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Abstract: We propose a new data structure to compute the Delaunay triangulation ofa set of points in the plane. It combines good worst case complexity, fast behavior on realdata, and small memory occupation.The location structure is organized into several levels. The lowest level just consistsof the triangulation, then each level contains the triangulation of a small sample of thelevels below. Point location is done by marching in a triangulation to determine the nearestneighbor of the query at that level, then the march restarts from that neighbor at the levelbelow. Using a small sample (3 %) allows a small memory occupation; the march and theuse of the nearest neighbor to change levels quickly locate the query.Key-words: computational geometry, geometric computing, randomized algorithms,Delaunay triangulation, dynamic algorithms.
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Triangulation de Delaunay incrémentale randomisée :encore un pas en avant.Résumé : Nous proposons une nouvelle structure de donnée pour le calcul de la tri-angulation de Delaunay de points du plan permettant de combiner simultanément : unebonne complexité théorique dans le cas le pire, un très bon comportement pratique et uneoccupation mémoire réduite.La structure de localisation utilisée comporte plusieurs niveaux. Au niveau le plus bascontient la triangulation de Delaunay de tous les points, ensuite chaque niveau contient latriangulation d'un echantillon aléatoire des points du niveau précédent. La localisation d'unnouveau point est e�ectuée en marchant dans une triangulation a�n de déterminer le plusproche voisin du nouveau point à ce niveau ; puis la marche reprends à partir de ce voisin auniveau inférieur. L'utilisation d'échantillon assez petit (3 %) garanti un faible coût mémoire; la marche et l'utilisation du plus proche voisin pour changer de niveau une convergencerapide pour localiser la requète.Mots-clés : géométrie algorithmique, calcul géométrique, algorithmes randomisés, trian-gulation de Delaunay, algorithmes dynamiques.



Incremental randomized Delaunay triangulation 31 IntroductionThe computation of the Delaunay triangulation of a set of n points in the plane is one of theclassical problems in computational geometry and plenty of algorithms have been proposedto solve it.These Delaunay algorithms can have di�erent characteristics:� Optimal on worst case data, i.e. O(n logn) time.� Optimal only on random data� Randomized� On-line vs o�-lineIn the current trade-o� between algorithmic simplicity, practical e�ciency and theoreticaloptimality, practitioners often choose the two �rst points, taking the risk of having badperformance on some special kind of data.Our aim is to conciliate many of the above aspects, namely to obtain an incrementalalgorithm using simple data structure having good practical performance on realistic inputand still provable O(n logn) computation time on any data set.Previous related workOur work is strongly related to some previous algorithms for Delaunay triangulation. Allthese algorithms are incremental and their complexity is randomized, they use some locationstructure to �nd where the new point is inserted, and then update the triangulation.The �rst idea of a randomized incremental construction for the Delaunay triangulation[BT86] uses a location structure based on the history of the Delaunay triangulation: theDelaunay tree. Point pi is inserted at time i, and to �nd where point pn fell, pn is locatedin all the triangulations at times 1 to n� 1; the location at time i+ 1 is deduced from thelocation at time i. This idea yields an expected optimal complexity [BT93, GKS92] if thepoints are inserted in a random order. The drawbacks of this approach are the following:the location structure consists of the history of the construction and thus strongly dependson the insertion order, and the additional memory needed cannot be controlled. (Theexpected memory is proved to be O(n) and is experimentally about twice the size of the�nal triangulation.)Mulmuley [Mul91] proposed a location structure independent of the insertion order. Thestructure has O(log n) levels, each level being a random sample of the level below. At eachlevel, the Delaunay triangulation of the points is computed, and the overlapping triangles atdi�erent levels are linked to enable location of new points. This structure has the advantageof being independent of the order of insertion, of ensuring an O(log2 n) location time for anypoint, and of allowing deletions in an easier way than the Delaunay tree [DMT92]. However,the additional memory is still important and the location structure is not especially simple.In 1996, Mücke, Saias and Zhu [MSZ96] proposed a very simple structure to handletriangulation of random points. The structure reduces to a random subset of 3pn points,and pointers from these points to an incident triangle in the Delaunay triangulation. A newRR n° 3298



4 O. Devillerspoint is located by �nding the nearest neighbor in the sample by brute force, and walking inthe triangulation. For evenly distributed points, the expected complexity of the algorithm isO(n 43 ) with a small constant, which makes it competitive with many O(n logn) algorithms.But for some data (for example points on a parabola) the complexity increases to O(n 53 ).OverviewOur approach uses a structure with levels similar to Mulmuley, but with simple relationsbetween levels. This allows better control of the memory overhead. The transition betweentwo levels is not direct as in Mulmuley, but uses a march similar Mücke, Saias and Zhu tolocate point in triangulations.In Section 2 we present the algorithm, in Section 3 we prove that the expected complexityof constructing the Delaunay triangulation is O(n logn). The parameters of the data struc-ture are then tuned to minimize the constant in the case of random points and are shownto yield an excellent behavior in Section 4, we pay special attention to the comparison withthe method of Mücke, Saias and Zhu. Finally we give some implementation remarks andpractical results in Section 5.2 AlgorithmLet S be a set of n sites in the plane. The aim is to compute the Delaunay triangulationDT S of S and to maintain it e�ciently under insertions and deletions.2.1 The location structureThe algorithm uses a data structure composed of di�erent levels. Level i contains theDelaunay triangulation DT i of a set of sites Si.The sets Si forms a decreasing sequence of random subsets of S based on a Bernoullisampling technique [MR95, Mul94]:S = S0 � S1 � S2 � : : : � Sk�1 � SkProb(p 2 Si+1 j p 2 Si) = 1� 2]0; 1[:The data structure is fairly simple: it contains the points of S and the triangles of allthe triangulations DT i. A point p 2 S such that p 2 Si � : : : � S0 and p 62 Si+1 is saidto be a vertex of level i and has a link to a Delaunay triangle of DT j incident to p for allj for 0 � j � i. A triangle of DT i has links to its three neighbors in DT i and to its threevertices.The number k of levels is not �xed; for each point random trials decide its level,and the point with highest level determines k.2.2 Location of a queryFor the location of a query q, we start at a known vertex vk+1 of the highest level k. Then wesearch for vk, the vertex ofDT k nearest to q. Since vk is also a vertex ofDT k�1, we search forINRIA



Incremental randomized Delaunay triangulation 5

vi+1
viv v0 v00q

phase 1phase 2phase 3
w0 w00 Cw q� �2

v0 v00
Cv q

a) b) c)Figure 1: Search for vi.vk�1, the nearest neighbor of q in DT k�1, starting at vk. The search is continued descendingthe di�erent levels. At each level i, the nearest vertex vi of q in DT i is determined.At level i the search of vi is carried out in three phases:� First phase: from vi+1, we have a link to a triangle of DT i having vi+1 as vertex.All triangles incident to vi+1 are explored to �nd the triangle containing the segmentvi+1q.� Second phase: all the triangles of DT i intersected by vi+1q are visited, walking alongthe segment vi+1q up to the triangle ti that contains q.� Third phase: using neighborhood relationships between triangles, we will traverse fewtriangles of DT i from ti to �nd vi. If vv0v00 are the three vertices of ti, and, withoutloss of generality, v is closer to q than v0 and v00, then vi is either v or it lies in thecircle of center q and passing through v (shaded on Figure 1a); thus the search for vihas to be done only in the direction of the neighbors of ti through the edges vv0 andvv00 and the neighbor through the edge v0v00 can be ignored. For each such triangle,the distance to the new vertex is computed and the algorithm maintains the closestvisited vertex. For a visited triangle ww0w00 such that w is the nearest to q amongww0w00 the neighbor triangle through edge ww0 (resp ww00) will be visited if angleqww0 is smaller than �2 (Figure 1b).Figure 1c show the triangles visited by the di�erent phases of the search.
RR n° 3298



6 O. Devillers2.3 UpdatesBecause of its simplicity, the data structure is fairly easy to update. Maintaining it dyna-mically provides a fully dynamic triangulation algorithm. The links between the di�erentlevels do not use any complicated data structure simply vertices know a triangle at all levelsin which they appear.To delete a point from S, just delete the corresponding vertex at all the levels where itappears, which can be done in time sensitive to the degrees of that vertex.Inserting a point in S reduces to locating the new point at all levels, computing its leveli and inserting the new vertex at all levels j; 0 � j � i (which is sensitive to the degree ofthe new vertex once the location is done).3 Worst-case randomized analysisThe analysis will rely on the randomization in the construction of the random subsets Siand the points of S are assumed to be inserted in a random order. In this section, noassumption applies to the data distribution, which can be in the worst case. As usual intheoretical computational geometry, we make only an asymptotic analysis and give roughupper bounds for the constants. In the next section, parameter � will be tuned to get atight constant in the special case of evenly-distributed points.Let S be a set of n points organized in the structure described in Section 2 and q a pointto be inserted in S. Since we have assumed a random insertion order, q is a random pointof S [ fqg.We denote ni = jSij and Ri = Si [ fqg.Notice that Ri is a random subset of size ni+1 of Si�1 [fqg and q is a random elementof Ri.The cost of exploring all the triangles incident to vi+1 at the �rst phase of the march oflevel i is the degree of vi+1 in DT i. The cost of the second phase is the number of trianglesintersected by segment vi+1q. The cost of the third phase is the number of candidate verticesvisited during the search of vi from ti.Lemma 1 The expected degree of vi in DT i�1 is O(1).Proof Let NN be the nearest neighbor graph of Ri: that is, the vertices of NN arethe points of Ri, and q; v 2 Ri de�ne an edge of NN if and only if v is the nearestneighbor of q in Ri (denoted by v = NN(q)). NN is well known to be a subgraph ofDT Ri , the Delaunay triangulation of Ri, and to have maximum degree 6 [PY92].We denote by d�DT i�1(v) the degree of v in DT i�1, and by Ev2Ri the expectation whenv is chosen uniformly in Ri. Then we haveEv2Ri �d�DT i�1(v)� = Ev2Si�1 �d�DT i�1(v)� < 6
INRIA



Incremental randomized Delaunay triangulation 7notice that d�DT i�1(v) is a random variable; result holds since Ri and Si�1 are randomsubsets of Si�1 [ fqg and that the average degree of a vertex in a triangulation is lessthan 6.But even if q is a random point in Ri, the vertex vi, the nearest neighbor of q in Ri, isnot uniformly random.Eq2Ri �d�DT i�1(NN(q))� = E0@ 1jRij Xq2Ri d�DT i�1(NN(q))1A= 1jRijE0@Xv2Ri Xq2f�;v=NN(�)g d�DT i�1(v)1A< 1jRijE Xv2Ri 6d�DT i�1(v)!� 36Lemma 2 Given w 2 Ri, the expected number of vertices q of Ri such that w belongs tothe disk of diameter de�ned by q and the nearest neighbor of q in Si+1 is less than 4�.Proof Let w 2 Ri and let q0; q1; q2 : : : qk be the points of Ri that are in a quadrantwith apex w sorted by increasing distance to w. Clearly, a circle of diameter qjql cannotcontain w and thus, if q = qj , a necessary condition for w to be in the disk of diameterde�ned by q and the nearest neighbor of q in Si+1 is that none of fq0; : : : qj�1g are inthe sample Si+1, which occurs with probability (1� 1� )j .Using four quadrants around w to cover the whole plane, and summing over the choiceof q 2 Ri we get the claimed result.Lemma 3 The expected number of edges of DT i intersecting segment qvi+1 is O(�).Proof Let e be an edge of DT i intersecting segment qvi+1. If e does not exist in DT Ri ,it means that e is an internal edge of the region retriangulated when q is inserted inDT i. Since q is a random point in Ri, the expected number of such edges is 3 since itequals the average degree of q in Ri minus 3.If e exists in DT Ri , one end-point w of e must belong to the disk of diameter q and vi+1,denoted disk[qvi+1], (otherwise any circle through the end-points of e must contain q orvi+1 and e cannot belong to DT Ri).
RR n° 3298



8 O. DevillersThe expected number of edges of DT Ri intersecting disk[qvi+1] is bounded by the sumof the degrees of the vertices in disk[qvi+1]E(#fe 2 DT Ri having an end-point 2 disk [qvi+1]g)� 1jRij Xq2Ri Xw2disk [qvi+1] d�DTRi (w)� 1jRij Xw2Ri d�DT Ri (w) Xq2Ri Prob(w 2 disk [qvi+1])� 1jRij Xw2Ri d�DT Ri (w)4� using Lemma 2� Ew2Ri(d�DT Ri (w))4�� 24� using the average degree 6 for wNotice that Lemma 2 was established for a �xed w and a random q which allows to useit inside the sum over w. Thus we get a total expected cost for the march bounded by24�+ 3.Lemma 4 Given w 2 Ri, the expected number of vertices q of Ri such that w belongs tothe disk of center q and passing through the nearest neighbor of q in Si+1 is less than 6�.Proof This lemma is similar to Lemma 2. Let w 2 Ri and let q0; q1; q2 : : : qk be thepoints of Ri lying in a wedge of angle �3 having apex w sorted by increasing distance tow. Clearly, a circle of center ql passing through qj (j < l) cannot contain w and thus,if q = ql, a necessary condition for w to be in the disk of diameter de�ned by q and thenearest neighbor of q in Si+1 is that non point of fq0; : : : ql�1g is in the sample Si+1which has probability (1� 1� )j .Using six wedges around w to cover the whole plane, and summing over the choice ofq 2 Ri we get the claimed result.Lemma 5 The expected number of triangles of DT i visited during the search for vi from tiis O(�).Proof All the triangles t examined in phase 3 have a vertex in the disk of center qpassing through vi+1. Thus we can argue similarly as in Lemma 3, denoting disk jcqvi+1]the disk of center q through vi+1:E(#ft 2 DT Ri having an end-point 2 disk jcqvi+1]g)� 1jRij Xq2Ri Xw2disk jcqvi+1] d�DTRi (w)
INRIA



Incremental randomized Delaunay triangulation 9� 1jRij Xw2Ri d�DT Ri (w) Xq2Ri Prob(w 2 disk jcqvi+1])� 1jRij Xw2Ri d�DT Ri (w)6� using Lemma 4� Ew2Ri(d�DT Ri (w))6�� 36� using the average degree 6 for wTheorem 6 The expected cost of inserting nth point in the structure is O(� log� n)Proof By linearity of expectation, Lemmas 1, 3 and 5 prove that the expected costat one level is O(�). Since the expected height of the structure is log� n, we get theclaimed result. (The analysis is similar to the ananlysis for skip lists [MR95].)Theorem 7 The construction of the Delaunay triangulation of a set of n points is donein expected time O(�n log� n) and O( ���1n) space. The expectation is on the randomizedsampling and the order of insertion, with no assumption on the point distribution.Proof Easy corollary of Theorem 6.4 Tuning parametersWe have proved that our structure is worst case optimal in the expected sense for any setof points. In this section, we will focus on more practical cases, and tune the algorithmto be optimal on random distribution. In that case, many events such as that a point hashigh degree and that it is the nearest neighbor of a random point can be considered asindependent.4.1 Phase 1We can assume that, d�DT i(vi+1) = 6 (and not only � 36 as proved in Lemma 1). Andthus if the turn around vi+1 is done in clockwise or counterclockwise direction dependingon the position of segment vi+1q with respect to the starting triangle, and assuming thatthis position is random around vi+1 the expected number of orientation tests is 3. Figure 2shows the di�erent cases to average, the edges vi+1w such that an orientation test vi+1wqis performed are indicated, for a typical degree 6 vertex in the triangulation.
RR n° 3298



10 O. Devillers
incident trianglevi+1

q q q
q q qtested edges 3 tests 4 tests

2 tests2 tests3 tests
4 tests

Figure 2: Di�erent number of orientation tests in phase 14.2 Phase 2Bose and Devroye [BD95] proved that the expected number of edges of a Delaunay triangu-lation of random points crossed by a line segment of length l is O(lp
) where 
 is the pointdensity. Our experiments shows that the constant is 2.The expected number of points in disk qvi+1 is � and thus if l is the length of qvi+1 thedensity of points in DT i is �=�l2.Thus we conclude that the expected number of edges of DT i intersecting segment qvi+1is 2lp ��l2 = 2p�p� .For each edge ww0 crossed, two orientation tests are performed: if w is the newly exa-mined vertex, orientations of triangles wqvi+1 and qww0 are computed.We have to point out, that in the orientation tests of kind wqvi+1, the edge qvi+1 remainsconstant, and thus some computations do not need to be done for each test.4.3 Phase 3Phase 3 is more di�cult to analyze precisely, but a rough bound is that the number ofcandidate vertices examined (with shortest distance) is less than two and that we examineless than 8 triangles in total.In fact, we modi�ed phase 3, instead of really searching for vi, the nearest neighbor of qin Si, we just de�ne vi as the nearest among the three vertices of ti (see Appendix). Thusthis modi�ed phase 3 reduced to three distance computations and two comparisons.
INRIA



Incremental randomized Delaunay triangulation 114.4 Tuning �We will count more precisely the number of operation needed to evaluate our primitives.More exactly, we count the number of �oating point operations (f.p.o.) without makingdiistinctions between additions, subtractions or multiplications.The total evaluation at a given level is 3+ p�p� orientation tests involving qvi+1, p�p� otherorientation tests and 3 distance computations.Orientation tests always using points q and vi+1 can be done using 5 f.p.o. to initializeplus 4 f.p.o. for each test. Other orientation tests need 7 f.p.o. each, and square distancecomputations need 5 f.p.o. each.Thus the total cost in terms of number of f.p.o. at level i is5 + 4(3 + p�p� ) + 7p�p� + 5 � 3 = 32 + 6:2p�:Since the number of level is log� n = log2 nlog2 � we get a cost of c0(n) = (29+6:2p�) l log2 nlog2 �mwhich is close to its minimum ( 2 [13:3 log2 n; 14 log2 n]) for � 2 [18; 90], with the minimumoccuring for � ' 40.4.5 Comparison with [MSZ96]Similar counting of f.p.o. in Mücke et al. algorithm, using a random sample of � 3pn points,produces a cost ofcMSZ(n) = 5 + 4(3 + n�n 13p� ) + 7 n�n 13p� + 5� 3pn = 17 + 3pn� 6:2p� + 5��which is close to its minimal value for 0:5 < � < 1.As shown by the comparison of the two curves in Figure 3, our method is potentiallymuch better than [MSZ96], even for a small number of points. However, this method toanalyze our approach hides the discontinuity of the cost, since the e�ective number of levelsis necessarily an integer. To have a better comprehension of what happens for a smallnumber of points, we can draw the cost of inserting a point in a structure having a �xednumber of levels.The classical walk from a random point in the structure costscwalk(n) = 5 + 4(3 + pnp� ) + 7pnp� = 17 + 6:2pnwhich is also the cost of inserting in our structure up to the time a second level is created.When k levels have been created, the cost isck(n) = cwalk � n�k �+ 15k + k � cwalk(�)
RR n° 3298



12 O. Devillers

number of points10000080000600004000020000

500
400
300
200
100
0

number of f.p.o. cMSZ(n)

c0(n)
Figure 3: Comparison of number of �oating point operations between c0(n) and cMSZ(n)for � = 40 and � = 1.
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Incremental randomized Delaunay triangulation 13We can alternatively mix this multilevel approach with Mücke et al's. sampling at the�rst level of the structure. In that case, the cost isc?k(n) = cMSZ � n�k �+ 15k + k � cwalk(�)This comparison (see Figure 4) shows that [MSZ96] (c?1(n)) becomes better than thesimple march (c1(n)) for n > 40. The two level structure (c2(n)) becomes better than thesingle level structure (c1(n)) for n > 180 and better than [MSZ96] (c?1(n)) for n > 600. Themain information is that the structure presented in that paper should be signi�cantly betterthan [MSZ96] for 10000 < n.5 Implementation5.1 DeletionThe above structure supports insertions and queries as explained above, but also deletions.Since there is no complicated data structure to maintain, deletions can be handled by justdeleting the removed point at each level where it appears.This can be done in output-sensitive time [Che87, AGSS89], and thus the deletion ofa random point is done in expected constant time since a point appears at an expectedconstant number of levels and its expected degree is also constant.5.2 Arithmetic degreeThe algorithm above is designed to make a parsimonious use of high degree tests [TLP96].More precisely, the location phase uses only orientation tests on three points in phases 1and 2, and distance computation and angle comparisons with �2 in phase 3. All these testsare degree 2 tests. Clearly, updates need to use in-circle tests which are of degree 4.An alternative to phase 3 should have to use in-circle tests to limit the explored trianglesin DT i to those whose circumcircle contains q. Such variant may explore fewer trianglesand be easier to analyze, but may use more degree 4 tests.5.3 Robustness issues and degeneraciesDegeneracies are solved by handling special cases: if two points have the same coordinates,then the insertion is not done, if four points are cocircular, then the last point inserted isconsidered as inside the circle de�ned by the others.We use exact arithmetic for 24 bits integers, and thus coordinates of our points areintegers in range [�16777216; 16777216] (up to a multiplication by a power of 2). Using thisrestricted kind of data, double precision computation is exact on degree 2 tests and almostnever leads to precision problems on degree 4 predicates. Nevertheless, the exactness ofall computations are veri�ed by an arithmetic �lter and exact computation is performed ifneeded.RR n° 3298



14 O. Devillers
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Figure 4: Comparison of number of �oating point operations between ck(n) and c?k(n) for� = 40. INRIA



Incremental randomized Delaunay triangulation 155.4 Code parametersThe following parameters can be speci�ed:� maximal number of levels� � the ratio between two levels� the minimal number of points to use the higher level for point location� the minimal number of points to use MSZ sampling at one of the higher levels� � the constant for the size of MSZ sample.Our default parameters are� number of levels unlimited� � = 30.� minimal size to use hierarchy is 20.� minimal size to use MSZ is 20.� � = 1.We found that the code is relatively insensitive to the parameters. For reasonable changesof these parameters, (up to a factor 2) the computation time is not greatly a�ected. Usingthese con�guration parameters, our code can be used to run� the usual walk algorithm (only one level and minimal size for MSZ=1),� the Mücke et al. algorithm [MSZ96] (only one level),� the hierarchical algorithm described in this paper (minimal size for MSZ=1),� the mixed method suggested in Section 4.5 (default parameters above).5.5 Experimental results5.5.1 Data setsWe claim that our algorithm performs well on random point sets, and has acceptable worsecase complexity. To illustrate this fact, we will test it with the realistic and degeneratedata sets. For each kind of data, we used sets of size 5,000, 50,000 and 500,000 points. Thecoordinates are random on 24 bits and the constraints such that the points are on a parabolaare veri�ed, up to the rounding arithmetic errors.� random: points evenly distributed in a square.
RR n° 3298



16 O. Devillers

parabola

circlerandom

ellipse ellipse2Figure 5: Data sets.
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Incremental randomized Delaunay triangulation 17� ellipse: points evenly distributed on an ellipse.� ellipse2: 95% points evenly distributed on an ellipse plus 5% points evenly distributedin a square.� circle: points evenly distributed on a circle.� parabola: points evenly distributed on a parabola,If the circle and parabola examples can be considered as pathological inputs, the ellipseand ellipse2 examples are more realistic, Delaunay triangulation of points distributed on acurve occurs in practical applications, for example in shape reconstruction (see Figure 5).5.5.2 ResultsFollowing results are obtained on a Sun-Ultra1 200 MHz. The code is written in C++ andcompiled with AT-T compiler with optimizing options. Time has been obtained with theclock command and is given in seconds. The time which is measured is just the Delaunaycomputation; it does not take into account the time for input or output.The following table gives the computation times for execution of the code with the dif-ferent parameters described in Section 5.4. Since it is the same code, the low level primitivessuch as in-circle tests or the walk in the triangulation are identical and it provides a faircomparison between the di�erent methods.distribution size walk [MSZ96] hierarchy hierarchy + MSZrandom 5000 0.3 0.17 0.15 0.14random 50000 12 3.8 2.7 2.3random 500000 460 72 36 31ellipse2 5000 0.53 0.34 0.21 0.20ellipse2 50000 49 21 3.9 3.5ellipse2 500000 930 760 57 49ellipse 5000 2.2 0.46 0.31 0.21ellipse 50000 187 21 3.9 3.7ellipse 500000 long 270 54 55parabola 5000 2.5 0.31 0.21 0.16parabola 50000 87 5.9 3.2 3.0parabola 500000 long 74 69 45circle 5000 0.15 0.13 0.13 0.14circle 50000 2.4 2.6 2.4 2.4circle 500000 39 44 36 36The last column is always the fastest method. It is signi�cantly better than MSZ for verylarge sets of random points, and the di�erence is even more important on data set ellipse2which is representative of real applications.
RR n° 3298



18 O. Devillers5.5.3 Comparison with other softwareWe have compared with some Delaunay softwares available on the WWW.� qhull by Bradford Barber and Hannu Huhdanpaa, duality with 3D convex hull [BDH93](available at http://www.geom.umn.edu/locate/qhull).� div-conquer by Jonathan Shewchuk, divide and conquer [She96]� sweep by Jonathan Shewchuk, plane sweep� incremental by Jonathan Shewchuk, incremental with Mücke et al. localization.These three codes supports exact arithmetic on double (available at http://www.cs.cmu.edu/�quake/triangle.research.html).� Dtree Delaunay tree structure[BT93] (time includes input)(available at http://www.inria.fr/prisme/logiciel/del-tree.html).� hierarchy this paper, mixed with MSZ.distribution size qhull sweep div-conquer incremental Dtree hierarchyrandom 5000 0.65 0.21 0.11 0.29 1.4 0.14random 50000 8.0 3.6 1.6 6.6 17 2.3random 500000 101 53 22 150 swap 31ellipse2 5000 0.54 0.21 0.13 0.75 1.3 0.20ellipse2 50000 7.8 3.2 2.16 42 16 3.5ellipse2 500000 420 46 29 2100 swap 49ellipse 5000 0.83 0.18 0.14 2.1 1.3 0.21ellipse 50000 57 2.8 2.4 110 14 3.7ellipse 500000 swap 39 33 1400 swap 55parabola 5000 3.9 0.16 0.11 2.0 1.2 0.16parabola 50000 790 2.7 2.0 110 14 3.0parabola 500000 swap 39 28 1800 swap 45circle 5000 93 0.17 0.17 0.52 1.4 0.14circle 50000 220 3.1 1.8 11 15 2.4circle 500000 swap 22 43 240 swap 366 ConclusionWe proposed a new hierarchical data structure to compute the Delaunay triangulation ofa set of points in the plane. It combines good worst case complexity, fast behavior on realdata, small memory occupation and dynamic updates (insertion and deletion of points).Referring to Su and Drysdale [SD97] study of several techniques and our comparisonswith Shewchuk implementation [She96] of some of these techniques, we have shown that ourINRIA



Incremental randomized Delaunay triangulation 19implementation is competitive with other approaches on random data. Conversely to otherfast techniques, our algorithm performs well on pathological inputs and allows a dynamicsetting.The main idea of our structure is to perform point location using several levels. Thelowest level just consists of the triangulation, then each level contains the triangulation ofa small sample of the levels below. Point location is done by marching in a triangulationto determine the nearest neighbor of the query at that level, then the march restart fromthat neighbor at the level below. Location at highest level is done using [MSZ96] which ise�cient for small set of points.One characteristics of the structure is that best time performance is obtained with aratio of about three per cent between two levels, which yields to few levels (three or fourtypically) and a small memory occupation. The structure is simple and does not needadditional features such as buckets.Such structure can be generalized to other problems. The two main ingredients of theproofs are bounds on the maximal degree of the nearest neighbor graph and the expecteddegree of a random vertex in the Delaunay triangulation. The �rst generalizes well in higherdimension, while the second becomes an data sensitive parameter (constant for randompoints, nd(d�1)=2e in the worst case). A generalization for computing the trapezoidal mapcan also be done.CodeA demo version compiled for Sun Solaris is available athttp://www.inria.fr/prisme/logiciels/del-hierarchy/.AcknowledgementThe author would like to thank Hervé Brönnimann, Jack Snoeyink and Mariette Yvinec forhelpful discussions and careful reading of this paper.References[AGSS89] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for compu-ting the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591�604,1989.[BD95] P. Bose and L. Devroye. Intersections with random geometric objects, 1995. manuscript,Mc Gill University.[BDH93] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convexhull. Technical Report GCG53, Geometry Center, Univ. of Minnesota, July 1993.[BT86] J.-D. Boissonnat and M. Teillaud. A hierarchical representation of objects: The Delaunaytree. In Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages 260�268, 1986.
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20 O. Devillers[BT93] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree.Theoret. Comput. Sci., 112:339�354, 1993.[Che87] L. P. Chew. Constrained Delaunay triangulations. In Proc. 3rd Annu. ACM Sympos.Comput. Geom., pages 215�222, 1987.[DMT92] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in loga-rithmic expected time per operation. Comput. Geom. Theory Appl., 2(2):55�80, 1992.[GKS92] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction ofDelaunay and Voronoi diagrams. Algorithmica, 7:381�413, 1992.[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,New York, NY, 1995.[MSZ96] Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location withoutpreprocessing in two- and three-dimensional Delaunay triangulations. In Proc. 12thAnnu. ACM Sympos. Comput. Geom., pages 274�283, 1996.[Mul91] K. Mulmuley. Randomized multidimensional search trees: Dynamic sampling. In Proc.7th Annu. ACM Sympos. Comput. Geom., pages 121�131, 1991.[Mul94] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-rithms. Prentice Hall, Englewood Cli�s, NJ, 1994.[PY92] M. S. Paterson and F. F. Yao. On nearest-neighbor graphs. In Proc. 19th Internat.Colloq. Automata Lang. Program., volume 623 of Lecture Notes Comput. Sci., pages416�426. Springer-Verlag, 1992.[SD97] P. Su and R. Drysdale. A comparison of sequential Delaunay triangulation algorithms.Comput. Geom. Theory Appl., 7:361�386, 1997.[She96] Jonathan R. Shewchuk. Triangle: engineering a 2d quality mesh generator and Delaunaytriangulator. In M. C. Lin and D. Manocha, editors, Applied Computational Geometry(Proc. WACG '96), volume 1148 of Lecture Notes Comput. Sci., pages 124�133. Springer-Verlag, 1996.[TLP96] R. Tamassia, G. Liotta, and F. P. Preparata. Robust proximity queries in implicitVoronoi diagrams. In Proc. 8th Canad. Conf. Comput. Geom., page 1, 1996.A AppendixUnfortunately, Theorem 6 does not hold for the modi�ed version of vi suggested at Section 4.3. OnFigure 6, for all the points marked by a cross, w0 is the nearest neighbor among the three verticesof the Delaunay triangle containing it, but w0 does not have bounded degree. Thus, with someconstant probability ' 1�3 the three vertices of a triangle are in the sample and the point inside isnot, and phase 1 has an non constant cost n� .We hope that something is still provable! Anyway, the situations creating problems for themodi�ed algorithm are fairly pathological.
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points going to w0w0

Figure 6: Counter example for optimality of modi�ed phase 3.
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