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Abstract

We present a new approach for the generation of hexahedral finite el-
ement meshes for solid bodies in computer-aided design. The key idea
is to use a purely combinatorial method, namely a shelling process, to
decompose a topological ball with a prescribed surface mesh into combi-
natorial cubes, so-called hexahedra. The shelling corresponds to a series
of graph transformations on the surface mesh which is guided by the cycle
structure of the combinatorial dual. Our method transforms the graph
of the surface mesh iteratively by changing the dual cycle structure until
we get the surface mesh of a single hexahedron. Starting with a single
hexahedron and reversing the order of the graph transformations, each
transformation step can be interpreted as adding one or more hexahedra
to the so far created hex complex.

Given an arbitrary solid body, we first decompose it into simpler sub-
domains equivalent to topological balls by adding virtual 2-manifolds.
Second, we determine a compatible quadrilateral surface mesh for all cre-
ated subdomains. Then, in the main part we can use the shelling of
topological balls to build up a hex complex for each subdomain indepen-
dently. Finally, the combinatorial mesh(es) are embedded into the given
solids and smoothed to improve quality.
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1 Introduction

In recent years, global competition has led to an increasing demand to reduce
the development time for new products. One step in this direction would be a
more efficient computer simulation of the technical properties of prototypes for
such products. For many years the finite element method has been successfully
applied by engineers in simulations. As a prerequisite such a method needs a
tool which converts a CAD model into a finite element mesh model suitable for
a numerical analysis.

Therefore, various algorithms for the generation of meshes have been devel-
oped, mostly decomposing surfaces into triangles and solid bodies into tetra-
hedra, for surveys see [2, 3]. In many applications, however, quadrilateral and
hexahedral meshes have numerical advantages. The potential savings gained
from an all-hexahedral meshing tool compared to an analysis based on tetrahe-
dral meshing may be enormous (with estimations in the range of 75% time and
cost reductions [37]). On the other hand, the generation of hexahedral meshes
turns out to be much more complex than for tetrahedral meshes. Recent years
showed many research efforts and brought up several approaches, but up to now,
hexahedral mesh generation for an arbitrary 3D solid is still a challenge.

In this paper, we propose a new method for all-hexahedral mesh generation
which mainly exploits combinatorial properties of such a mesh. A preliminary
description (without proofs) can be found in [21].

Geometric vs. combinatorial meshes. We distinguish between geometric
and combinatorial meshes. A geometric mesh is a partition of some given domain
into subdomains, in our context into hexahedra, i. e. regions combinatorially
equivalent to cubes. In contrast, a combinatorial hexahedral mesh, is only a
decomposition of the given domain into an abstract (cell) complex of combina-
torial cubes but without an explicit embedding into space.

Fixed surface meshes. In many applications, in particular in structural me-
chanics simulations, high mesh quality is required near the boundary of the
solid and is much more important than “deep inside the domain”. Therefore, it
is often preferred to start the volume meshing subject to a fixed quadrilateral
surface mesh of an excellent quality. Moreover, the complete solid may consist
of several components, for example, solid parts of different material or a solid
and its complement within a larger box. Many subdomains may also arise for
algorithmic reasons: we may want to divide the domain into smaller and simpler
regions either to facilitate the meshing process for each part or to allow paral-
lelism which can be crucial for some large-scale applications. In all such cases,
it is usually essential to have a compatible mesh at the common boundary of
adjacent components, that is the surface meshes must be compatible. The only
solution for this problem we can envision is to prescribe the surface mesh for
each component.

Thurston [36] and Mitchell [18] independently characterized the quadrilat-
eral surface meshes which can be extended to hexahedral meshes. They showed
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that for a volume which is topologically a ball and which is equipped with an
all-quadrilateral surface mesh, there exists a combinatorial hexahedral mesh
without further boundary subdivision if and only if the number of quadrilater-
als in the surface mesh is even. Furthermore, Eppstein [10] used this existence
result and proved that a linear number of hexahedra (in the number of quadri-
laterals) are sufficient in such cases. Unfortunately, all these results are not
completely constructive and it remains unclear whether they can be extended
to constructive methods for geometric meshes. There are quite simple solids
with natural looking quadrilateral surface meshes, for example the quadratic
pyramid problem of Schneiders [30], where only rather complicated combina-
torial meshes are known, but no geometric mesh with an acceptable quality is
available.

Related work. We briefly review approaches to hexahedral mesh generation.
For a more complete survey, online information and data bases on meshing
literature see [29] and [26].

Most commercial systems rely on a mapping approach where the domain
must be divided into simple shapes which are meshed separately. For example,
isoparametric mapping [8] is a method for generating hexahedral meshes which
is robust for block-type geometries, but does not work well for more complicated
general volumes. Various techniques based on object feature recognition have
been developed to automate the subdivision of an object into simpler parts. Vir-
tual decomposition [40] separates the volume into mappable subvolumes by the
creation of virtual surfaces (2-manifolds) inside the volume. Another method
uses the medial axis of a surface and midpoint subdivision [28, 27]. Compati-
bility between adjacent subregions and mesh density is then modeled within an
integer programming formulation [16]. Unfortunately, solving such integer pro-
gramming problems is NP-hard, even for quadrilateral surface meshes [20], and
such models often rely on a very restricted set of meshing primitives, so-called
templates.

Grid-based [31] and octree-based [32] methods start with a perfect grid which
is then adapted to the object’s boundary by an isomorphism technique. The
adaption step is difficult and often leads to badly shaped hexahedra near the
boundary.

Plastering [7, 4] is an advancing front based method which starts from a
quadrilateral surface mesh. It maintains throughout the algorithm the meshing
front, that is a set of quadrilateral faces which represent the boundary of the
region(s) yet to be meshed. The plasterer selects iteratively one or more quadri-
laterals from the front, attaches a new hexahedron to them, and updates the
front until the volume is completely meshed or the algorithm gives up and the
remaining voids are filled with tetrahedra.

Whisker weaving [34, 35] also meshes from a quadrilateral surface mesh in-
ward. But in contrast to plastering it first builds the combinatorial dual of
a mesh and constructs the primal mesh and its embedding only afterwards.
This method is based on the concept of the so-called spatial twist continuum
(STC) [23, 24]. The STC is an interpretation of the geometric dual of a hexa-
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hedral mesh as an arrangement of surfaces, the sheets. More precisely, the mesh
dual is the cell complex induced by the intersection of the sheets. A fundamen-
tal data structure for an STC is a sheet diagram which represents the crossings
of one sheet with other sheets. Whisker weaving starts with incomplete sheet
diagrams based on the surface mesh. It seeks to complete the sheet diagrams by
a set of rules which determine the local connectivity of the mesh. The creation
of invalid mesh connectivity has been observed in the plastering and whisker
weaving algorithms. Heuristic strategies have been developed to resolve such
invalidities [35]. Calvo & Idelsohn [6] recently presented rough ideas of a recur-
sive approach which inserts layers of hexahedra separating the whole domain
into two subdomains.

We finally mention that some methods relax the meshing problem by allow-
ing mixed elements, that is they try to mesh with mostly hexahedra, but include
tetrahedra [37], or pyramids and wedges [17], as well.

A new approach. We suppose that a solid body is described by polygonal
surface patches. For the reasons given above, the new approach presented in
this paper uses an all-quadrilateral surface mesh as a starting point. But before
doing the surface meshing, we first decompose a complex body into simpler
subregions by adding internal 2-manifolds. Our method only requires that these
subregions are topological balls (to avoid difficulties with holes and voids). It
is not necessary, although desirable, that these regions are “almost convex.”
Roughly speaking, we mean by almost convex that a region should not deviate
from a convex region by too much (in particular, the local dihedral angles are
not too big).

The insertion of additional internal 2-manifolds creates branchings, i. e. edges
which belong to more than two polygonal patches. All-quadrilateral surface
meshing in the presence of branchings can be achieved by first solving a system of
linear equations over GF (2), and then using a network flows [22] or an advancing
front based method like paving [5].

Because of the practical difficulties indicated by the pyramid example, our
approach does not attempt to extend any quadrilateral surface mesh to a hex-
ahedral volume mesh. It seems that self-intersecting cycles in the dual of the
surface mesh are the main source for these difficulties. It is a disadvantage of
advancing front based methods that they usually generate many such cycles.
In contrast, our network flow based mesher [22] tends to produce very regu-
lar meshes with only few self-intersecting cycles. To get rid of the remaining
self-intersecting cycles we use two strategies. First, we use additional heuristics
to avoid them in the surface meshing. Second, we introduce a method which
modifies the surface mesh such that all self-intersections disappear. This mod-
ification will be explained in Section 5. The important feature of this method
is that one can still use any quadrilateral surface mesher (provided it can han-
dle branchings consistently and mesh the virtual internal surfaces without an
explicit geometric embedding).

After this preparation, the core of our method is to build up a compatible
combinatorial cell complex of hexahedra for a solid body which is topologically
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Figure 1: Hexahedron with curved quadrilateral facets (left), a planar surface
graph embedding and its combinatorial dual (right).

a ball and for which a quadrilateral surface mesh is prescribed. Such a surface
mesh, taken as a graph, is simple, planar, and 3-connected.

The step-wise creation of the hex complex is guided by the cycle structure of
the combinatorial dual of the surface mesh. Our method transforms the graph
of the surface mesh iteratively by changing the dual cycle structure until we
get the surface mesh of a single hexahedron. During the transformation process
we keep the invariant that the surface mesh remains simple, planar, and 3-
connected. Our main strategy is a successive elimination of dual cycles. Hence,
algorithmically, we try to determine a cycle elimination scheme transforming
the given surface mesh to the mesh of a single hexahedron.

Starting with a single hexahedron and reversing the order of the graph trans-
formations, each transformation step can be interpreted as adding one or more
hexahedra to the so far created hex complex. The embedding and smoothing of
the combinatorial mesh(es) finishes the mesh generation process.

Very recently, Folwell & Mitchell [11] changed the original whisker weaving
algorithm and incorporated a strategy which is similar to ours. In contrast to us,
they have no restrictions on the elimination of a cycle and thereby allow that the
surface mesh (as well as the intermediate hex complex) becomes degenerated.
Based on the constructions in [18], the new version of whisker weaving applies
a number of heuristics to convert a degenerated hex complex into a well-defined
one.

Organization. We first introduce some basic terminology in Section 2. Then,
in Section 3, we present our new approach for the meshing of topological balls
and show its relations to the shelling of cell complexes. In Section 4, we char-
acterize a few classes of surface meshes which have a cycle elimination scheme
corresponding to a shelling. A general meshing scheme for arbitrary domains
will be given in Section 5. Finally, in Section 6 we summarize the main features
of our approach and give directions for future work.

2 Basic Facts and Terminology

Planar graphs. We need some basic graph theory, see for example [25]. Draw-
ing a graph in a given space means representing nodes as points and edges
as curves. A graph can be embedded into some space if it can be drawn such
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that no two edges intersect except at a common node. A graph is planar if it
has an embedding in the plane, or equivalently, an embedding on a sphere in
three-dimensional space. The curves representing the edges of a planar, em-
bedded graph partition the plane or the sphere, respectively, into connected
components, called faces. For a planar graph G, the (geometric) dual G∗ is
constructed as follows. A node v∗i is placed in each face Fi of G; corresponding
to each (primal) edge e of G we draw a dual edge e∗ which crosses e but no
other edge of G and joins the nodes v∗i which lie in the faces Fi adjoining e.

A graph is connected if there is a path between any two distinct nodes of G,
and the graph is simple if it has neither loops nor parallel edges. A graph G
with at least 4 edges is 3-connected if it is simple and cannot be disconnected
by removing 1 or 2 nodes from G. The reason for this version of the definitions
(here, we follow Ziegler [41]) is that it is invariant under planar duality. That
is, if we have a planar embedding of a graph G and construct its dual graph G∗,
then G is 3-connected if and only if G∗ is 3-connected.

A (convex) polyhedron is the intersection of finitely many halfspaces in some
IRd, and it is a polytope if it is bounded. The famous theorem of Steinitz relates
planar graphs and polytopes.

Theorem 2.1 (Steinitz’ theorem). G is the graph of a 3-dimensional polytope
if and only if it is simple, planar and 3-connected.

Hex complex. The bodies we want to mesh have more general, curved surfaces
(but, of course, orientable surfaces). Therefore we use the term (geometric) cell
to mean a bounded region in 3-dimensional space, bounded by a finite number of
orientable 2-manifolds. In the following, cells of different dimension will appear:
0-dimensional cells, i. e. single points, called vertices; 1-dimensional cells, i. e.
segments of curves between two vertices, the edges, and 2-dimensional cells in
the form of quadrilateral facets, i. e. smooth 2-manifolds bounded by a cycle of
four distinct edges. A hexahedron is a 3-dimensional cell which is a combinatorial
cube. It is bounded by 6 distinct quadrilateral facets, 12 distinct edges, and 8
distinct vertices. The quadrilaterals pairwise share edges as depicted in Fig. 1.
Ideally, hexahedra are polyhedra, but in this abstract setting we do not require
that the edges are straight line segments and that the quadrilateral facets are
planar.

A geometric cell complex of hexahedra, called hex complex for short, is a
finite, non-empty collection C of distinct (openly disjoint) hexahedra and all
their lower dimensional cells such that the intersection of any two members of
C is either empty or a cell of both of them. Two hexahedra are neighbored if
they share a quadrilateral. By definition, a hexahedron of a geometric cell com-
plex has at most one neighbored hexahedron for each quadrilateral face (unique
neighbor property).

Combinatorial hex complex. If cells of a hex complex are not embedded
but abstract, combinatorial entities, we regard a cell as composed by its lower-
dimensional cells. For an abstract cell C, we define the cell lattice as the the
set of all lower-dimensional cells including the cell C itself and the empty cell,
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partially ordered by inclusion. Abstract cells are combinatorially equivalent if
their cell lattices are isomorphic.

For a hex complex given by abstract cells, a combinatorial hex complex, we
have to demand explicitly the unique neighbor property (which is no longer im-
plied by definition) to avoid degeneracies. Hence, a combinatorial hex complex
is non-degenerated if it has the unique neighbor property. A combinatorial hex
complex yields a surface compatible combinatorial mesh if each quadrilateral is
contained in exactly one hexahedron, if it belongs to the surface mesh, and in
exactly two hexahedra, otherwise.

Valid geometric meshes. For a vertex of a hexahedron the Jacobian matrix
is formed as follows. For that, let x ∈ R

3 be the position of this vertex and
xi ∈ R

3 for i = 1, 2, 3 be the position of its three neighbors in some fixed
order. Using edge vectors ei = xi − x with i = 1, 2, 3 the Jacobian matrix is
then A = [e1, e2, e3]. The determinant of the Jacobian matrix is usually called
Jacobian. A hexahedron is said to be inverted if one of its Jacobians is less
or equal to zero. As the sign of a determinant depends on the order of its
column entries, the latter definition is only useful for checking the quality of
a hexahedron if the order of its neighbors is carefully chosen for each vertex.
However, a consistent and fixed ordering of the vertices can easily be derived
from the combinatorial hex complex by a graph search from some hexahedron
lying at the bounding surface.

A hex complex is compatible with the quadrilateral surface mesh of a body
if this surface mesh is the union of all quadrilateral facets which belong to ex-
actly one hexahedron of the complex. A surface compatible hex complex is
a non-degenerated geometric mesh if all of its hexahedra are embedded inside
the domain and are non-inverted. A quadrilateral surface mesh can also be
seen as a cell complex of quadrilaterals. The dimension dim(C) of a cell com-
plex is the largest dimension of a cell in C. A cell complex is pure if all the
inclusion-maximal cells have the same dimension. For example, hex complexes
and quadrilateral surface meshes are pure. The boundary complex ∂C of a cell
complex is formed by the set of all cells of C with a dimension lower than dim(C).

Shellings. Shellability of cell complexes has been widely studied in a very
general context and is usually defined in a recursive way (on the dimension of
the complex) [41]. A shelling of a pure d-dimensional cell complex C is a linear
ordering (F1, F2, . . . , Fk) of the set of inclusion-maximal cells, which is arbitrary
for dim(C) = 0, but for dim(C) > 0 has to satisfy the following two conditions:

(i) the boundary complex ∂F1 has a shelling, and

(ii) for every 1 < j ≤ k, the boundary complex ∂Fj has a shelling
(G1, G2, . . . , Gt) such that

Fj ∩
j−1⋃

i=1

Fi = G1 ∪ G2 ∪ · · · ∪ Gr,

for some 1 ≤ r ≤ t.
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Figure 2: Example of a shellable(left) and a non-shellable (right) hex complex.

A complex is shellable if it has a shelling.
For the purpose of shelling hex complexes (or surface meshes) this can be

simplified as the shellability of a single hexahedron and its lower-dimensional
cells is obvious. Hence, for a hex complex, the concept of shellability can be
defined as follows. A shelling of a hex complex C with k hexahedra is a linear
ordering H1, H2, . . . , Hk of the hexahedra such that for 1 < j ≤ k the intersec-
tion of the hexahedron Hj with the previous hexahedra is the non-empty union
of quadrilateral faces of Hj and these quadrilaterals are connected with respect
to the dual graph of Hj , that is

Hj ∩
j−1⋃

i=1

Hi = Q1 ∪ Q2 ∪ · · · ∪ Qr,

for some dually connected quadrilaterals Q1, . . . Qr of Hj , and 1 ≤ r ≤ 6.
In Fig. 2, the left hex complex is shellable in the order of the numbered

hexahedra, for example. However, the right hex complex is not shellable. To see
this, just note that a beginning of a shelling sequence can never be completed.
For example, a shelling sequence could start in the order 1, 2, . . . , 7, but the
addition of hexahedron no. 8 would violate the condition that the quadrilaterals
of the intersection of this hexahedron with the previous ones must be connected.

3 Shelling and Meshing Topological Balls

Our goal is to develop a purely combinatorial approach for hexahedral mesh
generation starting from a fixed quadrilateral surface mesh. This implies that
we can only use and therefore have to exploit the combinatorial structure of the
surface mesh.

Throughout this section we restrict our discussion to the case that our in-
put is a solid body which is topologically a ball. We further assume that a
fixed all-quadrilateral surface mesh has been determined for this body. A non-
degenerated surface mesh (which we assume) is combinatorially a simple, planar
and 3-connected graph. Although the shape of the surfaces we consider is usu-
ally more general than that of a convex polytope, the combinatorial structure
is not (by Steinitz’ theorem).
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Figure 3: Local graph transformations (a) – (f) (left side) and examples of their
application (right side).

Intuitive idea. Shelling a hex complex can be interpreted as building up the
complex by successive additions of hexahedra. We would like to do just the
opposite, that is to decompose a hex complex by taking away a hexahedron one
after another. Of course, in the beginning no hex complex is available to us, all
we have is the surface mesh. But if a compatible hex complex were available,
then a reversed shelling order would give the desired decomposition. In general,
for a given shelling order H1, H2, . . . , Hk, the reversed order Hk, Hk−1, . . . , H1

is not again a shelling order (as, for example, in some step Hj may have empty
intersection with Hk, Hk−1, . . . , Hj+1), but it preserves that after j deletions
the remaining hex complex is still topologically a ball.

The key observation is that each legal shelling step changes the planar surface
graph of the so far created hex complex in a very restrictive way. Namely, such
a shelling step corresponds to a local graph transformation which preserves
that the surface graph is simple, planar, and 3-connected. The basic idea is to
maintain this as an invariant also for the real problem where we do not know
the hex complex.

What we are looking for is a series of graph transformations on the given
surface graph which preserves that the surface mesh is a simple, planar and
3-connected graph. In other words, throughout the decomposition process the
surface mesh corresponds to a topological ball. If this process ends up with the
surface graph of a single hexahedron, the series of graph transformations yields
a “topology preserving reversed shelling” of a hex complex. In the following
paragraphs, we will make these general ideas more precise.

Shelling steps as graph transformations. Let us suppose for a while that
a hex complex is already known for some body. Then we could try to shell this
complex. The basic observation is that each shelling step, that is, the transition
from a hex complex with k to k + 1 hexahedra, can be interpreted as a local
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a b

Figure 4: Quadrilaterals forming part of a self-intersecting dual cycle (left) and
an example of a simple dual cycle (right) where the enclosed quadrilaterals a
and b are disconnected with respect to the dual graph (although they share a
primal vertex).

graph operation on the surface graph except for the very first shelling step
with k = 0. Consider the six “local” transformations (a) - (f) shown in Fig. 3
on subgraphs of the surface graph. A transformation is applicable only if the
subgraph has at least the edges shown in Fig. 3 (which ensures that each node
has minimum degree 3 after the transformation). The operations represent the
transformation of the current surface graph for all possible ways to add a single
hexahedron to the shelling sequence in a legal way. The basic properties of these
transformations are summarized in the next lemma.

Lemma 3.1. Let G be a simple, planar and 3-connected graph whose faces are
all quadrilaterals. Then any application of one of the six operations in Fig. 3
preserves the following invariants for the resulting graph G′: G′ remains simple,
planar, 3-connected, all its faces are quadrilaterals, and the parity of the number
of quadrilaterals remains unchanged.

Observe that each graph transformation is reversible. It can either be inter-
preted as adding or as deleting of a hexahedron to a hex complex.

Reversed shelling orders as series of graph transformations. As men-
tioned above, the reversed order of a shelling is no shelling order in general. In
contrast, not only all single graph transformations in Fig. 3 are reversible, a
whole series is.

Lemma 3.2. Suppose we are given a shellable hex complex with surface graph
G = G0. Then there is a series of graph transformations g1, g2, . . . , gk from
Fig. 3 which transform G successively to G1, G2, . . . , Gk such that Gk is iso-
morphic to the graph of a single hexahedron. The reversed order of these graph
transformations corresponds to a shelling of the hex complex.

In other words, topology preserving shelling of a hex complex can be seen
as applying a series of graph operations on a planar graph. At first glance, this
does not help too much as we usually do not know a hex complex compatible
to the surface we want to mesh, and so cannot determine which operation we
should apply and in what order. So we are faced with the problem of “shelling
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an unknown complex,” which seems to be intractable. However, we will combine
single graph operations to larger units which will help to characterize classes of
surface meshes where this concept is useful.

Dual cycle decomposition. Let G be the graph of a quadrilateral mesh and
G∗ its combinatorial dual. We say that two adjacent dual edges are opposite to
each other if and only if they correspond to opposite sides of a quadrilateral,
i. e. if they are not neighbored in the cyclic adjacency list of their common node.
Hence, the four adjacent edges to each dual node can be partitioned into two
pairs of opposite edges.

The dual graph G∗ = (V ∗, E∗) can be decomposed in a canonical way into
a collection of edge-disjoint cycles, say into C1, . . . , Ck, by putting a pair of
adjacent edges e∗1, e

∗
2 into the same cycle if they are opposite to each other. In

other words, for each quadrilateral the edges which are dual to opposite sides
are contained in the same cycle. With respect to the labeling in Fig. 1, the
cycle decomposition for a single hexahedron yields the cycles C1 = {a, b, c, d},
C2 = {a, e, c, f}, and C3 = {b, f, d, e} (cycles taken as node sequences).

Observe that by transitivity two edges may belong to the same cycle even
if they are neighbored in the cyclic adjacency list of some node. Hence, these
dual cycles can be non-simple or self-intersecting, see Fig. 4.

Note that the set of dual cycles is well-defined and unique (in the sense that
two cycles are equivalent if they have the same set of edges) and can be easily
determined in linear time. We call this set the canonical dual cycles of G∗, and
by a dual cycle we will henceforth always mean a canonical dual cycle.

Cycle elimination. Next we introduce the concept of a cycle elimination. To
get an intuitive idea of the use of cycle eliminations for the meshing see Fig. 5.
The elimination corresponds to the removal of a complete layer of hexahedra,
that is in STC terminology to the removal of a complete sheet.

Let us suppose that the edges of a dual cycle are ordered within a cyclic list
such that two edges are consecutive if and only if they are adjacent and opposite
to each other with respect to their common node. The cyclic order of the edge
list induces an orientation of the cycle. With respect to such an orientation, a
simple dual cycle C separates the dual vertices V ∗ \V ∗(C) into vertices V ∗

C,` on
the “left hand side” of C and vertices V ∗

C,r on the “right hand side.”
Given a planar graph G, its dual G∗, and a dual cycle C of G∗, the elimi-

nation of C transforms G to G′ and G∗ to G′∗ in the following way. The new
graph G′ is obtained from G by contracting each primal edge corresponding to
a dual edge contained in C, and removing parallel edges afterwards. The graph
G′∗ is then defined as the combinatorial dual of G′. An equivalent way to de-
scribe the elimination of a dual cycle is to remove all edges of C from G∗, and
to replace for each node v∗ of C the two remaining incident edges, say (u∗, v∗)
and (w∗, v∗), by the new dual edge (u∗, w∗), and finally remove all vertices of C.
In this second definition, dualization of G′∗ gives the new primal graph G′.

In order to maintain the above mentioned invariants of the surface graph
and to yield a connection to shellings (which will be explained below), cycle
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Figure 5: The elimination of a dual cycle (left) corresponds to the contraction of
primal edges (middle) and leads to the removal of a sheet of hexahedra (right).
In this example, we have taken the nine quadrilaterals on the top facet as the
connected set of enclosed quadrilaterals.

eliminations have to be restricted. A feasible elimination of a dual cycle C from
G∗ requires that

1. C is a simple cycle,

2. at least one of the two subgraphs of G∗ induced by V ∗
C,` and V ∗

C,r, respec-
tively, is connected, and

3. G′∗ is 3-connected.

Note that 3-connectivity can be checked in linear time [13]. So we can test in
linear time whether a cycle can be eliminated in a feasible way or not.

Cycle elimination corresponds to shelling operations. The concept of a
feasible elimination is closely connected to shelling and graph transformations.
It turns out that a feasible cycle elimination is equivalent to a series of graph
operations and therefore also to shelling operations.

Suppose that G′ is the surface mesh of some hex complex. If we (re)insert
a dual cycle C which has been eliminated in a feasible way from graph G, this
reinsertion can be interpreted as adding a complete layer (sheet) of hexahedra.
Namely, if we assume that the subgraph G∗ induced by the quadrilaterals V ∗

C,`

on the left hand side of C is connected, then there is a one-to-one correspondence
between the quadrilaterals belonging to the set V ∗

C,` and the hexahedra belonging
to the added layer.

Lemma 3.3. Let G be the graph of a quadrilateral mesh and G∗ be its combi-
natorial dual. Let C be a dual cycle which can be eliminated in a feasible way
from G∗. If V ∗

C,` (V ∗
C,r) is connected then there is a sequence of exactly |V ∗

C,`|
(|V ∗

C,r|) graph operations from Fig. 3 which transforms G to G′.

Proof: We first observe that the 2-dimensional cell complex formed by the
union of the quadrilaterals contained in V ∗

C,` is shellable. This follows from a
characterization of the shellability of 2-dimensional (pseudo)-manifolds [9]. In



M. Müller-Hannemann, Shelling Hexahedral Complexes, JGAA, 5(5) 59–91 (2001)71

Qj

Qj

Qj

Qj Qj

Qa

Qa

Qa

Qa

Qa

Qb

Qb

Qb Qc

before any
transformation

after the
first j − 1
transformations
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Figure 6: The different cases of local subgraphs before a hexahedron is placed
on top of quadrilateral Qj (Qa, Qb and Qc come before Qj in the shelling order).
The number of quadrilaterals sharing a corner with Qj and lying “between” Qa

and Qb (or “between” Qb and Qc) can be an arbitrary non-negative number
(including zero!).

our setting this characterization asserts that the cell complex is shellable if the
planar primal graph G` induced by these quadrilaterals can be embedded in a
2-ball or 2-sphere M in such a way that M \ G` is the union of |V ∗

C,`| pairwise
disjoint open 2-balls whose boundaries are the bounding cycles of the quadrilat-
erals. Clearly, these conditions are fulfilled as the complete quadrilateral mesh
is embedded in a 2-manifold and so the quadrilaterals contained in V ∗

C,` are em-
bedded in a 2-ball by our assumption that the dual subgraph induced by V ∗

C,`

is connected.
We claim that any shelling order (Q1, Q2, . . . , Qk) of quadrilaterals (with

k = |V ∗
C,`|) determines a possible series of graph operations to transform G′ to

G. The general idea is to place a hexahedron “on top” of each of quadrilaterals
Qj in the shelling order. At each step, we maintain the property that the newly
created hexahedron contains the quadrilateral Qj as the “bottom facet,” and
exactly one quadrilateral facet from each hexahedron which has been placed on
a quadrilateral Qi adjacent to Qj with i < j. Thus, all these faces disappear
from the surface graph. At the same time, the addition of a hexahedron creates
new quadrilateral facets, namely the “top facet”, denoted by Qj and all the
remaining facets of the hexahedron which are not shared with a previously
added hexahedron.

Hence, the graph transformation starts with operation (b) of Fig. 3 applied
to the first quadrilateral Q1 in the shelling order. For the j-th element Qj

of the shelling order (1 < j ≤ k), the shelling conditions guarantee that the
intersection of Qj with quadrilaterals which come earlier in the shelling order is
a connected set of edges. Moreover, the following is a crucial observation about
a correct shelling order. If Qa and Qb are quadrilaterals which come before Qj

in the shelling order and both share an edge with Qj incident to a common
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Figure 7: Graph transformations corresponding to a cycle elimina-
tion/reinsertion according to the shelling order (1,2,3,4).

vertex v, then all other quadrilaterals incident to this vertex v also precede Qj

in the given shelling order. Using this observation, one can show by induction
that the local graph structure at Qj of the surface graph after the first j − 1
transformations (j > 1) looks as depicted in Fig. 6.

Hence, if the intersection of Qj with preceding quadrilaterals is just a single
edge shared with Qa, we can apply transformation (e) of Fig. 3 using the facet
Qj and the adjacent quadrilaterals of the surface graph which has been created
in the a-th step. If the intersection are two edges shared with Qa and Qb,
we apply transformation (a) of Fig. 3 using the facet Qj and the two adjacent
quadrilaterals at the common corner of Qa and Qb in the current surface graph.
Similarly, if the intersection contains three edges, we apply transformation (d)
of Fig. 3. Note finally, that for any shelling order it is impossible that Qj is
completely surrounded by preceding quadrilaterals. The resulting sequence of
graph operations transforms G′ to G, i. e. it inserts a dual cycle. Reversing the
order of transformations and each single operation yields the claimed sequence
of transformations. 2

The shelling order for the enclosed quadrilaterals can be found in linear time
using an algorithm of Danaraj and Klee [9]. Basically, this algorithm adds a
quadrilateral to the initial shelling sequence in a greedy fashion if the shelling
conditions are fulfilled. Danaraj and Klee’s algorithm can be simplified in the
special case of quadrilateral cells as we can check in constant time whether a
quadrilateral can be added to an initial shelling sequence or not.

Fig. 7 shows a small example of a dual cycle which encloses four quadrilat-
erals and the corresponding graph transformations of a (re)insertion (“from left
to right”) or an elimination (“from right to left”).

Note that in the example of Fig. 5 we have taken the nine quadrilaterals on
the top facet as the set of quadrilaterals enclosed by the eliminated cycle. The
quadrilaterals on the opposite side of the cycle are also connected with respect
to the dual graph. However, if we take this other set of quadrilaterals as the
basis for our sequence of graph transformations this would lead to a different
hex complex.

Perfect cycle elimination schemes. A perfect cycle elimination scheme of a
dual graph G∗ of a quadrilateral surface mesh is an order C1, C2, . . . , Ck of its
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k canonical cycles such that the first k − 3 cycles with respect to this order can
be eliminated one after another in a feasible way, and such that the remaining
3 cycles form the dual surface graph of a single hexahedron. In particular, this
means that the last 3 cycles are simple and cross pairwise exactly twice (two
cycles cross if they share a common node).

The core algorithm. Whenever we know a perfect cycle elimination scheme
for some graph G∗, we can iteratively apply Lemma 3.3 in reversed elimina-
tion order to give an explicit construction of a hex complex compatible to the
prescribed surface mesh. This yields an algorithm for combinatorial meshes of
topological balls which runs in two phases: In the first phase we determine a
cycle elimination scheme, and in the second phase we build up a hex complex
by adding sheets in reversed order of the elimination.

Example: the “double fold” problem revisited. We conclude this section
with the example of the so-called “double fold” problem to illustrate how our
core algorithm works. The same example has been used to study the whisker
weaving algorithm [34]. The geometry of this example is simply a cube, but
the surface mesh is quite irregular (several nodes of degree five and three), see
Fig. 8. The Figs. 9 to 12 show the successive elimination of dual cycles from the
original surface mesh to the mesh corresponding to a single hexahedron, and
the construction phase. The first cycle to be eliminated encloses 9 dual nodes,
the second 3, the third 2, and the fifth and sixth only one node. Hence, in the
reversed order, the series of hexahedra to add to the first one is 1,1,2,3,9.

Figure 8: The “doublefold” example (the middle picture is the left cube with the
front faces removed so you can see through to the back faces from the inside).
The hex complex consists of 17 hexahedra.
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Figure 9: The primal and dual graph of the surface mesh of the “double fold”
example, dual nodes are drawn as solid circles (left); the first dual cycle of a
perfect elimination scheme is dashed, it encloses 9 dual nodes (right).
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Figure 10: The dual graph after the first and second elimination. The cycle to
be eliminated next is again dashed. The dashed cycle on the left side encloses
3 dual nodes, on the right side 2 dual nodes (on the unbounded side of this
drawing!).
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Figure 11: The dual graph after the third, forth and fifth elimination. The right
figure shows final configuration of the remaining three cycles.
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Figure 12: Construction of the hex complex for the “doublefold” example. The
figures show from left to right the intermediate steps where hexahedra are added
in reversed order of the elimination scheme.

4 Classes of Surface Meshes with a Perfect Elim-
ination Scheme

As our approach relies on finding a perfect elimination scheme we would like to
characterize the surface meshes of topological balls which admit such a scheme.
While the decision problem whether a single cycle can be eliminated in a feasible
way is solvable in polynomial time, the complexity status for the recognition of
a perfect elimination scheme is still open (to our knowledge).

There are some obvious necessary conditions. By definition, existence of a
perfect cycle elimination scheme requires that all dual cycles are simple. We
will show in Section 5 how to guarantee this property for our surface meshes.
Simplicity of a dual cycle implies even length, and all cycles being simple implies
an even number of quadrilaterals. The latter is sufficient for the existence of a
combinatorial mesh, but not for the existence of a perfect elimination scheme
in general. To see a small counter-example, consider a 3-connected planar dual
graph consisting of three canonical cycles which cross each other pairwise exactly
four times (hence, we cannot reach the desired final state wherein three cycles
cross pairwise twice).

We also note that non-shellable hex complexes exist. Furch’s knotted hole
ball is a well-known example of a hex complex (see Fig. 13) which is non-
shellable [42]. However, it is insightful to check that the corresponding surface
mesh has a perfect elimination scheme, and so can be decomposed into some
hex complex, which is, of course, different from the non-shellable one. In other
words, this shows that a fixed surface mesh may have different decompositions
leading to shellable and non-shellable hex complexes.

Cycle arrangements. Consider a collection of k simple, closed Jordan curves
in the plane such that no three curves meet in a point, which we call a cycle
arrangement. We may associate in the obvious way a planar graph G∗ to such
a collection of curves (considered as a dual graph): The vertex set is formed
by the intersection points between curves, and the edges are induced by the
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Figure 13: Furch’s “knotted hole ball”: a pile of (k1 ×k2×k3) hexahedra where
hexahedra are missing along a knotted curve except for a single hexahedron at
the top layer. This hex complex is non-shellable, but the surface mesh has a
perfect elimination scheme.

Figure 14: Examples of cycle arrangements of surface meshes: a zonotopal
arrangement (left), a zonotopal arrangement with three equivalence classes of
parallel neighbors (middle), and an arrangement of Class III (right). Note that
the elimination order is not arbitrary in the latter example.

segments between intersection points. If G∗ is simple and 3-connected, then so
is the primal graph. As the degree of each dual vertex is four, such a primal
graph corresponds to a quadrilateral surface mesh. Hence, any cycle arrange-
ment such that the associated planar graph is simple and 3-connected is a cycle
arrangement of a surface mesh.

Next we consider different classes of cycle arrangements which have perfect
elimination schemes, examples are shown in Fig. 14.

Class I: “zonotopal cycle arrangements”. Zonotopes are special polytopes
which can be defined in many equivalent ways [41], for example, as the image
of a higher-dimensional cube under an affine projection, or as the Minkowski
sum of a set of line segments. It is well-known that zonotopes where all surface
facets are quadrilaterals always have decompositions into hexahedra [33].

Moreover, such zonotopes constitute a class of polytopes for which every
cycle order leads to a perfect elimination scheme (the “zones” of a zonotope
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wv

Figure 15: Zonotopal cycle arrangements are 4-connected: there exist four dis-
joint paths (dashed) between v and w.

correspond to the dual cycles). Certainly, for the existence of an elimination
scheme it is sufficient that the surface graph of some mesh is combinatorially
equivalent to that of a zonotope.

The dual cycles in graphs arising from zonotopes with k + 1 zones have a
nice combinatorial property: The dual cycles cross each other pairwise exactly
twice, i. e. each dual cycle has length 2k, and if a dual cycle is traversed, the
first k intersections with other cycles appear in the same order as the second k
intersections. We call an arrangement of three or more simple cycles which all
have this ordering property a zonotopal cycle arrangement.

Lemma 4.1. A zonotopal cycle arrangement has a perfect elimination scheme
and every cycle order yields such a scheme.

Proof: The only zonotopal cycle arrangement with three cycles is the arrange-
ment of a single hexahedron, and so trivially has a perfect elimination scheme.

Any zonotopal cycle arrangement with more than three cycles is not only 3-
connected (as we require for an elimination), it is even 4-connected. To see this,
consider an arbitrary pair of vertices v, w ∈ G∗ and construct four internally
vertex disjoint paths using the cycles through v and w as indicated in Fig. 15.

Hence, for a zonotopal cycle arrangement with k+1 cycles, we may select an
arbitrary cycle C for elimination and the resulting graph remains 4-connected.
For a feasible elimination we have still to check that, for some orientation of
C, the dual vertex set V ∗

C,` on the left hand side from C is connected. To see
this, consider any two dual vertices v∗, w∗ ∈ V ∗

C,`. Denote by Cv∗ and Cw∗

dual cycles going through (that is containing) v∗ and w∗. If the two cycles are
identical or intersect at some third vertex s∗ ∈ V ∗

C,`, there is a path from v∗

to w∗. If, however, such an intersection between Cv∗ and Cw∗ does not exist
within V ∗

C,`, we get a contradiction to the order of the intersections with C in a
zonotopal cycle arrangement, see Fig. 16. 2

Class II: “zonotopal cycle arrangements with parallel cycles”. We say
that a cycle C1 is a parallel neighbor of another cycle C2 of the same length in
the graph G∗ if their node sets are disjoint but for each node v∗ of C1 there is
a node w∗ of C2 such that the edge (v∗, w∗) belongs to G∗.
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Figure 16: Vertices inside a cycle C of a zonotopal arrangement are always
connected (left); otherwise the intersections with C appear in the wrong order
(right).

Lemma 4.2. If the dual cycles are partitioned into equivalence classes of parallel
neighbors, then a mesh has a perfect elimination scheme if representing cycles
of these equivalence classes form a zonotopal cycle arrangement. In this case,
any elimination order is possible provided it keeps cycles from three different
equivalence classes to the end.

Proof: Just note that the class of zonotopal cycle arrangements with parallel
neighbor cycles is closed under elimination of an arbitrary cycle (provided that
the remaining arrangement has at least three equivalence classes). Then, basi-
cally the same arguments as in the proof of Lemma 4.1 show that such a cycle
arrangement is 4-connected, and that the dual vertex set V ∗

C,` on the left hand
side from an arbitrary cycle C is connected. 2

Note that although the order of eliminations is almost arbitrary, a different
hexahedral mesh will result for different orders.

Class III: “cycles cross pairwise twice plus 3-connectedness”. The
condition “all cycles cross pairwise exactly twice” is to weak for a guarantee
of a perfect elimination scheme, for an example see the picture on the right in
Fig. 14 without the “inner cycle.”

We consider the following recursively defined class of cycle arrangements,
called class III. The only member of class III with three cycles is the arrangement
of a hexahedron. A cycle arrangement with k + 1 cycles belongs to class III, if
it can be derived from a member of class III with k cycles by the insertion of
one simple cycle which crosses all others exactly twice and the resulting graph
is 3-connected.

Lemma 4.3. A cycle arrangement of class III has a perfect elimination scheme.

Proof: By definition, a cycle arrangement which is member of class III can be
constructed by the stepwise insertion of cycles. We claim that the reversed order
of the insertion yields a perfect elimination scheme. Hence, if we eliminate a
cycle, 3-connectivity is asserted. The only non-trivial fact to show is that either
the vertex sets V ∗

C,` on the left hand side or on the right hand side V ∗
C,r are
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connected. (It is not hard to construct an example where one of the two sets,
say V ∗

C,`, is disconnected.)
Assume that both sets are disconnected. This means that there are discon-

nected nodes v, w ∈ V ∗
C,` and s, t ∈ V ∗

C,r. Denote by Cv, Cw, Cs, Ct cycles going
through the vertices v, w, s, t. As v, w are not connected within V ∗

C,`, the cycles
Cv and Cw cannot intersect within V ∗

C,`. Similarly, the cycles Cs and Ct do
not cross within V ∗

C,r. As cycles cross pairwise, this implies that Cv and Cw

intersect in V ∗
C,r, and Cs and Ct intersect in V ∗

C,`.
Suppose that neither Cs nor Ct intersect Cv within V ∗

C,`. This would imply
that both cycles intersect Cv in V ∗

C,r, in contradiction to the assumption that
s and t are not connected in V ∗

C,r. Hence, we may assume that at least one of
both cycles, say Cs, intersects Cv in V ∗

C,`. This in turn means that Cs crosses
Cw in V ∗

C,r. Now we get a contradiction. Either Ct crosses Cw in V ∗
C,` which

would mean that v and w are connected in V ∗
C,` (via portions of Cv, Cs, Ct

and Cw), or Ct crosses Cw in V ∗
C,r, but then s and t are connected in V ∗

C,r (via
portions of Cs,Cw and Ct). 2

5 Hexahedral Meshing for Arbitrary Domains

In this section we consider the meshing of arbitrary domains. We do not re-
strict our discussion to one of the many different CAD formats and possibilities
to encode surfaces. However, we will assume that the CAD input model for our
algorithm describes a solid body by polygonal surface patches.

The general algorithm. For arbitrary domains, we propose the following
approach which consists of five major steps:

1. Decompose the whole domain into subdomains which are topologically
balls and “almost convex.”

2. Quadrangulate the surface mesh with half of the required density. Replace
each quadrangle by four new ones.

3. Cancel self-intersecting dual cycles.

4. Do for each subdomain

(a) Search for a perfect cycle elimination scheme.

(b) Build up a hex complex.

5. Embed the hex complex and perform mesh smoothing.

In the following we will explain the steps of our general scheme.

Step 1: Decomposition into subdomains. In the very first step we have
to decompose the given body into simpler subdomains which are topologically
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Figure 17: Getting rid of a self-intersecting dual cycle (left): the dual cycle
is first duplicated (middle), and then the surface mesh is locally transformed
(right).

balls and should be “almost convex.” In general, this is a difficult problem
which offers many degrees of freedom in how to subdivide a body. Solution
methods depend very much on the used CAD data structures and geometric
representations of the input model. The corresponding details go beyond the
scope of this paper. We only mention that we add internal 2-manifolds using
ideas of White et al. [40], but with weaker requirements for the resulting sub-
regions. It is not necessary, although desirable, that these regions are “almost
convex.” Asking for a subdivision into convex regions in the usual mathemat-
ical sense would be too strict, as otherwise there would be no subdivision into
finitely many regions for concave surfaces. So, roughly speaking, we mean by al-
most convex that a region should not deviate from a convex region by too much.

Step 2: Surface mesh quadrangulation. We can also be brief with remarks
on the surface mesh generation, as any method which works consistently with
branchings (because of the insertion of internal 2-manifolds) can be chosen. In
our experiments, we used the surface meshing tool as described in [19, 22] with-
out changes.

Step 3: Cancel self-intersecting dual cycles. We have to ensure that all
dual cycles are simple as this is necessary for the existence of a perfect elim-
ination scheme. Our preliminary paper [21] as well as Folwell & Mitchell [11]
describe how to modify a quadrilateral surface mesh in order to remove self-
intersections for a single domain. The main idea of the latter approach is to
collapse a quadrilateral where a self-intersection occurs into two edges. This
may result in degenerated vertices with degree two, but such a situation can
be resolved by a so-called “pillowing” technique which places an additional ring
of quadrilaterals around such a degenerated vertex. However, without a mod-
ification both methods have a serious drawback as they do not work in the
presence of branchings. If branchings occur, the problem is that at least some
dual cycles belong to several subdomains and cannot be modified independently.
Hence, it may happen that self-intersections are removed in one subdomain but
new self-intersections are created in some other subdomain.
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Figure 18: Simplicity of a pair of simple cycles (before duplication, left) is
maintained if we apply the graph transformation at all crossings.

In this paper, we propose an alternative method which can also be applied in
the presence of branchings. It works as follows: After decomposing the domain
of our solid body into topological balls, we use the quadrilateral surface mesher
with only half the required mesh density. Then we subdivide each quadrilateral
into four new ones (by halving all edges) to meet the required mesh density.

This replacement duplicates all dual cycles. In particular, all quadrilaterals
where self-intersections occur appear in pairs, see the middle part of Fig. 17. So
it is possible to change the surface mesh locally at all such places, by replacing
four quadrilaterals with 12 new ones, see the right part of Fig. 17. Obviously, the
surface graph remains planar, simple and 3-connected, and we do not change the
structure of other cycles than those going through such quadrilaterals. Most im-
portantly, it serves its primary purpose to resolve each existing self-intersection.
If a quadrilateral where a self-intersection occurred belongs to exactly one sub-
domain, the transformation cannot create a new self-intersection, otherwise it
might do so with respect to the other subdomain. More precisely, if we apply
the transformation to a quadrilateral where to simple dual cycles cross with
respect to some subdomain (the common quadrilaterals of simple dual cycles
are called crossings) then this transformation would create a self-intersection at
one of the new quadrilaterals (if the two dual cycles are not changed in their
remaining parts). Hence, we need some additional step for each pair of sim-
ple cycles affected by a transformation for some other subdomain. Fortunately,
whenever necessary, we can avoid the complication of creating self-intersecting
cycles if we apply the same local transformation at all four-tuples of quadrilat-
erals corresponding to crossings, for an example with two crossings see Fig. 18.
(As the proposed transformation typically degrades the surface mesh quality
we do not apply this transformation everywhere.) It is not hard but insightful
to verify that this modification creates always simple cycles, for any number of
crossings.

Step 4a: Search for a perfect elimination scheme. In principle, every per-
fect cycle elimination scheme allows us to build up a valid combinatorial mesh.
Unfortunately we do not know an efficient algorithm to find such a scheme in
the general case. Hence, we use a greedy strategy which iteratively eliminates
some feasible cycle. However, the choice which cycle to eliminate next should
not be arbitrary for several reasons. First, we note that, in general, different
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elimination orders, lead to meshes of a different structure and size. Second, we
also observe that two different geometric meshes can have the same combinato-
rial mesh, see Fig. 19. Hence, a careful cycle selection has to take the geometry
of the surface into account.

Cycle selection. For that purpose, we determine for each dual edge the dihe-
dral angle between the two quadrilateral faces which correspond to its endpoints.
This, in turn, gives us a an initial classification for each primal edge as “sharp”
or “plane” edges. A primal edge of the surface graph is a sharp edge if the
dihedral angle is significantly smaller than 180 degrees.

For a simple dual cycle C, we use the term neighboring primal cycles to mean
the two connected primal cycles induced by the union of all primal edges of the
quadrilaterals corresponding to C which do not cross dual edges of C. We assign
a side elimination weight to each dual cycle according to the number of sharp
edges of the neighboring primal cycles, divided by the cycle length (number of
edges). (In our implementation of side elimination weights, we classify a dihedral
angle smaller than 120 degrees as sharp.) The weights can be used to define a
preference order for dual cycles. A first rule is that a cycle should be preferred
in the selection if it has a higher weight, i. e. if it has a higher quotient of sharp
edges to the total number of cycle edges than some other cycle. We also keep
track of the side for which the elimination weight has more sharp edges, as this
side will be used as the enclosed set of quadrilaterals on which the construction
phase adds hexahedra.

Moreover, we use a weight counting the number of sharp primal edges corre-
sponding to edges of the dual cycle. A second rule says that one should eliminate
a cycle only if this second weight is positive. The intuition behind this rule is
that one should not eliminate a cycle which lies in a plane, as this may lead
to a bad quality of the geometric mesh. (For that purpose, we use a different
parameter classifying an edge as a plane edge, if the dihedral angle is larger
than 170 degrees.)

After each cycle elimination we update this classification for all primal edges
which are affected by the elimination. To be precise, if two primal edges become
identified by contraction of a quadrilateral, the resulting edge is classified as a
sharp edge if at least one of the edges was sharp before the identification. Hence,
the weights of a dual cycle will change after eliminations.

Double cycle elimination. Suppose that some dual cycle Cm has two paral-
lel neighbors, one on the right and one on the left side. Then it can certainly
be eliminated in a feasible way. If, in addition, all edges of the corresponding
left and right primal neighboring cycles are classified as sharp edges, the cycle
Cm has a high preference to be selected for elimination. However, in such a
situation it seems to be better to eliminate both the left and right neighboring
parallel cycles simultaneously. In such a double elimination the set of enclosed
quadrilaterals is just the dual cycle Cm in the middle. The elimination can be
interpreted as removing a torus of hexahedra, see the left example of Fig. 19.
Similarly to the statement of Lemma 3.3, one can prove that a double elimina-
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Figure 19: Examples of two solids with “obvious” decompositions into five and
three hexahedra. Note that the surface meshes are combinatorially equivalent.
Therefore, additional geometric information is necessary to yield the appropriate
decompositions. For the left instance, a double cycle elimination is appropriate.

tion corresponds to a series of graph transformations from Fig. 3 (with |V (Cm)|
operations in total).

Adding new cycles. Of course, our greedy cycle selection can get stuck. We
now sketch a strategy to resolve the situation that no cycle can be eliminated
in a feasible way.

Even if no cycle can be eliminated, we can certainly still perform graph
transformations (for which we have many degrees of freedom). Recall that all
graph transformations of Fig. 3 can be reversed. Hence, through a series of such
transformations we cannot only eliminate a dual cycle but also insert a new one.
If no cycle can be eliminated in a feasible way, the idea is to add one or more new
cycles in such a way to the current graph that at least one of the “old cycles”
can be feasibly eliminated afterwards. We choose some cycle according to our
selection criteria for elimination. The check for 3-connectivity after a testwise
elimination tells not only a failure, it also gives us all 2-separators. To augment
the local connectivity, a new cycle is inserted around a node of a 2-separator
preferably in such a way that it crosses other cycles exactly twice. The latter
heuristical placement is motivated by our characterization of shellable surface.

Step 4b: Building up the hex complexes. As soon as a perfect elimina-
tion scheme has been determined for some domain, we reverse the order of cycle
eliminations and build up a hex complex layer by layer as described in Section 3.

Step 5: Embedding and smoothing. Up to this point we have only discussed
how to find a combinatorial mesh. Embedding of a combinatorial hex complex
into the prescribed surface such that all hexahedra are well-shaped is a non-
trivial task. It is not even clear which conditions are sufficient for a “nice”
embedding.

However, for convex domains we have been quite successful with a strikingly
simple strategy, namely with a barycentric embedding algorithm ( commonly
also referred to as Laplacian smoothing).

This strategy has been inspired by a beautiful result of Tutte [38, 39] for
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drawing planar graphs in the plane. Tutte showed that the barycentric straight-
line embedding draws a 3-connected planar graph without crossings in the plane
such that every facet is convex if the outer facet is prescribed as a convex
polygon.

For our purposes, we consider a hex complex as a graph, fix the surface nodes
according to the surface mesh, and for all other nodes the node position is deter-
mined as a convex combination (the barycenter) of the position of its neighbors.
More precisely, the barycentric embedding determines vertex positions for all
movable vertices from

pv =
1

degv

∑

(v,w)∈E

pw,

where we denote by pv the position of vertex v in R
3 and by degv the degree

of vertex v. The barycentric embedding is the unique minimizer of the energy
functional

E(p1, . . . , pn) =
1
2

∑

(v,w)∈E

||pv − pw||2,

where pk+1, . . . , pn are fixed positions of vertices on the surface. A straightfor-
ward Gauß-Seidel iteration on the system of equations for the node positions
converges quickly and is computationally very fast. The barycentric embed-
ding can be interpreted as a special case of force-directed algorithms in graph
drawing, see for example [1, Chapter 10].

In the experiments with convex domains mentioned in this paper, the ini-
tial layout obtained from this method was already excellent. However, for this
simple to implement and comparably fast algorithm it is well-known that it
might fail to produce valid meshes (indeed it is quite likely to fail for non-
convex domains). Therefore, we implemented additional embedding algorithms
for optimized mesh smoothing and untangling, i.e., for getting rid of inverted
hexahedra, as described in the pioneering work of Freitag and Knupp [12, 14, 15].

Example: Model of a shaft. We have implemented a first prototype for
our approach in C++. To illustrate first experimental results we use the CAD
model of a shaft with a flange shown in Fig. 20. Several features make this
model useful for testing purposes: it contains 8 holes, a cylindrical inlet in
the lower part (not visible in the hidden surface description of Fig. 20), and
concave surface patches. The input model is axis-symmetric, and so is our
output – although our algorithm has no tools incorporated to detect and to
exploit symmetry. The complex input model has first been decomposed into
topological balls, see the left part of Fig. 20. Then our quadrilateral meshing
algorithm [22] has been run according to some specified uniform mesh density.
The resulting surface mesh has the nice property to be free of self-intersecting
dual cycles for all subregions. For all subregions, our algorithm was successful
to find a perfect cycle elimination scheme. Even more, the embedding of the
hex complexes has led also to geometric meshes of a very good quality. Figs. 21,
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22, 23 and 24 show the resulting meshes for different parts of the model. In
total, the hexahedral mesh for the complete model, depicted in the right part
of Fig. 20, consists of 7488 hexahedra.

6 Summary and Future Work

In this paper, we proposed a new approach to hexahedral mesh generation.
This approach combines techniques from several fields, namely decompositions
of non-convex regions into convex pieces from computational geometry, mini-
mum cost bidirected flows for surface meshing [20], shellings of cell complexes
from topology, graph algorithms on planar graphs, and non-linear optimization
methods for the embedding phase. Some main features are worth to be pointed
out.

• The key idea is to separate the mesh generation process into a combina-
torial part where an abstract complex of hexahedra is constructed from a
surface mesh and a geometric embedding part where the exact positions
of the mesh nodes are determined.

• Hexahedral mesh quality benefits from our surface mesh generator which
yields very regular meshes (in contrast to paving or advancing front based
methods).

• Successive elimination of dual cycles corresponds to the meshing of com-
plete layers of hexahedra (sheets) in each step. Cycle selection can use
global geometric information to find good elimination orders. Our strat-
egy avoids all kind of combinatorial degeneracies rigorously. Problems
with knives or wedges as known from the whisker weaving or plastering
algorithms do not occur.

• The very core of our algorithm, and thus the computationally most expen-
sive part, can be performed in parallel for each subdomain. Only the first
three steps of our meshing procedure need global access to the complete
set of data.

As mentioned, we have currently only implemented a first prototype for our
algorithm and our experiences are still limited. First results are encouraging,
but more testing has to be done to refine several parameters of our algorithm, for
example the cycle selection rules. We would also like to improve our strategies
for cycle insertion for those cases where the cycle elimination process gets stuck.

Self-intersections of dual cycles are a major source of difficulties within the
mesh generation process. We developed a consistent strategy to remove all self-
intersections, relying on the duplication of all dual cycles and a surface mesh
modification. Note that this strategy is feasible if the mesh density requirements
are not too strict. Problems may occur if the CAD input model contains very
short edges. We are convinced that self-intersections should be avoided in the
preprocessing part as far as possible. Future work should concentrate on how
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to minimize the number of self-intersections of dual cycles in surface meshing
algorithms in combination with rules for the subdivision into topological balls.
Theoretical work should try to extend our characterization of classes of shellable
surfaces.

Acknowledgments

The author wishes to thank G. Krause for providing us with the finite element
preprocessor ISAGEN (which we used for our illustrations) and instances from
the automobile industry.

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph drawing:
Algorithms for the visualization of graphs, Prentice Hall, 1999.

[2] M. Bern and D. Eppstein, Mesh generation and optimal triangulation, Com-
puting in Euclidean Geometry, 2nd Edition (D.-Z. Du and F. Hwang, eds.),
World Scientific, Singapore, 1995, pp. 47–123.

[3] M. Bern and P. Plassmann, Mesh generation, chapter 6 of Handbook of
Computational Geometry (J. Sack and J. Urrutia, eds.), North-Holland,
Elsevier Science, 2000, pp. 291–332.

[4] T. D. Blacker and R. J. Meyers, Seams and wedges in plastering: A 3D hex-
ahedral mesh generation algorithm, Engineering with Computers 9 (1993),
83–93.

[5] T. D. Blacker and M. B. Stephenson, Paving: A new approach to automated
quadrilateral mesh generation, Int. J. Numer. Methods in Eng. 32 (1991),
811–847.

[6] N. A. Calvo and S. R. Idelsohn, All-hexahedral element meshing by gen-
erating the dual mesh, Computational Mechanics: New Trends and Appli-
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Figure 20: The model of a shaft with a flange which has been decomposed into
simpler subdomains where different colors correspond to the subdomains (left),
and the hexahedral mesh constructed by our algorithm (right).

Figure 21: Hexahedral mesh for a part of the model in Fig. 20.

Figure 22: Hexahedral mesh for a cylinder (part of the model in Fig. 20). The
cycle elimination scheme first selects parallel cycles corresponding to eight layers,
and uses than a double elimination to remove the 16 hexahedra forming a torus
on the last layer.
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Figure 23: Hexahedral mesh for a truncated circular cone (also part of the model
in Fig. 20). The meshing is non-trivial because the base cycles of the cone have
slightly different surface meshes.

Figure 24: Hexahedral mesh for another part of the model in Fig. 20.


