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Triangulation de Delaunay incrémentale randomisée :
encore un pas en avant.

Résumé : Nous proposons une nouvelle structure de donnée pour le calcul de la tri-
angulation de Delaunay de points du plan permettant de combiner simultanément : une
bonne complexité théorique dans le cas le pire, un trés bon comportement pratique et une
occupation mémoire réduite.

La structure de localisation utilisée comporte plusieurs niveaux. Au niveau le plus bas
contient la triangulation de Delaunay de tous les points, ensuite chaque niveau contient la
triangulation d’un echantillon aléatoire des points du niveau précédent. La localisation d’un
nouveau point est effectuée en marchant dans une triangulation afin de déterminer le plus
proche voisin du nouveau point & ce niveau ; puis la marche reprends & partir de ce voisin au
niveau inférieur. L’utilisation d’échantillon assez petit (3 %) garanti un faible cott mémoire
; la marche et l'utilisation du plus proche voisin pour changer de niveau une convergence
rapide pour localiser la requéte.

Mots-clés :  géométrie algorithmique, calcul géométrique, algorithmes randomisés, trian-
gulation de Delaunay, algorithmes dynamiques.
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1 Introduction

The computation of the Delaunay triangulation of a set of n points in the plane is one of the
classical problems in computational geometry and plenty of algorithms have been proposed
to solve it.

These Delaunay algorithms can have different characteristics:

e Optimal on worst case data, i.e. O(nlogn) time.
e Optimal only on random data

e Randomized

e On-line vs off-line

In the current trade-off between algorithmic simplicity, practical efficiency and theoretical
optimality, practitioners often choose the two first points, taking the risk of having bad
performance on some special kind of data.

Our aim is to conciliate many of the above aspects, namely to obtain an incremental
algorithm using simple data structure having good practical performance on realistic input
and still provable O(nlogn) computation time on any data set.

Previous related work

Our work is strongly related to some previous algorithms for Delaunay triangulation. All
these algorithms are incremental and their complexity is randomized, they use some location
structure to find where the new point is inserted, and then update the triangulation.

The first idea of a randomized incremental construction for the Delaunay triangulation
[BT86] uses a location structure based on the history of the Delaunay triangulation: the
Delaunay tree. Point p; is inserted at time ¢, and to find where point p,, fell, p, is located
in all the triangulations at times 1 to n — 1; the location at time ¢ + 1 is deduced from the
location at time 7. This idea yields an expected optimal complexity [BT93, GKS92] if the
points are inserted in a random order. The drawbacks of this approach are the following:
the location structure consists of the history of the construction and thus strongly depends
on the insertion order, and the additional memory needed cannot be controlled. (The
expected memory is proved to be O(n) and is experimentally about twice the size of the
final triangulation.)

Mulmuley [Mul91] proposed a location structure independent of the insertion order. The
structure has O(logn) levels, each level being a random sample of the level below. At each
level, the Delaunay triangulation of the points is computed, and the overlapping triangles at
different levels are linked to enable location of new points. This structure has the advantage
of being independent of the order of insertion, of ensuring an O(log” n) location time for any
point, and of allowing deletions in an easier way than the Delaunay tree [DMT92]. However,
the additional memory is still important and the location structure is not especially simple.

In 1996, Miicke, Saias and Zhu [MSZ96] proposed a very simple structure to handle
triangulation of random points. The structure reduces to a random subset of &/n points,
and pointers from these points to an incident triangle in the Delaunay triangulation. A new
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4 O. Deuwillers

point is located by finding the nearest neighbor in the sample by brute force, and walking in
the triangulation. For evenly distributed points, the expected complexity of the algorithm is
O(n3) with a small constant, which makes it competitive with many O(nlogn) algorithms.
But for some data (for example points on a parabola) the complexity increases to O(n3).

Overview

Our approach uses a structure with levels similar to Mulmuley, but with simple relations
between levels. This allows better control of the memory overhead. The transition between
two levels is not direct as in Mulmuley, but uses a march similar Miicke, Saias and Zhu to
locate point in triangulations.

In Section 2 we present the algorithm, in Section 3 we prove that the expected complexity
of constructing the Delaunay triangulation is O(nlogn). The parameters of the data struc-
ture are then tuned to minimize the constant in the case of random points and are shown
to yield an excellent behavior in Section 4, we pay special attention to the comparison with
the method of Miicke, Saias and Zhu. Finally we give some implementation remarks and
practical results in Section 5.

2 Algorithm

Let S be a set of n sites in the plane. The aim is to compute the Delaunay triangulation
DT s of § and to maintain it efficiently under insertions and deletions.

2.1 The location structure

The algorithm uses a data structure composed of different levels. Level ¢ contains the
Delaunay triangulation D7 ; of a set of sites S;.

The sets S; forms a decreasing sequence of random subsets of S based on a Bernoulli
sampling technique [MR95, Mul94|:

S§=85286282...28 128

1
Prob(p e S;i41|p€eS:) = - €]0,1[.

The data structure is fairly simple: it contains the points of S and the triangles of all
the triangulations D7 ;. A point p € S such that p € S; C ... C Sp and p € S;41 is said
to be a verter of level ¢ and has a link to a Delaunay triangle of D7 ; incident to p for all
j for 0 < 7 <i. A triangle of DT ; has links to its three neighbors in D7 ; and to its three
vertices.The number k of levels is not fixed; for each point random trials decide its level,
and the point with highest level determines k.

2.2 Location of a query

For the location of a query ¢, we start at a known vertex vy 41 of the highest level k. Then we
search for vy, the vertex of D7, nearest to ¢q. Since vy is also a vertex of D7 ,_1, we search for

INRIA
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Figure 1: Search for v;.

vk _1, the nearest neighbor of ¢ in D71, starting at v,. The search is continued descending
the different levels. At each level i, the nearest vertex v; of ¢ in D7 ; is determined.
At level 7 the search of v; is carried out in three phases:

e Hirst phase: from v;11, we have a link to a triangle of D7; having v,4+1 as vertex.
All triangles incident to v;+1 are explored to find the triangle containing the segment

Vi+14.

e Second phase: all the triangles of D7 ; intersected by v;y1¢ are visited, walking along
the segment v;;1¢ up to the triangle ¢; that contains q.

e Third phase: using neighborhood relationships between triangles, we will traverse few
triangles of D7 ; from ¢; to find v;. If vov’v” are the three vertices of ¢;, and, without
loss of generality, v is closer to ¢ than v and v"”, then v; is either v or it lies in the
circle of center ¢ and passing through v (shaded on Figure 1a); thus the search for v;
has to be done only in the direction of the neighbors of ¢; through the edges vv’ and
vv" and the neighbor through the edge v'v” can be ignored. For each such triangle,
the distance to the new vertex is computed and the algorithm maintains the closest
visited vertex. For a visited triangle ww’w’ such that w is the nearest to ¢ among
ww'w' the neighbor triangle through edge ww' (resp ww") will be visited if angle
quww' is smaller than 7 (Figure 1b).

Figure 1c show the triangles visited by the different phases of the search.
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6 O. Deuwillers

2.3 Updates

Because of its simplicity, the data structure is fairly easy to update. Maintaining it dyna-
mically provides a fully dynamic triangulation algorithm. The links between the different
levels do not use any complicated data structure simply vertices know a triangle at all levels
in which they appear.

To delete a point from S, just delete the corresponding vertex at all the levels where it
appears, which can be done in time sensitive to the degrees of that vertex.

Inserting a point in S reduces to locating the new point at all levels, computing its level
i and inserting the new vertex at all levels 5,0 < j < ¢ (which is sensitive to the degree of
the new vertex once the location is done).

3 Worst-case randomized analysis

The analysis will rely on the randomization in the construction of the random subsets S;
and the points of S are assumed to be inserted in a random order. In this section, no
assumption applies to the data distribution, which can be in the worst case. As usual in
theoretical computational geometry, we make only an asymptotic analysis and give rough
upper bounds for the constants. In the next section, parameter a will be tuned to get a
tight constant in the special case of evenly-distributed points.

Let S be a set of n points organized in the structure described in Section 2 and ¢ a point
to be inserted in S. Since we have assumed a random insertion order, ¢ is a random point
of SU{q}.

We denote n; = |S;| and R; = S; U {q}.

Notice that R; is a random subset of size n; + 1 of S;_; U {¢q} and ¢ is a random element
of Ri.

The cost of exploring all the triangles incident to v;11 at the first phase of the march of
level ¢ is the degree of v;11 in DT ;. The cost of the second phase is the number of triangles
intersected by segment v;11¢. The cost of the third phase is the number of candidate vertices
visited during the search of v; from ¢;.

Lemma 1 The expected degree of v; in DT ;—1 is O(1).

Proof Let N\ be the nearest neighbor graph of R;: that is, the vertices of N are
the points of R;, and ¢,v € R; define an edge of NA if and only if v is the nearest
neighbor of ¢ in R; (denoted by v = NN(q)). NN is well known to be a subgraph of
DTR,, the Delaunay triangulation of R;, and to have maximum degree 6 [PY92].

We denote by d3,7, | (v) the degree of v in DT; 1, and by E,er, the expectation when
v is chosen uniformly in R;. Then we have

Bver, (o7, 0)) = Bues. . (dbr, () <0

INRIA
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notice that d,  (v) is a random variable; result holds since R; and S;; are random
subsets of S;_1 U {¢q} and that the average degree of a vertex in a triangulation is less
than 6.

But even if ¢ is a random point in R;, the vertex v;, the nearest neighbor of ¢ in R;, is
not uniformly random.

1
IR

E Y dbr,_ (NN(q))

9ER;

- ﬁE S0 G

vER; qe{p;v=NN(p)}

< ﬁE (Z edgml(v)>

vER;

Eqyer, (dbr,_, (NN (@)

IA

36

Lemma 2 Given w € R;, the expected number of vertices ¢ of R; such that w belongs to
the disk of diameter defined by q and the nearest neighbor of q in Siy1 is less than 4a.

Proof Let w € R; and let qo,q1,q2 - ..qr be the points of R; that are in a quadrant
with apex w sorted by increasing distance to w. Clearly, a circle of diameter ¢;¢; cannot
contain w and thus, if ¢ = ¢;, a necessary condition for w to be in the disk of diameter
defined by ¢ and the nearest neighbor of ¢ in S;11 is that none of {go,...¢;—1} are in
the sample S;;1, which occurs with probability (1 — é)f

Using four quadrants around w to cover the whole plane, and summing over the choice
of ¢ € R; we get the claimed result. [

Lemma 3 The expected number of edges of DT ; intersecting segment quiy1 is O(a).

Proof Let e be an edge of DT ; intersecting segment qv;11. If e does not exist in D7 g,
it means that e is an internal edge of the region retriangulated when ¢ is inserted in
DT ;. Since ¢ is a random point in R;, the expected number of such edges is 3 since it
equals the average degree of ¢ in R; minus 3.

If e exists in DT g,, one end-point w of e must belong to the disk of diameter ¢ and v;41,
denoted disk[gu;+1], (otherwise any circle through the end-points of e must contain ¢ or
v;4+1 and e cannot belong to DT R,).
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8 O. Deuwillers

The expected number of edges of D7 , intersecting disk[qv;+1] is bounded by the sum
of the degrees of the vertices in disk[qv;11]

E(#{e € DT %, having an end-point € disk [qv;y+1]})

1 (o]
< Ryl Z Z dpr, (W)

9€R: wedisk [quit1]

1
S ® Z dp7y, (W) Z Prob(w € disk [qvi41])
Ril S, =,
1
s Z dp7y, (W) using Lemma 2
Ril = i
< Bucr (A, (w)/a
< 24a using the average degree 6 for w

Notice that Lemma 2 was established for a fixed w and a random ¢ which allows to use

it inside the sum over w. Thus we get a total expected cost for the march bounded by
240 + 3. u

Lemma 4 Given w € R;, the expected number of vertices ¢ of R; such that w belongs to
the disk of center q and passing through the nearest neighbor of q in S;y1 is less than 6a.

Proof This lemma is similar to Lemma 2. Let w € R; and let qo,q1,q2 - ..qr be the
points of R; lying in a wedge of angle ¥ having apex w sorted by increasing distance to
w. Clearly, a circle of center ¢, passing through ¢; (j <) cannot contain w and thus,
if ¢ = q;, a necessary condition for w to be in the disk of diameter defined by ¢ and the
nearest neighbor of ¢ in S;4; is that non point of {qgo,...q—1} is in the sample S;11
which has probability (1 — £)J.

Using six wedges around w to cover the whole plane, and summing over the choice of
q € R; we get the claimed result. L]

Lemma 5 The expected number of triangles of DT ; visited during the search for v; from t;
is O(a).

Proof All the triangles ¢ examined in phase 3 have a vertex in the disk of center ¢
passing through v;;1. Thus we can argue similarly as in Lemma 3, denoting disk |.qv;t+1]

the disk of center ¢ through v;41:

E(#{t € DT r, having an end-point € disk |.qviy+1]})

<Y Y

’ qER; wedisk ‘qu,:_'_l]

INRIA
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1
< X > dpr . (w) > Prob(w € disk |oqvis1])
v wER,; qgER;
1
< Z dpr, (w)ba using Lemma 4
|Rl| weER, '
< EBueri(dpr, (w)6a
< 36« using the average degree 6 for w

th

Theorem 6 The expected cost of inserting n'"* point in the structure is O(alog, n)

Proof By linearity of expectation, Lemmas 1, 3 and 5 prove that the expected cost
at one level is O(a). Since the expected height of the structure is log, n, we get the
claimed result. (The analysis is similar to the ananlysis for skip lists [MR95].) =

Theorem 7 The construction of the Delaunay triangulation of a set of n points is done
in expected time O(anlog,n) and O(z21n) space. The expectation is on the randomized
sampling and the order of insertion, with no assumption on the point distribution.

Proof Easy corollary of Theorem 6. u

4 Tuning parameters

We have proved that our structure is worst case optimal in the expected sense for any set
of points. In this section, we will focus on more practical cases, and tune the algorithm
to be optimal on random distribution. In that case, many events such as that a point has
high degree and that it is the nearest neighbor of a random point can be considered as
independent.

4.1 Phase 1l

We can assume that, dr, (vit1) = 6 (and not only < 36 as proved in Lemma 1). And
thus if the turn around wv;4; is done in clockwise or counterclockwise direction depending
on the position of segment v;1q with respect to the starting triangle, and assuming that
this position is random around v;;; the expected number of orientation tests is 3. Figure 2
shows the different cases to average, the edges v;11w such that an orientation test v;11wq
is performed are indicated, for a typical degree 6 vertex in the triangulation.

RR n° 3298
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Figure 2: Different number of orientation tests in phase 1

4.2 Phase 2

Bose and Devroye [BD95] proved that the expected number of edges of a Delaunay triangu-
lation of random points crossed by a line segment of length [ is O(l,/7) where 7 is the point
density. Our experiments shows that the constant is 2.

The expected number of points in disk gv;+; is a and thus if [ is the length of qv;11 the
density of points in DT ; is a/wl2.

Thus we conclude that the expected number of edges of D7 ; intersecting segment qv;41
is 20,/ = 22

For each edge ww' crossed, two orientation tests are performed: if w is the newly exa-
mined vertex, orientations of triangles wqv,11 and qww' are computed.

We have to point out, that in the orientation tests of kind wquv; 11, the edge quv;;1 remains
constant, and thus some computations do not need to be done for each test.

4.3 Phase 3

Phase 3 is more difficult to analyze precisely, but a rough bound is that the number of
candidate vertices examined (with shortest distance) is less than two and that we examine
less than 8 triangles in total.

In fact, we modified phase 3, instead of really searching for v;, the nearest neighbor of ¢
in S;, we just define v; as the nearest among the three vertices of ¢; (see Appendix). Thus
this modified phase 3 reduced to three distance computations and two comparisons.

INRIA



Incremental randomized Delaunay triangulation 11

4.4 Tuning «

We will count more precisely the number of operation needed to evaluate our primitives.
More exactly, we count the number of floating point operations (f.p.o.) without making
diistinctions between additions, subtractions or multiplications.

The total evaluation at a given level is 3+ % orientation tests involving quv; 1, % other
orientation tests and 3 distance computations.

Orientation tests always using points ¢ and v;41 can be done using 5 f.p.o. to initialize
plus 4 f.p.o. for each test. Other orientation tests need 7 f.p.o. each, and square distance
computations need 5 f.p.o. each.

Thus the total cost in terms of number of f.p.o. at level i is

V) ova
=

Since the number of level is log, n = iggzz we get a cost of co(n) = (29 + 6.2 /a) “052 Z-I

5+4(3+ = +5-3=32+6.2\a.

which is close to its minimum ( € [13.3log, n, 14 log, n]) for a € [18,90], with the minimum
occuring for a ~ 40.

4.5 Comparison with [MSZ96]|

Similar counting of f.p.o. in Miicke et al. algorithm, using a random sample of 3/n points,
produces a cost of

n

c n)= on’ 523 n = —
msz(n) 5+4(3+\/_) 7\/_+56\/_ 17+\/_<\/_+5ﬂ>

which is close to its minimal value for 0.5 < 3 < 1.

As shown by the comparison of the two curves in Figure 3, our method is potentially
much better than [MSZ96], even for a small number of points. However, this method to
analyze our approach hides the discontinuity of the cost, since the effective number of levels
is necessarily an integer. To have a better comprehension of what happens for a small
number of points, we can draw the cost of inserting a point in a structure having a fixed
number of levels.

The classical walk from a random point in the structure costs

VI Ve

Cwalk(n) =5+ 4(3 4+ = ——17+62\/_

A E

which is also the cost of inserting in our structure up to the time a second level is created.
When £k levels have been created, the cost is

ce(n) = Cwalk ( ) + 15k + k - cwair(a)

RR n° 3298



12

O. Deuwillers
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Figure 3: Comparison of number of floating point operations between c¢o(n) and cysz(n)

for a =40 and g = 1.
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We can alternatively mix this multilevel approach with Miicke et al’s. sampling at the
first level of the structure. In that case, the cost is

i) = cursz () + 15k + k- cuan(@)

This comparison (see Figure 4) shows that [MSZ96] (cf(n)) becomes better than the
simple march (¢;(n)) for n > 40. The two level structure (cz(n)) becomes better than the
single level structure (ci(n)) for n > 180 and better than [MSZ96] (cj(n)) for n > 600. The
main information is that the structure presented in that paper should be significantly better
than [MSZ96] for 10000 < n.

5 Implementation

5.1 Deletion

The above structure supports insertions and queries as explained above, but also deletions.
Since there is no complicated data structure to maintain, deletions can be handled by just
deleting the removed point at each level where it appears.

This can be done in output-sensitive time [Che87, AGSS89], and thus the deletion of
a random point is done in expected constant time since a point appears at an expected
constant number of levels and its expected degree is also constant.

5.2 Arithmetic degree

The algorithm above is designed to make a parsimonious use of high degree tests [TLP96].
More precisely, the location phase uses only orientation tests on three points in phases 1
and 2, and distance computation and angle comparisons with % in phase 3. All these tests
are degree 2 tests. Clearly, updates need to use in-circle tests which are of degree 4.

An alternative to phase 3 should have to use in-circle tests to limit the explored triangles
in DT ; to those whose circumcircle contains ¢. Such variant may explore fewer triangles
and be easier to analyze, but may use more degree 4 tests.

5.3 Robustness issues and degeneracies

Degeneracies are solved by handling special cases: if two points have the same coordinates,
then the insertion is not done, if four points are cocircular, then the last point inserted is
considered as inside the circle defined by the others.

We use exact arithmetic for 24 bits integers, and thus coordinates of our points are
integers in range [—16777216, 16777216] (up to a multiplication by a power of 2). Using this
restricted kind of data, double precision computation is exact on degree 2 tests and almost
never leads to precision problems on degree 4 predicates. Nevertheless, the exactness of
all computations are verified by an arithmetic filter and exact computation is performed if
needed.

RR n° 3298
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Eng EMSZ]

two levels)

c3(n) (two levels + MSZ)
C3\n
cs(n

200000 400000 600000 n

Figure 4: Comparison of number of floating point operations between ci(n) and cf(n) for
a = 40.
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5.4 Code parameters

The following parameters can be specified:
e maximal number of levels
e « the ratio between two levels
e the minimal number of points to use the higher level for point location
e the minimal number of points to use M.SZ sampling at one of the higher levels
e /3 the constant for the size of M SZ sample.
Our default parameters are
e number of levels unlimited
o o= 30.
e minimal size to use hierarchy is 20.
e minimal size to use MSZ is 20.
o f=1.

We found that the code is relatively insensitive to the parameters. For reasonable changes
of these parameters, (up to a factor 2) the computation time is not greatly affected. Using
these configuration parameters, our code can be used to run

e the usual walk algorithm (only one level and minimal size for MSZ=0c0),
e the Miicke et al. algorithm [MSZ96] (only one level),
e the hierarchical algorithm described in this paper (minimal size for MSZ=00),

e the mixed method suggested in Section 4.5 (default parameters above).

5.5 Experimental results
5.5.1 Data sets

We claim that our algorithm performs well on random point sets, and has acceptable worse
case complexity. To illustrate this fact, we will test it with the realistic and degenerate
data sets. For each kind of data, we used sets of size 5,000, 50,000 and 500,000 points. The
coordinates are random on 24 bits and the constraints such that the points are on a parabola
are verified, up to the rounding arithmetic errors.

e random: points evenly distributed in a square.

RR n° 3298
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ellipse: points evenly distributed on an ellipse.

ellipse2: 95% points evenly distributed on an ellipse plus 5% points evenly distributed

in a square.

circle: points evenly distributed on a circle.

parabola: points evenly distributed on a parabola,

If the circle and parabola examples can be considered as pathological inputs, the ellipse
and ellipse2 examples are more realistic, Delaunay triangulation of points distributed on a
curve occurs in practical applications, for example in shape reconstruction (see Figure 5).

5.5.2 Results

Following results are obtained on a Sun-Ultral 200 MHz. The code is written in C++ and
compiled with AT-T compiler with optimizing options. Time has been obtained with the
clock command and is given in seconds. The time which is measured is just the Delaunay
computation; it does not take into account the time for input or output.

The following table gives the computation times for execution of the code with the dif-
ferent parameters described in Section 5.4. Since it is the same code, the low level primitives
such as in-circle tests or the walk in the triangulation are identical and it provides a fair
comparison between the different methods.

distribution size || walk | [MSZ96] | hierarchy | hierarchy + MSZ
random 5000 0.3 0.17 0.15 0.14
random 50000 12 3.8 2.7 2.3
random 500000 460 72 36 31
ellipse2 5000 || 0.53 0.34 0.21 0.20
ellipse2 50000 49 21 3.9 3.5
ellipse2 500000 930 760 57 49
ellipse 5000 2.2 0.46 0.31 0.21
ellipse 50000 187 21 3.9 3.7
ellipse 500000 || long 270 54 95
parabola 5000 2.5 0.31 0.21 0.16
parabola 50000 87 5.9 3.2 3.0
parabola 500000 || long 74 69 45
circle 5000 || 0.15 0.13 0.13 0.14
circle 50000 24 2.6 24 24
circle 500000 39 44 36 36

The last column is always the fastest method. It is significantly better than

MSZ for very

large sets of random points, and the difference is even more important on data set ellipse2
which is representative of real applications.
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5.5.3 Comparison with other software

We have compared with some Delaunay softwares available on the WWW.

ghull by Bradford Barber and Hannu Huhdanpaa, duality with 3D convex hull [BDH93|

(available at http://www.geom.umn.edu/locate/qhull).

div-conquer by Jonathan Shewchuk, divide and conquer [She96]

sweep by Jonathan Shewchuk, plane sweep

incremental by Jonathan Shewchuk, incremental with Miicke et al. localization.

These three codes supports exact arithmetic on double (available at http://www.cs.cmu.edu/~quake/triangle.rese

Dtree Delaunay tree structure[BT93] (time includes input)

(available at http://www.inria.fr/prisme/logiciel /del-tree.html).

hierarchy this paper, mixed with MSZ.

| distribution |  size || qhull | sweep | div-conquer | incremental | Dtree | hierarchy |
random 5000 0.65 0.21 0.11 0.29 1.4 0.14
random 50000 8.0 3.6 1.6 6.6 17 2.3
random 500000 101 53 22 150 | swap 31
ellipse2 5000 || 0.54 0.21 0.13 0.75 1.3 0.20
ellipse2 50000 7.8 3.2 2.16 42 16 3.5
ellipse2 500000 420 46 29 2100 | swap 49
ellipse 5000 || 0.83 0.18 0.14 2.1 1.3 0.21
ellipse 50000 57 2.8 2.4 110 14 3.7
ellipse 500000 | swap 39 33 1400 | swap 55
parabola 5000 3.9 0.16 0.11 2.0 1.2 0.16
parabola 50000 790 2.7 2.0 110 14 3.0
parabola 500000 || swap 39 28 1800 | swap 45
circle 5000 93 0.17 0.17 0.52 14 0.14
circle 50000 220 3.1 1.8 11 15 2.4
circle 500000 || swap 22 43 240 | swap 36

6 Conclusion

We proposed a new hierarchical data structure to compute the Delaunay triangulation of
a set of points in the plane. It combines good worst case complexity, fast behavior on real
data, small memory occupation and dynamic updates (insertion and deletion of points).
Referring to Su and Drysdale [SD97] study of several techniques and our comparisons
with Shewchuk implementation [She96] of some of these techniques, we have shown that our
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implementation is competitive with other approaches on random data. Conversely to other
fast techniques, our algorithm performs well on pathological inputs and allows a dynamic
setting.

The main idea of our structure is to perform point location using several levels. The
lowest level just consists of the triangulation, then each level contains the triangulation of
a small sample of the levels below. Point location is done by marching in a triangulation
to determine the nearest neighbor of the query at that level, then the march restart from
that neighbor at the level below. Location at highest level is done using [MSZ96] which is
efficient for small set of points.

One characteristics of the structure is that best time performance is obtained with a
ratio of about three per cent between two levels, which yields to few levels (three or four
typically) and a small memory occupation. The structure is simple and does not need
additional features such as buckets.

Such structure can be generalized to other problems. The two main ingredients of the
proofs are bounds on the maximal degree of the nearest neighbor graph and the expected
degree of a random vertex in the Delaunay triangulation. The first generalizes well in higher
dimension, while the second becomes an data sensitive parameter (constant for random
points, n/(¢=1/21 in the worst case). A generalization for computing the trapezoidal map
can also be done.

Code

A demo version compiled for Sun Solaris is available at
http://www.inria.fr /prisme/logiciels/del-hierarchy /.
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A Appendix

Unfortunately, Theorem 6 does not hold for the modified version of v; suggested at Section 4.3. On
Figure 6, for all the points marked by a cross, wq is the nearest neighbor among the three vertices
of the Delaunay triangle containing it, but wo does not have bounded degree. Thus, with some
constant probability ~ a% the three vertices of a triangle are in the sample and the point inside is
not, and phase 1 has an non constant cost Z.

We hope that something is still provable! Anyway, the situations creating problems for the
modified algorithm are fairly pathological.
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points going to woy

Figure 6: Counter example for optimality of modified phase 3.
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