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An Upper Bound for Conforming Delaunay Triangulations 11 IntroductionDecompositions of two- and higher-dimensional domains play a major role in many engineeringapplications. For example, the �nite element analysis method is based on the decomposition ofa domain into so-called elements [StFi73]. A particularly important class of decompositions aresimplicial cell complexes, sometimes referred to as triangulations. Here the domain is decomposedinto simplices (triangles in two and tetrahedra in three dimensions) so that the intersection of twosimplices is either empty or a face of both. Applications of triangulations can be found in �niteelement analysis [Cave74], surface interpolation [Laws77], shape reconstruction [Bois88], and otherresearch areas.An important type of triangulation is the Delaunay triangulation [Dela34]. It is dual to the so-called Voronoi diagram [Voro08]. The popularity of the two-dimensional Delaunay triangulation ispartly due to the fact that it optimizes various quality measures, including the smallest angle [Sibs78],the largest circumscribed circle [D'AS89], the largest minimum enclosing circle [D'AS89, Raja91], andthe integral of the gradient squares [Ripp90]. Algorithms that construct the Delaunay triangulation ofa given set of n points in the plane in time O(n logn) can be found in Guibas, Stol� [GuSt85], Fortune[Fort87], Guibas et al. [GKS90], and other publications in computational geometry [PrSh85, Edel87].In practical applications it is often the case that a constraining set of points and line segmentsmust be part of the triangulation. The constraining set is most naturally modeled as a geometricgraph whose vertices are the points and endpoints and whose edges are the line segments in the set.It is assumed that the line segments intersect at most at endpoints.Of course, the Delaunay triangulation of the vertices of such a geometric graph will, in general,not contain all edges of the graph. This leads to the de�nitions of constrained and of conformingDelaunay triangulations. The constrained Delaunay triangulation of a geometric graph is, in somesense, the best approximation of the Delaunay triangulation given that it must contain the graph[LeLi86]. For a graph with n vertices it can be constructed in time O(n log n), see e.g. [Seid88].A conforming Delaunay triangulation is a genuine Delaunay triangulation, or more precisely, acompletion of a degenerate Delaunay triangulation. Its relation to the constraining graph is thateach vertex of the graph is also a vertex of the triangulation, and each edge of the graph is theunion of edges of the triangulation [BFL88]. Constructing a conforming Delaunay triangulation ofa geometric graph is usually harder than constructing the constrained Delaunay triangulation. Thereason is that the graph can force the introduction of a large number of points to achieve conformity.Previous work [Bois88, NaSr91, Olou91, Saal91, SaPe91] fails to provide upper bounds on the numberof points necessary for a conforming Delaunay triangulation that are polynomial in the size of theconstraining graph. Such a bound is given in this paper.The paper is organized as follows. Section 2 formalizes the problem and section 3 presentssome preliminary results. Section 4 proves the upper bound on the number of points needed for aconforming Delaunay triangulation. Section 5 explicitly formulates the algorithm that is implicit inthe proof of the upper bound. Section 6 concludes the paper with some open problems.



An Upper Bound for Conforming Delaunay Triangulations 22 The Problem De�nitionFirst some notation. Let V be a set of n points in <2. An edge is a closed line segment connectingtwo points. Let E be a collection of edges. Then G = (V;E) is a plane geometric graph if(i) no edge contains a vertex other then its endpoints, that is, ab \ V = fa; bg for every edgeab 2 E, and(ii) no two edges cross, that is, ab\ cd 2 fa; bg for every two edges ab 6= cd in E.The connected components of <2 minus all vertices of V and all points on edges of E are the facesof G. For example, if the edges in E are pairwise disjoint then G is a matching and there is onlyone face. Another common case is when E and V form a single cycle. This cycle is the boundaryof a polygon, and G has two faces, the inside and the outside of the polygon. If V is �xed and E ismaximal so that no two edges cross then we call G a triangulation. In this case, all bounded facesare triangles and their union is the convex hull of V .An edge ab, a; b 2 V , is a Delaunay edge if there is a circle through a and b so that all other pointsof V lie outside the circle. The collection of Delaunay edges de�nes a plane geometric graph D(V )known as the Delaunay triangulation of V . In the non-degenerate case, which excludes four or morepoints on a common circle, D(V ) is indeed a triangulation. Even in degenerate cases, the faces ofD(V ) are convex polygons, and these can be further subdivided into triangles using additional edges.Each additional edge cd, c; d 2 V , has the property that there is a circle through c and d so that allother points of V lie on or outside this circle. The resulting triangulation is called a completion ofD(V ).The problem studied in this paper can now be described as follows. Let G = (V;E) be a planegeometric graph. A completion C of a Delaunay triangulation conforms to G if every vertex of G isa vertex of C and every edge of G is the union of edges of C. The problem is to �nd a small pointset S so that D(S) has a completion that conforms to G. We call such a completion a conformingDelaunay triangulation of G. It is also desirable to have an algorithm that constructs S as well asa completion of D(S) that conforms to G. The remainder of this section shows that the latter taskcan be handled by existing constrained Delaunay triangulation algorithms [Seid88], once we have analgorithm that �nds the points.As mentioned above, each edge ab of a completion of D(S) satis�es the empty open disk property,that is, there exists a circle through a and b so that no point of S belongs to the open disk boundedby the circle. We now argue that this property is also su�cient for the existence of a conformingDelaunay triangulation. Call the closed portion of an edge of G between two contiguous points of Son this edge an interval.2.1 D(S) has a completion that conforms to G i� every interval de�ned by G and S has the emptyopen disk property with respect to S.Proof. The only if part follows from the de�nition of a completion of D(S). For the if part assumethat every interval ab has the empty open disk property. If ab is an edge of D(S) then nothing has



An Upper Bound for Conforming Delaunay Triangulations 3to be proved. Otherwise, no edge of D(S) can cross ab because every circle passing through theendpoints of such an edge encloses a or b or both. Because G is plane, there is also no other intervalthat crosses ab. So ab, and all other intervals that are not edges of D(S), can be added to D(S)without introducing any crossing. We can add zero or more non-crossing edges arbitrarily until acompletion of D(S) is obtained.3 Preliminary ResultsAn edge ab 2 E that belongs to the boundary of the convex hull of V automatically satis�es theempty open disk property, and no points on ab need to be introduced. For other edges ab there arepoints on both sides of the line that contains ab. It is thus possible that ab does not satisfy theempty open disk property, in which case points must be added to subdivide ab into smaller intervals.In some cases, the size of S must be at least quadratic in the size of G. This bound can be shownusing the example of Figure 3.1 which consists of m = jEj edges and n = jV j = 2m + 2k vertices.The edges are parallel and very close to each other. The isolated vertices come in k pairs, with one������ ������� � �� � �Figure 3.1: An 
(mn) lower bound example on the number of vertices of a conforming Delaunay triangulation.In the example shown, m = 6, k = 3, and therefore n = 2m + 2k = 18.vertex on each side of the group of edges. Provided the edges are su�ciently close to each other, andthe vertices are su�ciently close to the edges, it will be necessary to place a point approximatelybetween the two vertices of every pair on every edge. This proves that at least mk points need tobe added to obtain a conforming Delaunay triangulation. The lower bound of 
(mn) follows fork = 
(n). For smaller k, the endpoints of half of the m edges can be used to play the role of theisolated vertices.A common approach to produce a conforming Delaunay triangulation is to place su�ciently manypoints on the edges of the constraining graph so that each interval has a circle that avoids all otheredges [Bois88, NaSr91, Olou91, Saal91, SaPe91]. This can always be achieved except maybe at placesclose to shared endpoints where sharp angles are formed. This special case is handled by placingpoints at the intersections of the edges with a su�ciently small circle drawn around the commonendpoint. The method avoids the need for backtracking as no point placed on any edge harms anyinterval that already has such a circle. The price, however, is a possibly horrendous number of newpoints. Indeed, there is no function f(n) that can bound the number of points although for everyproblem instance it is �nite. In particular, the number of points added grows as the edges movecloser to each other.An upper bound that depends solely on n can be obtained as follows. Initially, set S = V andconsider all m edges as unprotected. Treat the edges of G in turn. At the time the ith edge is treated,



An Upper Bound for Conforming Delaunay Triangulations 4it may consist of various protected and unprotected intervals. Place su�ciently many points on theunprotected intervals so that each new interval has a circle that does not enclose any point of thecurrent set S. Each such circle may, however, intersect other edges. To prevent points from beingplaced inside the circle later in the process, we place points at the intersections between the circle andany unprotected interval of another edge. Declare each new interval as protected if it is enclosed bythe circle and unprotected otherwise. See Figure 3.2. The number of points needed to treat the ith� �� �� � � ��� 0 12 34 5 6 789 � ��� � ��� � �Figure 3.2: The original graph, G, has vertices 0 through 9 and edges 01, 23, 45, 67 and 68. First, edge 01 istreated. In the process, two new points are added to 01. The resulting three circles cross the other edges in sevenpoints, which are also added. Each edge of G consists now of protected and unprotected intervals.edge does not exceed the current size of S since it su�ces to project the current set S orthogonallyonto the ith edge. Similarly, the number of circles needed for the ith edge does not exceed the currentsize of S. Assume inductively that jSj � n(2m+ 1)i�1 before the next step that treats the ith edge.The next step creates at most n(2m+ 1)i�1 circles intersecting the remaining edges in at most 2mpoints each. The size of S thus increases to at most n(2m+ 1)i�1 + n(2m+ 1)i�12m = n(2m+ 1)i.The total number of points at the end of the process is therefore at most n(2m+ 1)m.This method apparently produces far too many points. An improvement was found by Mehlhorn,Sharir, and Welzl. Their method combines the projection of points with a divide-and-conquer schemeand achieves a subexponential although not yet polynomial bound. The idea of protected andunprotected intervals turns out to be valuable in our e�ort to obtain a polynomial upper bound onthe number of points.4 The Upper BoundGiven a plane geometric graph G = (V;E), with jV j = n and jEj = m, this section shows how to �ndO(m2n) points so that each resulting interval has the empty open disk property. As de�ned earlier,an interval is the closed portion of an edge between two contiguous points of S chosen on this edge.If no point of an edge belongs to S, except its endpoints, then this edge itself is an interval.The Global Idea. The point set S is constructed in two steps, the blocking and the propagationphase. Initially, S contains only the vertices of G, that is, S = V .The goal of the blocking phase is to �nd O(n) pairwise disjoint open disks that contain no pointsof V so that the union of their closures is connected and contains V . Each circle bounding such a disk



An Upper Bound for Conforming Delaunay Triangulations 5is called a blocking circle. After �nding these disks, we add the intersections between blocking circlesand edges of G to the set S. In addition, we add the O(n) points at which blocking circles toucheach other. The new set S forms the vertex set W of a plane geometric graph H which conforms toG. The edges of H are the intervals of G together with edges connecting contiguous points of S onblocking circles.H has two types of edges. Each protected edge is enclosed by a blocking circle; its endpoints lieon the blocking circle. All other edges are unprotected. By construction, protected edges have theempty open disk property with respect to the current set S. We will make sure that no points insidethe blocking circles are added to S later so that this property persists with respect to all future setsS. The unprotected edges are further subdivided into intervals in the propagation phase. For an edgeor interval ab, we de�ne the minidisk of ab, Mab, as the smallest open disk whose closure containsab. If ab is unprotected and its minidisk contains a point c 2 S visible from every point of ab thena point c0 subdividing ab into ac0 and c0b is added to S. This point c0 will be chosen so that c liesoutside Mac0 and Mc0b.The Blocking Phase. We show how to use a minimum spanning tree of V to construct n� 1 opendisks D1; D2; : : : ; Dn�1 that satisfy the following properties:(1) Di \ V = ; for all 1 � i � n � 1,(2) Di \Dj = ; for all 1 � i < j � n � 1,(3) D = n�1[i=1 (closure of Di) is connected, and(4) V � D.A minimum spanning tree T of V is a spanning tree of the complete geometric graph (V; �V2�) whosesum of edge lengths is a minimum. An important property of T is that the minidisk of every edgeof T is disjoint from V , see e.g. [Edel87, section 13.2.5].Label the vertices of T (the points of V ) from 0 through n � 1 so that for every 0 � j � n � 1the vertices 0; 1; : : : ; j induce a subtree of T . De�ne ij so that ijj is an edge of this subtree. Noticethat ij < j and that ij is unique. The edges ijj are now used to de�ne the disks Dj . The disk D1 isthe minidisk of edge 01. The disk Dj, for 2 � j � n� 1, is maximal so that(i) its center lies on ijj,(ii) its bounding circle goes through j, and(iii) it is disjoint from disks D1 through Dj�1 constructed earlier.Clearly, Dj �Mijj . This implies property (1). Properties (2), (3), and (4) follow from the construc-tion.



An Upper Bound for Conforming Delaunay Triangulations 6Let V 0 be the set of points where the blocking circles intersect the edges of G, and let V 00 be theset of points (not in V 0) where the blocking circles touch each other. As described above, the pointsin V 0 and V 00 are added to S. LetW be the new set S and let H = (W;F ) be a plane geometric graphwith F = F 0 [ F 00 de�ned as follows. The set F 0 contains all intervals on edges of G. Rememberthat by construction all points of W lie on the n � 1 blocking circles. Consider an open disk Dibounded by a blocking circle Ci and let p0; p1; : : : ; pk�1; pk = p0 be the points of W that lie on Ci inthis sequence. These points de�ne a convex k-gon with edges p`p`+1, 0 � ` � k � 1, termed walls.Some of these walls may be intervals on edges of G and therefore belong to F 0. In any case, F 00 isthe collection of all walls. This completes the de�nition of H which conforms to G, see Figure 4.1.� ��� � � ��0 12 3 4 5 67� � � � �� ���Figure 4.1: The original graph, G, has vertices 0 through 7 and edges 17, 23, 46 and 67. The edges of theminimum spanning tree, 01, 12, 23, 14, 45, 56 and 57, are indicated by broken lines. Each edge of the treecorresponds to a blocking circle. Each blocking circle encloses protected edges of H.Note that each wall is protected by a blocking circle. The collection of walls de�nes another planegeometric graph, I = (W;F 00). Clearly, I is a subgraph of H. It will be convenient to adopt thetopology of the sphere. In this model all faces of H, including the outside face, are simply connectedbecause H is connected. Similarly, all faces of I are simply connected.The Propagation Phase. The unprotected edges ofH are further subdivided into intervals during anon-deterministic process. Initially, every unprotected edge is also an unprotected interval. Consideran unprotected interval ab and its minidisk Mab. Call a point c 2 S visible from ab if the opentriangle abc is disjoint from all edges of H. Suppose a point c 2 S visible from ab is contained inMab. We add c0 to S, where c0 is the orthogonal projection of c onto ab, and thus subdivide ab intoac0 and c0b. Repeat this step until there is no unprotected interval ab with such a point c.This completes the description of how the point set S is constructed. The remainder of thissection shows that the eventual size of S is O(m2n). The blocking phase adds at most (2m�1)(n�1)intersection points between edges and circles and fewer than 3n points where circles touch each other.The latter bound follows from the planarity of the intersection graph of the blocking circles.We now focus on proving that each point created in the blocking phase gives rise to at most O(m)points in the propagation phase. We begin by proving a few properties of the propagation process.



An Upper Bound for Conforming Delaunay Triangulations 7Let ab be an unprotected interval at some point in time during the process, and let c 2 S lie in Mab.Then the orthogonal projection c0 of c onto the line through a and b lies strictly between a and b.Furthermore, c 62Mac0 and also c 62Mc0b.Assume now that c 6= x; y is a point on some edge xy of G. All points in S� (V [V 00) are of thisform. Then we have the following property.4.1 There are at most two intervals, ab and a0b0, so that c is visible from both and contained intheir minidisks. Furthermore, ab and a0b0 lie on di�erent sides of the line through x and y.Property 4.1 holds because if c 2 Mab then 6 acb > �2 , and if c is visible from ab then a and b lie onthe same side of the line through x and y. The same is true for a0b0. So if ab and a0b0 lie on the sameside of the line then one endpoint of a0b0 must lie between a and b as seen from c. This contradictsthe assumption that c is visible from ab and from a0b0.Let c 2 Mab be visible from ab, and let c0 be the orthogonal projection of c onto ab. Then wehave the following property.4.2 There is no interval a00b00 on the same side of the line through a and b as c so that c0 is visiblefrom a00b00 and c0 2Ma00b00 .Assume such an a00b00 exists. Then 6 a00c0b00 > �2 which implies that c lies between a00 and b00 as seenfrom c0. This either contradicts that c is visible from ab or that c0 is visible from a00b00.Assume now that c 2 S does not lie strictly between the endpoints of an edge of G, so c 2 V [V 00.Similar to 4.1 we have the following property.4.3 There are at most three intervals ab so that c is visible from ab and c 2Mab.The reason for 4.3 is simply that at most three angles larger than �2 can be packed around c.A Locality Property. Notice that the propagation phase takes care only of local constraints. Inother words, it considers only visible point-interval pairs c; ab. Although the minidisk of ab cancontain other points of S, it is indeed justi�ed to ignore such points, as we will see shortly. Let abbe an unprotected interval. We call the minidisk Mab locally empty if it contains no point of S thatis visible from ab. Furthermore, Mab is empty if it contains no point of S at all.To prepare for the next lemma, we consider an interval ab and a point c 2Mab. If c is not visiblefrom ab then there are intervals st that intersect the open triangle abc. We say that st separates cfrom ab if both endpoints, s and t, lie outside Mab. Otherwise, st hinders the visibility between c andab but it does not separate. Let Ec;ab be the set of intervals that separate c and ab, and de�ne Fc;abas the set of (non-separating) intervals that hinder the visibility between c and ab. It is interestingto observe that Fc;ab = ; or there is another point d of S in Mab with Ed;ab � Ec;ab and Fd;ab = ;.To see this, choose a point x 2 abc so that the open triangle abx does not intersect any edge of H.Move x continuously and straight towards c until either a side of the triangle abx hits a vertex d orx hits a non-separating interval uv of H. In the second case at least one of the two endpoints, say u,lies in Mab. Slide x on uv towards u until either a side of the triangle abx hits another vertex d or x



An Upper Bound for Conforming Delaunay Triangulations 8reaches u (then d = u), whichever happens �rst. The path of x crosses only intervals that separatec and ab, therefore Ed;ab � Ec;ab.4.4 If the minidisks of all unprotected intervals are locally empty then they are all empty.Proof. Suppose the claim is false. Then, there is an unprotected interval ab whose minidisk Mabcontains a point c 2 S. As argued in the preceding paragraph, we can make the extremum assumptionthat ab and c are chosen so that the number of separating intervals Ec;ab is a global minimum andFc;ab = ;. Let st be an interval that separates ab from c. Note that st is not protected because everycircle through s and t encloses at least one of a, b and c. But if st is an unprotected interval, we havec 2 Mst because s and t are outside Mab. Furthermore, st cuts Mab into two pieces, and the piecethat contains c is properly contained in Mst. Therefore Ec;st � Ec;ab and we have proper containmentbecause st 2 Ec;ab does not belong to Ec;st. This either contradicts the extremum assumption orthat st is locally empty.Propagation Sequences. We are now ready to analyze the number of points created in thepropagation phase. Our particular goal is to show that each point c created in the blocking phasegenerates at most 3m points in the propagation phase. We say that a point c generates another pointd if there is a sequence c = c0; c1; : : : ; ck = d so that ci+1 is created as the orthogonal projection ofci onto some interval during the propagation phase, for 0 � i � k � 1. The sequence c0; c1; : : : ; ckis called a propagation sequence. It is non-trivial if k � 1, and it is maximal if c0 is created in theblocking phase and ck generates no further point. Note that all ci, i � 1, of a maximal propagationsequence lie on unprotected edges of H, and these edges are contained in edges of G.Every point d created in the propagation phase gives rise to at most one point d0. To see thisnote that such a point d lies strictly between the endpoints of an edge xy of G. Now 4.1 impliesthat d is visible from at most two intervals whose minidisks contain d. By 4.2 and because d itselfis generated by orthogonal projection, d generates another point d0 on at most one of these twointervals. Together with 4.3, this implies that a point of S constructed before the propagation phasegives rise to at most three non-trivial maximal propagation sequences. In fact, there are at mosttwo such sequences per point not in V [ V 00. To establish that the length of a maximal propagationsequence is at most m, it su�ces to prove the following.4.5 No propagation sequence can have two or more points on the same edge of G.Proof. Suppose the claim is false. Consider a minimal propagation sequence, c = c0; c1; : : : ; ck = d,so that c and d lie on the same edge xy of G. Consider the polygon, P , whose boundary consistsof the line segments cd and cici+1, for 0 � i � k � 1. Recall that walls are protected, so no pointsare projected on or across them. Thus, P lies completely within a face of I. Since all vertices of Gare also vertices of I, and because all faces of I are simply connected, there can be no vertex of Ginside P . Thus, each edge of G that intersects P has its endpoints outside P . It thus intersects theboundary of P in at least two points. Since c0; c1; : : : ; ck is minimal, it follows that k = 2 and thatc0 and c2 lie on the same side of the edge xy of G that contains c1. But this contradicts property4.2.As mentioned earlier, jV [ V 00j < 4n. Each point c 2 V [ V 00 gives rise to at most three maximalpropagation sequences of length at most m + 1 each. The point c itself is the only point of these



An Upper Bound for Conforming Delaunay Triangulations 9sequences that does not necessarily lie on an edge of G. The number of other points created duringthe blocking phase is less than 2mn. Each such point gives rise to at most two maximal propagationsequences of length at most m each. The total number of points after the propagation phase is thusless than 4n(3m+ 1) + 2mn(2m� 1) = 4m2n+ 10mn+ 4n:This proves the main result of this paper.Theorem 4.6 Let G = (V;E) be a plane geometric graph with jV j = n and jEj = m � 1. There existsa point set S of size jSj = O(m2n) so that its Delaunay triangulation has a completion that conformsto G.5 Implementing the ProofThe proof of the O(m2n) upper bound presented in section 4 is constructive and can be translatedinto an algorithm without much e�ort. The only demanding step is the implementation of thepropagation phase. In order to keep the time-complexity roughly within the same order of magnitudeas the number of points added, we need to project the points in a sequence that is computationallyinexpensive. We will assume that point coordinates can be stored in constant amount of storage andthat basic geometric operations, such as intersecting a circle with an edge and projecting a pointonto a line, can be carried out in constant amount of time.The Blocking Phase. A minimum spanning tree of a set of n points in the plane can be computedin time O(n logn), see e.g. [Edel87, section 13.2.5]. This requires the construction of the Delaunaytriangulation of the points and running a standard minimum spanning tree algorithm on the geo-metric graph of this triangulation, see e.g. [CLR90]. Alternatively, a minimum spanning tree can beobtained in time O(n2) directly from the complete geometric graph of the points. The slower methodis certainly easier to implement.After computing the tree, we need to �nd the open disks D1; D2; : : : ; Dn�1 that satisfy properties(1) through (4). Most straightforwardly, these disks can be constructed one by one as explainedin section 4. For each j, the largest disk Dj needs to be found so that its center lies on ijj, j lieson the bounding circle of Dj , and Dj avoids all Di, i < j. This can be done in time O(j). Thetotal amount of time for this step is thus O(n2). The plane graphs H and I can be computed byintersecting the bounding circles of the Dj with each other and with the edges of G. The resultingO(mn) intersection points can be computed and sorted along circles and edges in time O(mn logn).A Tree of Regions. Recall that I is a subgraph of H and contains none of its unprotected edges.A point c 2 S is projected onto an edge ab only if ab is unprotected. Thus, projections happen onlywithin faces of I. As mentioned earlier, I is connected and therefore its faces are simply connected.We can thus restrict our attention to a single face of I.Let f be a face of I that is further subdivided into regions by unprotected edges of H. Let Rf bethe graph whose nodes are the regions of f , and whose arcs connect regions that share unprotectededges of H. Each subdividing unprotected edge has both endpoints on the boundary of f , whichimplies that Rf is a free tree. It will be convenient to �x an arbitrary node as its root and thusimpose a parent-child relation on adjacent node pairs. Points will be projected onto unprotected



An Upper Bound for Conforming Delaunay Triangulations 10edges in three stages. The �rst stage computes an initial set of projections that avoids di�cultsituations in the second stage. The second stage computes and sorts segments along the boundaryof each region. The last stage consists of a post-order and a pre-order traversal of Rf .Consider two adjacent nodes � and � of Rf , and let ab be their shared unprotected edge. Pointson the boundary of � that are projected onto ab are said to be exported from � to �. Symmetrically,we say they are imported by �. The points projected onto ab are stored in two separate sorted lists,L�� and L��, one for each side of ab. The complete list of points exported from � to �, L�� , canbe computed only after all import lists L��, for � 6= � adjacent to �, are available. Note that theimport list from �, L��, is not necessary for computing L�� because a propagation sequence followsonly one direction of a path in Rf (see property 4.5).Stage 1: Subdividing Unprotected Edges. A vertex of � is re
ex if the angle inside � exceeds�. The �rst stage projects every re
ex vertex c onto all unprotected edges ab for which there existsa portion a0b0 � ab so that c is visible from a0b0 and c 2Ma0b0 . Since 6 a0cb0 > �2 there can be at mostthree such edges ab. As a precaution, we do not require that c be visible from ab. This way c doesnot need to be reconsidered after ab gets subdivided. Although such projections are not prescribedby the proof in section 4, they neither invalidate the correctness nor the analysis of the construction.Each re
ex vertex is necessarily a vertex in V [ V 00, so there are fewer than 4n of them. Since eachvertex is projected at most three times, we thus increase the number of unprotected edges by lessthan 12n.Here is how we �nd the at most three unprotected edges for a re
ex vertex c. The part of � visiblefrom c can be computed in a single walk along the boundary of �, see e.g. [ElAv81, Lee83, JoSi87].The amount of time needed for the walk is proportional to the number of edges. Select the atmost three edges that have connected portions visible from c along an angle exceeding �2 . Project corthogonally onto these at most three edges. Each projection subdivides an unprotected edge intotwo such edges.The rest of the algorithm uses the subdivision of H produced in stage 1. It will therefore beconvenient to call the elements of this subdivision vertices and edges. After the completion of stage1, no re
ex vertex visible from an unprotected edge ab lies inside the minidisk Mab. It thus followsthat if a point c lies in Mab and is visible from a point on ab then it is also visible from ab.Stage 2: Computing Boundary Segments. This stage is a preprocessing step that speeds upcomputations in stage 3. It prepares the boundary of � in such a way that points can be projected ontovarious unprotected edges in a single walk along the boundary of �. To this end, we associate piecesof the boundary, called segments, with the unprotected edges of �. A segment for an unprotectededge ab is a maximal connected piece of �'s boundary so that every point x of the segment is visiblefrom ab and contained in Mab. Note that segments do not include their endpoints. Since � is simplyconnected, a point x is visible from ab i� it is visible from a and also from b. The segments of ab areconstructed as follows.1. Find the part of �'s boundary visible from a. As mentioned above, this can be done in a singlewalk along the boundary of �.2. Find the part of �'s boundary that is also visible from b. Again a single walk su�ces.



An Upper Bound for Conforming Delaunay Triangulations 113. Intersect the identi�ed boundary pieces with Mab.De�ne the rank of �, r(�), equal to the number of unprotected edges of �, and let j�j be the totalnumber of edges of �. If an edge bounds � on both sides, that is, the edge belongs to the interior ofthe closure of �, then it is counted twice. By construction, this can be the case only for protectededges. After carrying out 1 through 3 for each unprotected edge of �, we obtain a collection ofsegments. Because of property 4.1, the segments along the boundary of � are pairwise disjoint. Inother words, the segments form a sequence, and they can be sorted in time proportional to j�j plustheir number. This is because along an edge of � the segments are ordered consistently with theorder of their corresponding unprotected edges. We will see later that the number of segments is lessthan 2 r(�) + j�j.Stage 3: Traversing the Tree. In a post-order traversal, the children � of a node � are visitedbefore �. Visiting a node � here means computing the export list to its parent �. Notice that becauseof stage 1, � and � may share several unprotected edges. Still, their union is the original unprotectededge of � and �, and L�� can be obtained by concatenating the lists obtained by projecting pointsonto these unprotected edges. We can assume that at the time the export list of � to � is computed,all import lists L�� are available.List L�� is constructed in a single walk along the boundary of �. Whenever a segment thatbelongs to an unprotected edge shared by � and � is encountered, the points on this segment areprojected orthogonally onto the unprotected edge. These points can be vertices of � or points inimport lists of �. The result is the list L�� . It is automatically sorted if we process the points intheir order along the boundary of �.After the post-order traversal of Rf , all child-to-parent lists are complete. In order to computethe export lists of a node � to its children �, we need to �rst construct the import list from its parent,L��. This is done in a pre-order traversal of Rf . A node is visited before its children, and visitinga node � now means computing all export lists L��. At the time we compute these lists, all importlists are complete and stored with their unprotected edges. In a �nal walk along the boundary of �,we project points onto the appropriate unprotected edges, as before.Some Combinatorial Results. The analysis of the above algorithm requires some topological andcombinatorial results about regions. We begin with a combinatorial lemma. Let e1; e2; : : : ; ek be asequence of k not necessarily distinct symbols. It is a DS2(n)-sequence if only n of the symbols eiare di�erent, ei 6= ei+1 for 1 � i � k � 1, and there are no four indices 1 � i1 < i2 < i3 < i4 � k sothat ei1 = ei3 6= ei2 = ei4 . The length of the sequence is k.5.1 The length of any DS2(n)-sequence is at most 2n� 1.The upper bound in 5.1 can easily be proved by induction if one observes that the symbol that isintroduced last occurs only once. We use such sequences to bound the number of segments in aregion �.5.2 The number of segments of � is less than 2 r(�) + j�j.Proof. Consider the ordered sequence of segments. Replace each segment by the name of thecorresponding unprotected edge. The resulting sequence contains no scattered subsequence of the



An Upper Bound for Conforming Delaunay Triangulations 12form : : : ab : : :cd : : :ab : : :cd : : :;because otherwise the bounding circles of Mab and Mcd would intersect at four or more points. Soif we compress repetitions we get a DS2(r(�))-sequence. If two consecutive symbols (unprotectededges) are the same then there must be a vertex of � separating them. This implies that the totalnumber of segments exceeds the length of the DS2(r(�))-sequence by at most j�j.The total number of unprotected edges before the propagation phase is at most O(mn), andit is fairly easy to see that this bound is tight. It is plausible that a single region can have onlysubstantially fewer unprotected edges. We now prove a more general result that implies a singleregion indeed cannot exceed O(m + n) unprotected edges. For a region �, de�ne its excess e(�) =maxf0; r(�)� 4mg. The total excess is the sum of the e(�) over all regions � of H. We prove anupper bound on the total excess which is su�cient for our purposes but certainly not tight.5.3 The total excess is less than 36n.Proof. To help the discussion we replace each edge of G by a pair of directed edges, which we calldi-edges. A di-edge pq contributes an edge to a region � if it contains the edge and along this edge� lies to the left of pq. Consider the sequence of unprotected edges in �'s boundary, and replaceeach such edge by the name of the contributing di-edge of G. This results in a sequence with atmost 2m di�erent symbols. A straightforward topological argument shows that there is no scatteredsubsequence of the form : : :pq : : : st : : : pq : : : st : : : :If we ignore repetitions we have a DS2(2m)-sequence, which implies that the length of the sequencewithout repetitions is less than 4m. Anything exceeding this number is counted by e(�).Let ab and cd be two consecutive unprotected edges contributed by the same di-edge, pq. Then(i) b = c, or (ii) bc is a protected edge of �, or (iii) there are two or more protected edges betweenb and c. In case (i) we can charge the projection in stage 1 for the repetition, and there are fewerthan 12n of them. Each projected point is counted twice, once for each side, so we have fewer than24n repetitions of type (i) in total. In case (iii) we can charge the vertex common to the �rst twoprotected edges after b for the repetition. This vertex must be in V [ V 00. We have jV [ V 00j < 4n,and each such vertex is charged at most twice because it can lie on at most two blocking circles.This implies that there are fewer than 8n repetitions of type (iii). In case (ii), bc is a protected edgecontributed by pq. We argue in the following that the total number of such edges, over all regionsand di-edges, is less than 4n. This will imply the claim.Since bc is protected, its endpoints lie on a blocking circle Cj bounding Dj . Furthermore, sincebc belongs to a region with at least one unprotected edge, it must be one of the edges of the convexhull of the vertices on Cj. Consider Dj and the edges of H that lie on edges of G and decompose Dj .Each such edge has both endpoints on Cj . It follows that the dual graph of the decomposition is afree tree. The nodes of the tree are the regions of the decomposition, and the arcs correspond to theedges that decompose Dj. The edge bc corresponds to an arc incident to a leaf of the dual graph.We can bound the number of repetitions of type (ii) by bounding the total number of leaves of then� 1 dual graphs de�ned for the blocking circles.



An Upper Bound for Conforming Delaunay Triangulations 13To count the total number of leaves, we assume G is a triangulation. If not, it can be convertedinto one by adding fewer than 3n � m edges; adding these edges can only increase the count. Theadvantage of a triangulation is that now each interior node of a dual graph has degree 2 or 3.Furthermore, the number of leaves of a dual graph is 2 plus the number of degree-3 nodes. Eachdegree-3 node of the dual graph for Dj corresponds to a triangle of G each of whose three sidesintersects Cj . A triangle can intersect at most one blocking circle in this manner. Therefore, thetotal number of degree-3 nodes is at most the number of triangles, i.e. 2n � 5. This number plustwice the number of blocking circles is less than 4n, as claimed.A region cannot have more than 4n vertices shared by adjacent protected edges, because eachsuch vertex is a vertex in V [ V 00. Each such vertex is encountered at most twice, which impliesj�j � 2 r(�) + 8n. The result in 5.3 thus implies a bound on the number of edges of a region.5.4 For a region � of H, j�j = O(m+ n).The Final Analysis. Stages 1 and 2 require at most O(j�j r(�)) time per region �. By de�nition,r(�) � 4m+ e(�), so the time is bounded by a constant timesX j�jm+X j�j e(�):The �rst sum is O(m2n) because H has only O(mn) edges and stage 1 adds only O(n) to this number.The second sum is O(n2) because P j�j e(�) = O((n +m)Pe(�)) and, by 5.3, P e(�) < 36n. Thisimplies that O(m2n+n2) is an upper bound for the time spend in the �rst two stages of the algorithm.After that, O(m2n) time su�ces to compute all import and export lists in stage 3. This implies themain result of this section.Theorem 5.5 Let G = (V;E) be a plane geometric graph with jV j = n and jEj = m � 1. A pointset S of size O(m2n) that admits a completion of its Delaunay triangulation conforming to G can becomputed in time O(m2n+ n2).6 Discussion and Open ProblemsThe main result of this paper is the existence of O(m2n) points that admit a completion of theirDelaunay triangulation conforming to a plane geometric graph with n vertices andm � 1 edges. Thisresult is super�cially similar to the triangulation results of [BDE92, BEG90, BeEp91, MeSo92]. Thebest lower bound for the number of points necessary is 
(mn), and its proof is fairly straightforward.It would be interesting to close the gap between the two bounds. The O(m2n) points can beconstructed in time O(m2n+n2), provided in�nite precision arithmetic in constant time is assumed.This assumption is unrealistic because the number of bits necessary to accurately represent a pointincreases at each projection along a propagation sequence. Is it possible to construct the pointswithin the same time-bound without this assumption?A seemingly di�cult open problem is the generalization of our polynomial bound to three dimen-sions. The somewhat easier version of the generalized problem considers a graph whose vertices are
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