tetrahedra.We show that under the assumption of the ratio prop-erty we 
an assign small real weights to the points so theweighted Delaunay triangulation 
ontains no sliver. Werefer to this result as the Sliver Theorem. Another wayto think of the result is that the ratio property for theDelaunay triangulation implies the existen
e of a sliver-free triangulation of the same set of points. Sin
e theratio property prevents all other types of undesirableelements, our result implies a triangulation free of anybadly shaped tetrahedron. This 
omplements a result ofTalmor [21℄ that a triangulation without badly shapedtetrahedron implies the ratio property for the Delaunaytriangulation of the same set of points. In other words,

for a periodi
 set S � R3 the ratio property for its De-launay triangulation is equivalent to the existen
e of atriangulation without any badly shaped tetrahedron.Sin
e the sliver-free triangulation is a weighted De-launay triangulation it 
an be obtained from the un-weighted Delaunay triangulation by a sequen
e of 
ips.The algorithm in this paper is thus similar to but alsodi�erent from Joe's heuristi
, whi
h improves tetrahe-dral shape by 
ipping [13℄. Joe's heuristi
 is greedy andhalts the improvement of a vertex neighborhood at alo
al optimum. The algorithm in this paper improvesa vertex neighborhood by following a more global opti-mization strategy.Outline. Se
tion 2 dis
usses the shape of trianglesand tetrahedra. Se
tion 3 introdu
es Delaunay trian-gulations for unweighted and for weighted points. Se
-tions 4 and 5 prove geometri
 results needed in the proofof the Sliver Theorem, whi
h is presented in Se
tion 6.Se
tion 7 turns this theorem into a sliver removing al-gorithm. Se
tion 8 
on
ludes the paper.2 Tetrahedral ShapeA triangle or tetrahedron is badly shaped if it has atleast one small angle. Some badly shaped tetrahedrahave badly shaped bounding triangles, but there arealso tetrahedra with small angles none of whose fourtriangles is badly shaped. This se
tion explains whatexa
tly we mean by good and bad shape and how wetalk about it.Shape measures. The mesh generation literature isri
h in measures of simplex quality. A 
ommon termis the aspe
t ratio, whi
h is often but not always de-�ned as the radius of the smallest 
ontaining sphereover the radius of the largest 
ontained sphere. Re-lated is the measure of degenera
y de�ned as the lengthof the longest edge over the radius of the largest 
on-tained sphere. The latter is motivated by the �nite el-ement 
onvergen
e analysis of Ciarlet [6℄. Liu and Joe[14℄ 
onsider several other measures for tetrahedra andstudy how they relate to ea
h other. In this paper weuse distan
e, radius, angle and volume to express thequality of triangles and tetrahedra.To simplify dis
ussions we use fuzzy language for sizedes
riptors. In ea
h 
ase we suppose the existen
e of asmall 
onstant, " > 0, whi
h 
an be used to make thestatement pre
ise. For example, an angle ' is small if' < " and large if ' > ��". An aspe
t ratio is large if itex
eeds 1=". We also use fuzzy des
riptors in a relativesense. For example, the edge pq of a triangle pqr is shortif kp� qk < " � maxfkp� rk; kq � rkg. Similar relative
onventions are adopted for points that are 
lose to ea
hother or to a line or plane, et
.2



Badly shaped triangles. A triangle with large as-pe
t ratio has at least one small angle and all threeverti
es 
lose to a line. There are two types: a daggerwith one short edge and a blade with no short edge, seeFigure 1.
bladedaggerFigure 1: The dagger has one short edge and at least onesmall angle. The blade has no short edge and thereforeone large and two small angles.Badly shaped tetrahedra. Among the tetrahedrawith large aspe
t ratio we distinguish the ones with atleast three badly shaped triangles from the others. Atetrahedron of the former type has four verti
es 
loseto a line. The points 
an be 
lose or far in the dire
-tion along this line, and we distinguish the 
ases 3-1(spire), 1-2-1 (spear), 1-1-1-1 (spindle), 2-1-1 (spike),2-2 (splinter), see Figure 2. The spire has a 
y
le of

splinterspire spindlespear spikeFigure 2: From left to right the number of daggers amongthe four triangles is at least three for the spire, two for thespear, zero for the spindle, two for the spike, and four forthe splinter.three short edges and therefore a 
y
le of three daggersamong its four triangles. The splinter has two oppositeshort edges and therefore four daggers, two in ea
h di-re
tion. The spear and the spike both have one shortedge and therefore two daggers and two blades as trian-gles. The spindle has no short edge and therefore fourblades as triangles.A tetrahedron whose verti
es are not 
lose to a linehas a large aspe
t ratio if its verti
es are 
lose to a plane.We distinguish the 
ases where two points are 
lose toea
h other (wedge), where three points are 
lose to a line(spade), where the orthogonal proje
tion to the planeis a triangle with a point inside (
ap), and where theproje
tion is a quadrilateral (sliver), see Figure 3.

wedge spade slivercapFigure 3: From left to right the number of long edgeswith small dihedral angle is one for the wedge, two for thespade, three for the 
ap, and four for the sliver.A similar but di�erent 
lassi�
ation of badly shapedtetrahedra 
an be found in Bern et. al [1℄. Their 
lassi-�
ation is based on dihedral angles while ours primarily
onsiders fa
e angles.Radius-edge ratio. Let pqrs be a tetrahedron, Xthe radius of its 
ir
umsphere, and L the length of itsshortest edge, see Figure 4. The tetrahedron pqrs hasRatio Property [%0℄ for a 
onstant %0 if X=L � %0. If atetrahedron has Ratio Property [%0℄ then so do all of itstriangles. A triangulation has Ratio Property [%0℄ if allits tetrahedra have it.
L

X

Figure 4: The verti
es of the tetrahedron lie on the 
ir-
umsphere with radius X . The length of the shortest edgeis L.The ratio attains its minimum for the regular tetra-hedron where X=L = p6=4 � 0:612. Spa
e 
annotbe tiled with 
opies of the regular tetrahedron aloneso triangulations require a larger value of %0. RatioProperty [%0℄ eliminates all badly shaped triangles andall badly shaped tetrahedra other than the slivers. If%0 < 1=p2 � 0:707 then all fa
e angles are a
ute sothat even slivers 
annot exist. However, the ratio prop-erty for su
h a small 
onstant is hard to obtain and weneed a di�erent method to eliminate slivers.3 Delaunay TriangulationsThe proof of the Sliver Theorem uses weighted Delaunaytriangulations in an essential manner. This se
tion in-trodu
es Delaunay triangulations, weighted points, andweighted Delaunay triangulations.3



Delaunay triangulations. Let S be a dis
rete set ofpoints in R3 . We permit in�nite sets but they mustbe lo
ally �nite. For simpli
ity assume that S is ingeneral position. In parti
ular, for every four points inS there is a sphere that passes through them and forany �ve points there is no su
h sphere. A sphere isempty if it en
loses no point of S, or equivalently, if allpoints lie either on or outside the sphere. The 
onvexhull of points p; q; r; s 2 S is a tetrahedron, denoted aspqrs, and a Delaunay tetrahedron if the 
ir
umsphereis empty. The Delaunay triangulation of S, denotedas DelS, is the 3-
omplex 
onsisting of all Delaunaytetrahedra and their triangles, edges, and verti
es.Delaunay triangulations are popular meshes for sev-eral reasons. If S is in general position then DelS isunique and 
an be eÆ
iently 
onstru
ted [4, 9℄. The
hanges 
aused by deleting or inserting a point are typ-i
ally lo
al. DelS 
ontains all edges of a minimum span-ning tree, and for ea
h p 2 S it 
ontains the edge to the
losest point. Delaunay triangulations are optimal withrespe
t to smallest 
ontaining spheres of tetrahedra, see[17℄.Given a Delaunay triangulation we 
an generate a De-launay triangulation with Ratio Property [%0℄ by addingpoints at 
ir
um
enters of violating tetrahedra, see e.g.[19℄. If %0 � 1 then the minimum distan
e between anew point and any of the old points is at least the mini-mum distan
e between any two of the old points. In theperiodi
 interpretation of R3 we have a �nite amountof volume, whi
h permits only �nitely many points ifthe interpoint distan
es are bounded by a �xed posi-tive lower bound. The method 
an therefore not addin�nitely many points and halts after a �nite amount oftime.Weighted points and distan
e. A weighted point,p̂ = (p; P 2) 2 R3 � R, is interpreted as a sphere or ballwith 
enter p and radius P , see Figure 5. The weight ofp̂ is P 2 2 R, and if P 2 < 0 then the radius is imaginary.The weighted distan
e between p̂ and ẑ = (z; Z2) isde�ned askp̂� ẑk = qkp� zk2 � P 2 � Z2:The weighted points p̂ and ẑ are orthogonal if theweighted distan
e vanishes: p̂ ? ẑ if kp̂� ẑk = 0. Anyfour spheres in R3 have a 
ommon orthogonal sphere,
alled the orthosphere. For example, if the four spheresare points then the orthosphere is the unique 
ir
um-sphere of the tetrahedron they de�ne. Unless the four
enters lie in a 
ommon plane, the orthosphere is uniqueand has �nite radius. The 
orresponding observationone dimension lower is that any three 
ir
les in R2 havea 
ommon orthogonal 
ir
le, 
alled the ortho
ir
le, seeFigure 5. Unless the three 
enters are 
ollinear, the or-tho
ir
le has �nite radius.

z

q

r

p

Figure 5: The dotted 
ir
le is orthogonal to the three solid
ir
les. Sin
e the radii of the solid 
ir
les are positive, their
enters all lie outside the dotted 
ir
le.Weighted Delaunay triangulations. A weightedgeneralization of Delaunay triangulations is obtained bysubstituting spheres for points and orthospheres for 
ir-
umspheres. To be spe
i�
, let w : S ! R be a weightassignment and 
onsider the de�ned set of spheres:Ŝ = f(p; P 2) j p 2 S; P 2 = w(p)g:Assume Ŝ is in general position, whi
h among otherthings implies that every four spheres have a 
ommonorthogonal sphere and no �ve spheres have one. Asphere ẑ is empty if kẑ � p̂k � 0 for every p̂ 2 Ŝ.The 
onvex hull of four sphere 
enters is a tetrahedronand a weighted Delaunay tetrahedron if the 
ommon or-thosphere is empty. The weighted Delaunay triangula-tion of Ŝ, denoted as Del Ŝ, is the 3-
omplex 
onsist-ing of all weighted Delaunay tetrahedra and their trian-gles, edges, and verti
es. If all radii are zero then theweighted Delaunay triangulation of the spheres is thesame as the Delaunay triangulation of the 
enters.The 
enter p of a sphere p̂ 2 Ŝ may or may not belongto the weighted Delaunay triangulation. Spe
i�
ally, pis a vertex in Del Ŝ i� there is a sphere not ne
essarilyin Ŝ that is orthogonal to p̂ and has positive weighteddistan
e to all other spheres in Ŝ. In this paper we
hoose weights in a way that guarantees the existen
eof su
h spheres. It follows that the set of 
enters is alsothe set of verti
es.Cross-se
tions. Orthogonality is inherited fromspheres to 
ir
les if the sli
ing plane passes through atleast one of the two 
enters. This allows for the possi-bility that the plane misses the se
ond sphere and theinterse
tion is a 
ir
le with imaginary radius.Claim 1. If (p; P 2) ? (z; Z2) then any plane through pinterse
ts the two spheres in two orthogonal 
ir
les.Proof. Let (u; U2) and (v; V 2) be the 
ir
les of inter-se
tion between the plane and the two spheres. We have4



u = p, U2 = P 2 and V 2 = Z2 � kz � vk2. Thenku� vk2 = ku� zk2 � kz � vk2= P 2 + Z2 � kz � vk2= U2 + V 2;whi
h shows that (u; U2) and (v; V 2) are orthogonal.Claim 1 
an be extended to dimensions di�erent from3. Consider for example the two-dimensional 
ase. If(p; P 2) and (z; Z2) are two orthogonal 
ir
les then anyline passing through p interse
ts them in two orthogonalintervals. Given two intervals there is a unique thirdinterval orthogonal to both. It follows that all 
ir
lesthat are orthogonal to two 
ir
les (p; P 2) and (q;Q2)interse
t the edge from p to q in the same two points.4 Linear RelationsThis se
tion proves a number of relations between dis-tan
es, weighted distan
es, radii, and areas needed forthe proof of the Sliver Theorem in Se
tion 6. We beginby introdu
ing notation that simpli�es 
omputationsand dis
ussions.Relation. Two quantities X and Y are said to be lin-early related, denoted as X � Y , if there are 
onstants
; C > 0 with 
 �X � Y � C �X . Note that � satis�esX � Y =) Y � X;(X � Y ) ^ (Y � Z) =) X � Z;but it is not an equivalen
e relation be
ause the 
on-stants deteriorate in the repeated appli
ation of these
ond rule: if 
0; C0 are the 
onstant for Y � Z then
 � 
0; C � C0 are the 
onstants for X � Z. The rela-tion 
ombines well with arithmeti
 operations on posi-tive quantities:(X � Y ) ^ (U � V ) =) 8<: X + U � Y + V ;X � U � Y � V ;X=U � Y=V :If 
00; C00 are the 
onstants for U � V then minf
; 
00g,maxfC;C00g are the 
onstants for the sums, 
 � 
00; C �C00 for the produ
ts, and 
=C00; C=
00 for the ratios. Inthis paper we obtain new linear relations from 
onstantlength 
hains of old linear relations.Weight property. We suppose that the radii of thespheres are not large relative to the distan
es betweentheir 
enters. To make this pre
ise we say a pair ofspheres p̂ = (p; P 2), q̂ = (q;Q2) has Weight Property[!0℄ for a 
onstant !0 2 (0; 1=2) if 0 � P;Q � !0kp� qk.A set of spheres has Weight Property [!0℄ if every pair

has it. The upper bound on the radii implies the spheresare pairwise disjoint. It also implies that the weighteddistan
e between two spheres is not very di�erent fromthe Eu
lidean distan
e between the two 
enters:Claim 2. If a pair of spheres p̂; q̂ has Weight Property[!0℄ then kp� qk � kp̂� q̂k.Proof. We establish 
2 � kp� qk � kp̂� q̂k � C2 �kp� qk for 
onstants 
2 = p1� 2!02 and C2 = 1.By de�nition we have kp̂� q̂k2 = kp� qk2 � P 2 � Q2and P 2; Q2 � 0 implies kp̂� q̂k � kp� qk. We get thelower bound from P 2; Q2 � !02kp� qk2, whi
h impliesp1� 2!02 � kp� qk � kp̂� q̂k.Area and radius. Let pqr be a triangle and X theradius of its 
ir
um
ir
le. X is no smaller than half thelength of the longest edge, and if pqr has Ratio Property[%0℄ then X is also not mu
h larger than that. Thisimplies that X2 is not mu
h di�erent from the area ofthe triangle, whi
h we denoted as jpqrj:Claim 3. If pqr has Ratio Property [%0℄ thenX2 � jpqrj.Proof. We establish 
3 � X2 � jpqrj � C3 � X2 with
3 = 1=4%03 and C3 = �. The upper bound is 
learbe
ause pqr is en
losed by the 
ir
um
ir
le with radiusX . For the lower bound we express the area in terms ofedge lengths and radius,jpqrj = kp� qk � kq � rk � kr � pk4X :To verify this formula let  be the angle at q and observethat jpqrj = kp� qk � kq � rk � sin 2 . The angle at the
ir
um
enter is \pxr = 2 , and hen
e kr � pk = 2X �sin , whi
h implies the area formula. Ea
h of the threeedges has length at least X=%0 as implied by the RatioProperty [%0℄. Hen
ejpqrj � X34%03 �X ;whi
h implies the 
laimed lower bound.Radius and radius. Ratio Property [%0℄ and WeightProperty [!0℄ together imply that for a triangle the radiiof the 
ir
um
ir
le and the ortho
ir
le are not very dif-ferent. Let p̂; q̂; r̂ be three spheres that de�ne an ortho-
ir
le with radius Z and whose 
enters de�ne a 
ir
um-
ir
le with radius X .Claim 4. If p̂; q̂; r̂ have Weight Property [!0℄ and pqrhas Ratio Property [%0℄ then X � Z.5



Proof. We establish 
4 � X � Z � C4 � X with
4 = p1� 4!02 and C4 = 1 + 2%0!02. The minimumweighted distan
e of the 
ir
um
enter, x, from the threeweighted points is a lower bound for the radius of theortho
ir
le. To bound that minimum note that 2X is anupper bound on the length of ea
h edge and !02(2X)2is an upper bound on the weight of ea
h point:Z2 � minfkx� p̂k2; kx� q̂k2; kx� r̂k2g� X2 � 4!02X2:To obtain an upper bound 
onsider the perpendi
u-lar bise
tors k and ` of edges pq and qr, whi
h inter-se
t at x, see Figure 6. Let k̂ be the line of points
ϕ

zx
q 2

p

r
l

k
k

lFigure 6: To avoid a tiny parallelogram we draw the stripswider and the 
ir
le around q larger than allowed by WeightProperty [!0℄.with equal weighted distan
e from p̂ and q̂, and let ^̀be the same line for q̂ and r̂. The width of the stripbetween k and k̂ is a maximum only if the weightsof p̂ and q̂ are as di�erent as possible, for exampleP 2 = 0 and Q2 = !02kp� qk2. In this 
ase the widthis W = !02kp� qk=2 � !02X . The same upper boundholds for the width of the strip between ` and ^̀. The
enters x of the 
ir
um
ir
le and z of the ortho
ir
le arediagonally opposite verti
es of the parallelogram formedby k; k̂; `; ^̀, see Figure 6. Let the angle at x inside theparallelogram be 2'. The edge xz 
uts this angle intotwo and we assume that the angle between xz and k in-side the parallelogram is � � '. The distan
e betweenthe two 
enters is thereforekx� zk = Wsin � � !02 �Xsin' :By Ratio Property [%0℄, we have kp� qk; kq � rk �X=%0. Hen
e X � sin' � X=2%0 and therefore sin' �1=2%0. The radius of the ortho
ir
le is bounded fromabove by the radius of the 
ir
um
ir
le plus the distan
ebetween the 
enters:Z � X + kx� zk � X + 2%0!02 �X;whi
h is the upper bound 
laimed at the beginning ofthe proof.

Fortunately, Claim 4 does not extend to tetrahedrawhere it fails for slivers with four almost 
o
ir
ular ver-ti
es.Parametrizing slivers. Let pqrs be a tetrahedron,V the volume, and L the length of the shortest edge.We de�ne � = �(pqrs) = V=L3 and use it as a measureof quality. Assuming Ratio Property [%0℄ we 
all pqrsa sliver if � is less than some threshold �0 > 0 to bespe
i�ed later. It is useful to relate this measure with adistan
e-radius ratio. Let D be the Eu
lidean distan
eof point p from the plane passing through qrs and let Ybe the radius of the 
ir
um
ir
le of qrs, see Figure 7.
s

r

q p

D
YFigure 7: D=Y 
an be de�ned for ea
h ordering of thefour verti
es, but all four ratios are linearly related to �.Claim 5. If a tetrahedron pqrs has Ratio Property [%0℄then D=Y � �.Proof. We establish 
5 �D=Y � � � C5 �D=Y for 
5 =
3=24 and C5 = C3%03=3. The triangle qrs has RatioProperty [%0℄, so Y � L with 
onstants 
 = 1=%0 andC = 2. By Claim 3 we have Y 2 � jqrsj with 
onstants
3; C3. The volume of the tetrahedron is jqrsj � D=3.Therefore DY = Y 2 �DY 3 � jqrsj �D3 � L3 = �:Following the rules for 
ombining linear relations we get
onstants 
5 = 
3=3C3 and C5 = C3=3
3.5 Length and Degree BoundsThis se
tion re
alls a result of Talmor [21℄ whi
h isthen used to extend results of Miller et al. [15℄ fromunweighted to weighted Delaunay triangulations.Weighted ratio property. Let S be a periodi
 setof points in R3 . In other words, S = S0 + Z3 whereS0 � [0; 1)3 is �nite and Z3 is the three-dimensionalinteger grid. For a point x 2 R3 letN(x) be the distan
eto the se
ond 
losest point in S. If x 2 S then x itselfis 
losest and N(x) is the distan
e to the 
losest pointin S � fxg. The following result is Theorem 3.6.2 inTalmor's thesis [21℄:6



Claim 6. Assume DelS has Ratio Property [%0℄. Thenthere is a 
onstant 
T depending only on %0 su
hthat N(z) � 
T � N(x) for every empty sphere(z; Z2) that passes through x.We extra
ted 
T = 64 � %02M
 from Talmor's thesis,where M = maxf2%0= sin � ; 4%02g, 
 = 2=(1� 
os �4 ),� = (ar
sin 12%0 )=2. We use Claim 6 to derive a propertyfor weighted Delaunay triangulations reminis
ent of theratio property for Delaunay triangulations. A periodi
sphere set is de�ned by a weight assignment w : S0 ! R.As usual ẑ = (z; Z2) denotes the orthosphere and L thelength of the shortest edge of a tetrahedron.Claim 7. Assume DelS has Ratio Property [%0℄ andŜ has Weight Property [!0℄. Then there exists a
onstant %1 depending only on %0 and !0 su
h thatZ=L � %1 for every tetrahedron in Del Ŝ.Proof. We establish the bound for the 
onstant %1 =(1 + !0)
T . Let ẑ and L be orthosphere and shortestedge length for a tetrahedron pqrs 2 Del Ŝ. Assume L =kp� qk, whi
h implies N(p) � L. Be
ause all points ofS lie on or outside ẑ we haveN(z) � Z. Let x be a pointon the interse
tion of the two orthogonal spheres p̂ andẑ. By Weight Property [!0℄ we have kx� pk � !0 �N(p) � !0 � L. Therefore N(x) � kx� qk � kx� pk+kp� qk � (1 + !0) � L. Claim 6 impliesZ � N(z) � N(x) � 
T � (1 + !0)
T � L;as stated.Edge-length variation. For a graph G with verti
esand straight edges in R3 we are interested in 
omparingthe length of edges. Spe
i�
ally, we de�ne the lengthvariation at a vertex p 2 G as�(p;G) = maxfkp� qk=kp� ukg;where the maximum is taken over all edges pq; pu inG. Our �rst result shows that triangles in the weightedDelaunay triangulation inherit a 
onstant upper boundon the variation of their edge lengths from the Delaunaytriangulation.Claim 8. If Ŝ has Weight Property [!0℄, DelS hasRatio Property [%0℄, and pqr 2 Del Ŝ thenkp� qk � kp� rk.Proof. We establish 
8 � kp� qk � kp� rk � C8 �kp� qk for 
8 = p1� 4!02=2%1 and C8 = 1=
8. Thelength of an edge is at most twi
e the radius of the 
ir-
um
ir
le, X , and by Claim 4 that radius is linearlyrelated to the radius of the ortho
ir
le:kp� qk � 2X � 2Zp1� 4!02 :

By Claim 7 the length of pq is kp� qk � Z=%1. Thesame bounds hold for kp� rk whi
h implies the 
laimedlinear relation.Edges forming small angles. If two edges pq andpu share a 
ommon endpoint we denote the angle atthat endpoint as \qpu. All angles between edges aremeasured between 0 and �. We show that a small an-gle implies about equal length, and this is even true ifthe two edges arise in two di�erent weighted Delaunaytriangulations:Claim 9. Assume DelS has Ratio Property [%0℄, Ŝ1and Ŝ2 have Weight Property [!0℄, and pq 2 Del Ŝ1,pu 2 Del Ŝ2. Then there is a 
onstant �0 > 0 su
hthat \qpu < �0 implies kp� qk � kp� uk.Proof. We establish the impli
ation for the 
onstant�0 = 12 � ar
tan %12 �p%12 + !02 � 1=4p!02 + 1=4and 
9 � kp� qk � kp� uk � C9 � kp� qk for 
9 =(1 � !0)=2 and C9 = 1=
9. Let ẑ = (z; Z2) be theorthosphere of a tetrahedron that 
ontains pq as one ofits edges. We 
ut ẑ with the plane that passes throughp; q; u and let ŷ = (y; Y 2) be the 
ir
les of interse
tion,see Figure 8. Let k be the line passing through p and
a
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θ
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u )(θ

2η
0Figure 8: The dotted 
ir
le is orthogonal to the two solidones. Edges with small angle � 
annot be short.tangent to ŷ. By Claim 1, ŷ is orthogonal to the 
ir
lesat whi
h the plane interse
ts p̂ and q̂. All 
ir
les orthog-onal to p̂ and to q̂ meet pq in the same two points, seethe 
omment after Claim 1. The distan
e between thesetwo points is twi
e the radius of the smallest ortho
ir
le.By Weight Property [!0℄ that radius isV � r14 � !02 � kp� qk:Let a be the point on the 
ir
le ŷ so that ya interse
tspq in a right angle, see Figure 8. The interse
tion point7



is the 
enter v of the smallest 
ir
le orthogonal to p̂and q̂. By Claim 7 we have Y � %1 � kp� qk. Thenormal distan
e of a from pq is A = Y � pY 2 � V 2whi
h assumes its minimum when Y is as large and Vis as small as possible. ThereforeA � %1kp� qk �r%12kp� qk2 � 1� 4!024 kp� qk2= (%1 �p%12 + !02 � 1=4) � kp� qk:The angle at p between pq and line k is at least the anglebetween pq and pa, whi
h is\qpa = ar
tan ApP 2 + V 2� ar
tan %1 �p%12 + !02 � 1=4p!02 + 1=4be
ause P 2 � !02 � kp� qk2 and V 2 � kp� qk2=4. Notethat the latter expression is twi
e the 
onstant �0.For ea
h angle 0 � � � 2�0, let k(�) be the linepassing through p that forms an angle � with pq, seeFigure 8. The line k(�) interse
ts ŷ in two points and welet u(�) be the point further from p. Finally, we de�nef(�) = kp� u(�)k. We have f(0) � (1 � !0) � kp� qkand f(2�0) � 0. Sin
e f is a 
on
ave fun
tion it followsthat f(�) is at least (1 � !0)=2 times the length of pqfor all � � �0. By assumption there is an angle � � �0so u(�) lies on the edge from p to u. The lower boundof the linear relation follows:kp� uk � f(�) � 1� !02 � kp� qk:The upper bound follows by a symmetri
 argument thatex
hanges q and u.Weighted Delaunay edges. Miller et al. prove thatif DelS has Ratio Property [%0℄ then there is a 
onstantupper bound on the length variation at every vertex [15℄.We use Claim 7 to prove the same is true for the graphof all possible weighted Delaunay edges. Let K = K(S)be the union of all weighted Delaunay triangulations de-�ned by weight assignments w : S ! R whose spheresets have Weight Property [!0℄. Sin
e K 
ontains alledges of the unweighted Delaunay triangulation it 
on-ne
ts every point p to the 
losest point q 2 S and toothers. Let G be the graph of all edges in K.Claim 10. If DelS has Ratio Property [%0℄ then thereis a 
onstant �0 > 0 su
h that �(p;G) � �0 forevery vertex p 2 S.Proof. We establish the upper bound on length varia-tion for the 
onstant�0 = � 21� !0�m � � 2%1p1� 4!02�m�1 ;

where m = 2=(1 � 
os �04 ). The argument is based onthe two elementary geometry fa
ts provided by Claims8 and 9. Let � be the sphere of dire
tions 
entered at p.We form a maximal pa
king of 
ir
ular 
aps ea
h withangle �0=4. This means that if a is the 
enter and b is apoint on the boundary of a 
ap then \apb = �0=4. Theset of 
aps with the same 
enters and with radii �0=2
overs �. Sin
e the area of ea
h 
ap in the �rst set is(1� 
os �04 )=2 times the area of the sphere, the numberof 
aps is at most some 
onstant m = 2=(1 � 
os �04 ).The remainder of this proof uses the larger 
aps, whi
h
over �.For ea
h edge pq 2 K let the point q0 2 � be the radialproje
tion of q. Similarly, for ea
h triangle pqr 2 K
onsider the ar
 on � that is the radial proje
tion of qr.The points and ar
s form a graph. Let pq be the longestand pu the shortest edge with endpoint p. We walk inthe graph from q0 to u0. This path leads from 
ap to
ap and we just re
ord the sequen
e of 
aps visited. Ifthe path leaves a 
ap and returns to it later we ignorethe detour and re
ord the 
ap only on
e. In the end wehave a sequen
e of at most m 
aps.When we walk from point to point we tra
k the lengthof the 
orresponding edges. As long as we stay withina single 
ap the length de
reases at most by a fa
torof (1 � !0)=2, see Claim 9. If we step from one 
apto the next the length de
reases by at most a fa
torof p1� 4!02=2%1, see Claim 8. The number of 
aps isat most m so kp� uk � kp� qk=�0. The 
laim followsbe
ause �(p;G) = kp� qk=kp� uk � �0.All Del Ŝ with Weight Property [!0℄ are sub
omplexesof K. Claim 10 thus implies that for all su
h weightedDelaunay triangulations the length variation at everyvertex is bounded from above by the 
onstant �0.Constant degree. The bound on the length variationin Claim 10 implies that ea
h vertex belongs to at mosta 
onstant number of edges in K. A straightforwardvolume argument suÆ
es to establish this fa
t.Claim 11. If DelS has Ratio Property [%0℄ then thereis a 
onstant Æ0 su
h that every vertex p 2 S be-longs to at most Æ0 edges in K.Proof. We prove the 
laim for the 
onstant Æ0 =(2�02+1)3, where �0 is the 
onstant in Claim 10. Let pqbe the longest and pu the shortest edge with endpointp. Assume without loss of generality that kp� uk = 1.Let r be a neighbor of p and s a neighbor of r. Wehave kp� rk � 1 by assumption and kr � sk � 1=�0 byClaim 10. For ea
h neighbor r of p let �r be the openball with 
enter r and radius 1=2�0. The balls are pair-wise disjoint and �t inside the ball � with 
enter p and8



radius kp� qk+ 1=2�0. The volume of � isj�j = 4�3 (kp� qk+ 12�0 )3� 4�3 �2�02 + 12�0 �3= (2�02 + 1)3 � j�rj:In words, at most Æ0 = (2�02 + 1)3 neighbor balls �tinto �. This implies that Æ0 is an upper bound on thenumber of neighbors of p.6 Sliver TheoremSe
tions 4 and 5 provide the te
hni
al prerequisites forthe proof of the main result of this paper, whi
h is pre-sented in this se
tion.Weight pumping idea. The main idea in the proofof the Sliver Theorem is to assign a weight P 2 to ea
hpoint p 2 S so the weighted Delaunay triangulation isfree of slivers. To get Weight Property [!0℄ we 
hoosethe weight of p in the interval W (p) = [0; !02N2(p)℄.Given a sliver pqrs we use the pigeonhole prin
iple toshow there is a weight P 2 in W (p) so pqrs does notbelong to the weighted Delaunay triangulation. While
onsidering the tetrahedra around p we keep the weightsof q; r; s un
hanged and ex
lude the sliver pqrs from thetriangulation merely by manipulating the weight of p.To be spe
i�
 
onsider the weight interval W (p) andfor ea
h sliver pqrsmark the subintervalWqrs of weightsP 2 2 W (p) for whi
h pqrs belongs to the weighted De-launay triangulation obtained by 
hanging the weight ofp to P 2, see Figure 9. We prove shortly that the length
)W( pFigure 9: The subintervals 
over all weights of p for whi
hthe weighted Delaunay triangulation 
ontains a sliver.of the subintervals goes to zero as we lower the thresholdfor slivers. We also prove that there is only a 
onstantnumber of subintervals to be 
onsidered. Hen
e we 
an
hoose a positive 
onstant threshold small enough soW (p) is not 
overed by the subintervals. Any weightP 2 2 W (p) outside all subintervals will do.Existen
e interval. For a tetrahedron pqrs 
onsiderthe ortho
enter, z, as a fun
tion of the weight P 2 ofp. We de�ne H(P ) as the signed distan
e of z fromthe plane passing through qrs, see Figure 10. H(P ) is

H

r s

q

z

YFigure 10: If the weights of q; r; s are �xed and the weightof p varies then the ortho
enter of the tetrahedron moveson the normal line passing through the ortho
enter of qrs.positive if z and p lie on the same side and it is negativeif they lie on di�erent sides of the plane. As usual, L isthe length of the shortest edge of pqrs.Claim 12. If p̂; q̂; r̂; ŝ have Weight Property [!0℄ andpqrs has Ratio Property [%0℄ then there is a 
on-stant 
12 su
h that [�
12L; 
12L℄ 
ontains all valuesof H(P ) for whi
h the orthosphere of pqrs is empty.Proof. We establish 
12 = p%12 + !02 � 1=4. Thesquare radius of the orthosphere is Z2 = H(P )2 + Y 2,whi
h by Claim 7 is bounded from above by %12L2. Theradius of the 
ir
um
ir
le of qrs is X � L=2, and byClaim 4 the radius of the ortho
ir
le is Y � p1� 4!02 �X . Putting everything together we getH(P )2 � %12L2 � (1� 4!02) �X2� (%12 � 1� 4!024 ) � L2as 
laimed.Pumping motion. The bound on H(P )2 is trans-lated into a bound on the weight of p. For this purposewe look at the motion of the ortho
enter. Spe
i�
ally,we relate P 2 to the displa
ement of z along the line ofits motion, whi
h we denote as `. As in Figure 7 the dis-tan
e of p from the plane passing through qrs is denotedas D.Claim 13. H(P ) = H(0)� P 22D .Proof. Let E be the distan
e of p from `. ThenZ2 + P 2 = (H(P ) � D)2 + E2, see Figure 11. Thesquare radius of the orthosphere is Z2 = H(P )2 + Y 2and therefore H(P )2 = (H(P ) �D)2 + E2 � P 2 � Y 2.After 
an
eling H(P )2 we haveH(P ) = D2 +E2 � Y 22D � P 22D:The �rst term on the right side is H(0) and the se
ondis the displa
ement of z if we 
hange the weight of pfrom 0 to P 2.9
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DFigure 11: The ortho
enter z moves down as the 
ir
learound p grows.Subinterval length. The goal is to show that thesubintervals of W (p) 
an be made as small as ne
essary.Re
all the notation related to the parametrization ofslivers introdu
ed in Se
tion 4.Claim 14. The length of the subinterval de�ned bypqrs is jWqrsj � 
 � �Y 2.Proof. The 
onstant is 
 = 8
12=
5. By Claim 12the tetrahedron pqrs belongs to the weighted Delaunaytriangulation only if �
12L � H(P ) � 
12L. UsingClaim 13 we get an interval for the weight of p:2D � (�
12L+H(0)) � P 2 � 2D � (
12L+H(0)):This interval 
ontainsWqrs. To bound its length we useL � 2Y and D=Y � �=
5 from Claim 5. ThenjWqrsj � 4
12 �DL � 8
12
5 � �Y 2;as 
laimed.Finale. We have now all pie
es together to state andprove the main result of this paper, namely that thereare weight assignments whose weighted Delaunay trian-gulations are free of slivers.Sliver Theorem. Assume DelS has Ratio Property[%0℄. Then there is a 
onstant �0 > 0 and a weightassignment de�ning a set of spheres Ŝ with WeightProperty [!0℄ su
h that � > �0 for all tetrahedrapqrs 2 Del Ŝ.Proof. We establish the result for the 
onstant�0 = 
5 � (1� 4!02) � !028
12 � %12�02 � (2�02 + 1)9 :Let p 2 S and assume without loss of generality that thedistan
e to its 
losest neighbor in K is 1. The lengthof its weight interval is therefore jW (p)j = !02. Letpqrs 2 K be a sliver, that is, a tetrahedron with � < �0.

By Claim 14, it de�nes a subinterval of length jWqrsj �(8
12=
5) � �Y 2. By Claim 10, the edges pq, pr, ps havelength at most �0 ea
h. By Claim 7, the radius of theorthosphere of pqrs is Z � %1 � �0. The radius of theortho
ir
le of qrs is at most Z, and by Claim 4, theradius of the 
ir
um
ir
le isY � Zp1� 4!02 � %1 � �0p1� 4!02 :The number of subintervals is at most the number oftetrahedra in K that share p. By Claim 11 there areat most Æ0 edges sharing p, so there are fewer than Æ03su
h tetrahedra. Let I(p) be the part of W (p) 
overedby subintervals de�ned by slivers. The total 
overedlength isjI(p)j < 8
12
5 � �0Y 2 � Æ03� 8
12 � %12�02 � (2�02 + 1)9
5 � (1� 4!02) � �0� jW (p)j:We 
an therefore �nd a weight P 2 2W (p)�I(p). Everytetrahedron pqrs 2 K 
ompatible with the weight P 2 ofp has � � �0. We repeat the argument for every pointp 2 S and obtain a weight assignment that satis�es the
laim.We remark that the above proof is not 
ir
ular al-though at �rst sight it may appear that weight assign-ments for di�erent points 
an intera
t in 
ompli
atedways. The next se
tion dis
usses this issue in some de-tail.7 AlgorithmThis se
tion develops two versions of an algorithm thateliminates slivers by weight assignment. The algorithmassumes the points are distributed so the Delaunay tri-angulation has Ratio Property [%0℄. The �rst version issequential, the se
ond is parallel, and they both run inasymptoti
ally optimal time.General strategy. The main step of the algorithmassigns a real weight P 2 to every point p in the given setS. This is done by pro
essing the points in an arbitrarysequen
e. When pro
essing point p 2 S we 
omputesubintervals of W (p) and we 
hoose P 2 2 W (p) outsideall subintervals. The Sliver Theorem guarantees thatfor a properly 
hosen 
onstant �0 su
h a weight exists.After pro
essing all points the weighted Delaunay tri-angulation 
ontains no tetrahedron with value of � lessthan �0.A 
riti
al issue is the apparent 
ir
ularity of the algo-rithm: the 
hange of the weight of q may alter some of10



the subintervals for p if pq is an edge in K. If p pre
edesq in the pro
essing order then q may readmit tetrahedraaround p that have been eliminated earlier by 
hoi
e ofP 2. There are two 
ru
ial observations that break the
ir
ularity. The �rst is that the quality measure forslivers is symmetri
: �(pqrs) = �(qprs). The se
ond isthat we only in
rease the weight of q so ea
h newly ad-mitted tetrahedron has q as a vertex. For its own sake,q 
hooses its weight to avoid all tetrahedra with � < �0.As a 
onsequen
e, any tetrahedron readmitted aroundp has value of � at least �0.The key step is the 
onstru
tion of subintervals ofW (p). Re
all that ea
h subinterval 
orresponds to atetrahedron pqrs with measure � < �0. The Sliver The-orem suggests we use the 
onstant �0 for whi
h it provesthe subintervals do not 
overW (p). In view of the mis-erably pessimisti
 estimate of �0 we follow a di�erentstrategy. Consider all tetrahedra with vertex p, and forea
h pqrs 
onsider the unbounded re
tangleRqrs = Wqrs � [�(pqrs);+1)in the P 2 � � plane. The boundary of the union ofre
tangles forms the skyline over W (p), see Figure 12.The best 
hoi
e for P 2 is the weight 
oordinate of ahighest point on the skyline.
)W( pFigure 12: Ea
h re
tangle over W (p) 
overs the values ofthe minimum � around p that 
annot be a
hieved if theweight is 
hosen in the P 2-interval of the re
tangle.Sear
hing the skyline. The skyline is 
onstru
tedby 
onsidering all tetrahedra in weighted Delaunay tri-angulations generated by varying the weight of p andkeeping all other weights �xed. At the time the algo-rithm works on p 2 S it has already pro
essed some ofthe points. Let w : S ! R be the 
urrent weight as-signment, and for every P 2 2 W (p) let wP : S ! R bede�ned bywP (u) = � w(u) if u 2 S � fpg;P 2 if u = p:Note that w0 = w. Let ŜP 
orrespond to wP . Forevery ŜP we are only interested in the set TP � Del ŜPof tetrahedra that have p as a vertex. The skyline isde�ned by the union of all TP for P 2 2 W (p). This

union is 
omputed by 
ontinuously in
reasing P 2 from 0to its maximum, whi
h is !02N2(p). The set TP 
hangesonly at dis
rete moments:0 = P 20 < P 21 < : : : < P 2k�1 < P 2k = !02N2(p):De�ne Ti = TP for P 2 between P 2i�1 and P 2i . In thenon-degenerate 
ase the step from Ti�1 to Ti 
onsists ofa single 
ip operation [9, 17℄. The sequen
e of 
ips is de-termined using a priority queue storing Ti. Ea
h tetra-hedron 
arries the time or weight when it is destroyedby the weight in
rease, and P 2i is the earliest su
h timeof any tetrahedron in the priority queue. That tetrahe-dron is removed from the priority queue and from theweighted Delaunay triangulation, and new tetrahedraare inserted. By Claim 11 the union of all sets TP hasonly 
onstant 
ardinality so that pro
essing the 
hang-ing set 
osts only 
onstant time in total. At any momentP 2 the minimum � value of any tetrahedron in TP is theheight of the skyline above P 2 2 W (p).To summarize, we now have a sequential algorithmthat takes time O(n logn), where n is the number ofpoints in S0. Re
all that S = S0+Z3 is periodi
 and sois the Delaunay triangulation. Any one of a number ofpublished algorithms 
an be adapted to periodi
 sets ina way so it tou
hes only points in S0. The adaptationof the algorithm in [9℄ or in [11℄ takes time O(n logn)be
ause the size of DelS in a period is O(n) by Claim11. After 
onstru
ting DelS we assign weights in timeO(n) as explained above. The 
onstru
tion of the 
or-responding weighted Delaunay triangulation is a sidee�e
t of the weight assignment step.Parallel algorithm. A parallel version of the algo-rithm 
an be obtained by taking advantage of Claim11, whi
h asserts that verti
es in K have 
onstantsize neighborhoods. Re
all that K is the union of allweighted Delaunay triangulations, where the union istaken over all weight assignments w : S0 ! R whosesphere sets have Weight Property [!0℄. The degree of avertex p 2 K, denoted as Æ(p), is the number of edgeswith endpoint p. By Claim 11, Æ(p) is bounded fromabove by the 
onstant Æ0. Hen
e K has a vertex 
olor-ing with Æ0 + 1 
olors. Two verti
es of the same 
olorshare no tetrahedra in any of the weighted Delaunaytriangulations so the weight assignment algorithm 
anbe applied simultaneously. In other words, k pro
essors
an assign weights to the points of one 
olor 
lass inparallel and a
hieve optimal speed-up.To summarize we now have a parallel algorithm thattakes time O(n logn=k) for k = O(n) pro
essors. The�rst step 
onstru
ts the graph of all edges in K usingthe randomized algorithm of Frieze, Miller and Teng[11℄. As in the sequential 
ase this algorithm needs tobe adapted to periodi
 point sets, whi
h is not diÆ
ult.The graph is then 
olored with a 
onstant number of11




olors. The �nal two steps are the same as for the se-quential algorithm ex
ept that the 
oloring is used toparallelize both the 
onstru
tion of the initial Delaunaytriangulation and the weight assignment.8 Dis
ussionThis paper shows that if the Delaunay triangulation ofa periodi
 point set in R3 has Ratio Property [%0℄ thenslivers 
an be removed by assigning small real weights tothe points. In other words, Ratio Property [%0℄ impliesthe existen
e of a weighted Delaunay triangulation with-out any badly shaped tetrahedron. This 
omplementsthe impli
ation in the other dire
tion proved by Tal-mor [21℄ and thus establishes the equivalen
e of RatioProperty [%0℄ and the existen
e of triangulations with-out badly shaped tetrahedra.Experiments. The te
hni
al statement of our resultinvolves a positive 
onstant �0 that tells slivers fromother tetrahedra. For pra
ti
al purposes a large �0 isdesirable. The estimate for �0 provided by the SliverTheorem is miserably tiny, and it will be important toimplement the algorithm and 
olle
t empiri
al estimatesfrom 
omputational experiments. The primary goal isto gain insight into how big a 
onstant �0 we 
an expe
tin pra
ti
al 
ases and how �0 depends on %0 and on !0.The sequential algorithm uses an ordering of the ver-ti
es and it would be interesting to know whether someorderings perform better than others. The worst-�rstordering suggests itself, but it is not 
lear that it yieldshigher values of �0 than a random ordering.Boundary e�e
ts. Until now we avoided any men-tion of boundary e�e
ts. Appli
ations usually triangu-late bounded and non-
onvex domains 
 � R3 given interms of their boundary represented by a 2-dimensional
omplex B. If we 
hoose a �nite set S � 
 we 
an
onstru
t DelS and remove simpli
es outside 
. Thisworks �ne as long as DelS 
onforms to B, by whi
h wemean that DelS 
ontains a 2-dimensional sub
omplexthat subdivides B. However, �nding a set S so its De-launay triangulation 
onforms to a given 2-dimensional
omplex is a diÆ
ult problem in general. Edelsbrunnerand Tan [10℄ des
ribe a polynomial solution to the 2-dimensional version of the problem, but at this timethere is no su
h solution available in R3 . Heuristi
strategies that add points on B dense enough to for
eboundary 
onformity seem to work in pra
ti
e and aredes
ribed in the applied literature. The algorithm de-s
ribed in Se
tion 7 works �ne even for triangulationsof non-
onvex domains, and it 
an remove slivers insideand outside 
. O

asionally, the 
hange of a weightwill 
hallenge the 
onformity of the weighted Delaunaytriangulation, and additional points will have to pla
ed

to reinfor
e the boundary. It would be interesting toformulate 
onditions on the boundary triangulation un-der whi
h the algorithm is guaranteed not to a�e
t theboundary.A
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