
Improved Mesh Generation: Not Simple but Good �Friedhelm Neugebauer and Ralf DiekmannDepartment of Computer Science, University of Paderborn,F�urstenallee 11, D-33102 Paderborn, Germanyffreddy, diekg@uni-paderborn.deAbstract.An improved algorithm for two-dimensional triangular mesh generation in arbitrary polygonally boundeddomains with holes and isolated interior points is presented. The algorithm is quad-tree based and followsthe ideas of Bern, Eppstein and Gilbert [1]. Using a rhomboid structure of the quad-tree and a numberof new ideas for warping and centering points and for shifting grids, we are able to generate meshes withprovably good angle bounds between 30� and 90� (except probably smaller angles of the polygonal boundarygiven as input).Keywords. Unstructured Mesh Generation, Rhomboidal Quad-Tree, Provable Angle Bounds1 IntroductionHigh quality mesh generation is a di�cult but never the less very important task in nearly all areas of numericalsimulation and image generation. It is estimated, that the USA industry would be able save up to 75% of theirbudget spent for numerical simulation, if automatic mesh generators were available [4]. As the structural complexityof simulation domains increases, there is a growing need for generating unstructured meshes. Triangulations or evenmixed element discretizations are much more exible than the often used square grids and can approximate complexboundaries with larger accuracy [3, 7, 9].Since the work of Bern, Eppstein and Gilbert [1], quad-tree based unstructured meshing techniques for the 2D-caseexist which generate \optimal" triangular meshes in arbitrary polygonally bounded domains with holes. Mitchell andVavasis generalized the technique to three dimensions [10]. The 2D method guarantees a minimal angle of 15.25�and an aspect ratio of at most �ve [1]. It generates triangulations of minimal size in the sense that no other meshmeeting the same bounds on smallest angle and aspect ratio can have (asymptotically) less elements. It has beenimplemented showing its practical relevance (cf. e.g. [6]).The quad-tree based meshing divides a root box covering the whole domain of interest until no box of the tree containsmore than one element of the polygonal boundary. While dividing boxes into four smaller ones, a balancing conditionensures that neighboring boxes di�er in their size by a factor of at most two. After the tree is constructed, nodeslying near the boundary are moved and shifted in a certain way to guarantee that the domain boundary is part ofthe �nal triangulation. Afterwards, the quad-tree boxes are triangulated especially taking care of those whose nodeswere shifted [1].Using square boxes as the basis for the tree construction causes a large number of right angled triangles in the �nalmesh. If then corner points of boxes have to be moved, small angles are unavoidable. This is the main reason whyBern, Eppstein and Gilbert's method (and also of Mitchell and Vavasis') produce small angles.In our algorithm we use rhombs instead of squares as the basis for the quad-tree construction. Like squares, rhombscan be divided into four smaller ones. But additionally, they can be split into two perfect triangles, if they areequilateral and if the interior angles are chosen to 60� and 120�. This gives more exibility for grid shifting andthus allows to meet angle bounds of 30� to 90� in the �nal mesh. We modify the way how quad-tree nodes near theboundary are shifted. Despite of corners of the boundary and single interior nodes, a point of the tree is never movedto a boundary segment, but always away from it to the interior of the domain (see Sec. 5.2). The connection betweentree and boundary is made by inserting so called border-boxes.�This work is partly supported by the DFG Sonderforschungsbereich 376 \Massive Parallelit�at", by the Heinz Nixdorf InstitutPaderborn (Project \Netze"), and the EC ESPRIT Long Term Research Project 20244 (ALCOM-IT).



l2Figure 1: Advantages of the rhomboid mesh.Of course, the improved angle bounds are not for free. As the basic tree construction di�ers not very much fromBern, Eppstein and Gilbert's, we conjecture that our method, too, generates meshes of minimal size. But the use ofrhombs instead of squares removes one axis of symmetry which increases the number of cases to be considered.The angle bounds of 30� to 90� which are met by our mesh generator improve the exibility when using adaptivemethods. The most common re�nement strategies divide the smallest angle of the mesh into halves [8, 11]. It isknown that in a number of �nite element formulations, small angles cause stability problems [2]. With our algorithm,the smallest angle is larger than 30� which allows adaptive methods to be used without problems.Additionally to polygons with holes, we allow isolated points lying in the interior of the polygonal region. Thisincreases the complexity of the algorithm only slightly, but allows the user to control the mesh density to a certainextend.The next section briey summarizes the main ideas of the method. It is intended to give an intuition on how and whythe algorithm works. A more formally description starts with Section 3 giving some basic de�nitions. It is followedby a section describing the algorithm (Sec. 4) and a part giving some ideas how the angle bounds are met (Sec. 5).In general, proofs are omitted as they mainly result from the constructions. The full paper will give missing detailsand proofs.2 The Basic IdeaThe algorithm presented here is able to triangulate polygonally bounded two-dimensional regions with polygonallybounded holes and single interior points. All angles of the generated mesh are (provably) larger than 30� andsmaller than 90�. Like known methods from e.g. [1], it generates a quad-tree to separate the points and segmentsof the boundaries from each other. Di�ering to known methods, it uses rhomboid boxes instead of square ones. Anequilateral rhomb with interior angles of 60� and 120� can be divided into two equilateral triangles (cf. Fig. 1). Wewill see other advantages of the rhomboid structure later on.The generation of the quad-tree follows the standard technique as already described in [1]. A box is called crowded ifit contains two or more segments or points of the domain which are foreign1 to each other but reachable from eachother through the interior of the domain without leaving the currently considered box. Boxes of the quad-tree aresplit into four equal sized smaller ones as long as they are crowded. A balancing condition ensures that neighboringboxes (those lying next to each other) di�er in their size by a factor of at most two. The balancing condition usedin our construction is slightly sharper than the one of [1]: A rhomb is split into four smaller ones if more than twoof its neighbors are divided. The quad-tree construction ends up with a rhomboid mesh of the following properties:1. A rhomb shares edges with neighbors of half, equal or double size.2. At most two of the neighboring rhombs are of half size.3. A box containing an isolated interior point is surrounded by rhombs of the same size.4. A box containing a corner of the polygonal boundary is surrounded by rhombs of the same size up to a distanceof three.5. A rhomb containing a part of a segment (or a corner) has a distance of at least two (three) to rhombs containingparts of the boundary which are not directly connected to this segment (or corner).1Segments or points are foreign if they do not have a common point.
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��� Sp03p02p1 = p01 p3p2 ..Figure 3: Creating border-boxes.The mesh generation follows the basic structure from [1]. The quad-tree (of rhombs) is calculated, points of the treelying near the domain boundary are shifted in a certain way (see section 5.2) and afterwards the individual boxescan be split into triangles independent of each other. Using a rhomboid mesh as the basis for the triangulation hasa number of nice properties (cf. Fig 1):1. A rhomb can be divided into two equilateral triangles.2. A rhomb with at most two smaller neighbors can be triangulated into equilateral and right-angled triangles.3. A corner of a triangulated rhomb with equal-sized neighbors and side length l can be moved by a distance ofup to l=2 along any of its incident edges without violating the angle bounds of 30� to 90� (Fig 1).4. Each corner of a rhomb can be considered as center of a hexagon (if it does not lie at the boundary of thequad-tree) and corners of neighboring rhombs are corners of the hexagon.After the quad-tree is completely constructed, it is disconnected from the domain boundary by deleting all tree-edgescutting segments of the boundary. Corners of the tree lying near the boundary are shifted to the interior of thedomain by using one of three possible directions (two sides and a diagonal of the rhomb pointing away from theboundary segment). The exact way how this shifting is performed, splits into a number of cases (depending on howthe segment cuts the rhomb) and is described in Section 5.7.Afterwards, the gap between the tree and the boundary is �lled with so called border-boxes. They are constructedby inserting edges connecting outer corners of the tree to the boundary. These edges have to be perpendicular to theindividual boundary segment. Figure 2 shows a border-box and Figure 3 shows how it is created. The corners p2 andp3 of the quad-tree lie to close to the segment S of the polygonal boundary. They are moved to the positions p02 andp03 and the edges (p01; p02) and (p02; p03) are inserted. Connecting p01; p02 and p03 with S by edges which are perpendicularto S creates the border-boxes. Afterwards, all dashed lines can be deleted. The insertion of the edge (p01; p02) resultsin a rhomb which is degenerated to a triangle.Border-boxes can be divided into three triangles by inserting the steiner point v on the boundary S (Fig. 2). Lookingmore closely at the way how corners of the quad-tree are shifted, it can be observed that l1; l2; l3 and �1 have acertain relation to each other (cf. Sec. 5.3). Thus, it can be shown that �1 and �2 lie between 15� and 60�. Trianglesof border-boxes with a �-angle of less than 30� are melt with their neighboring triangle of the next border-box (byremoving p0 or q0). This results in the desired angle bounds of 30� to 90�.Corners of the domain boundary and isolated interior points have to be handled by their own. The quad-treeconstruction guarantees that a rhomb including an input point is surrounded by rhombs of the same size. Concerningonly single points, it is not di�cult to show that if the point is centered within a hexagon, the mid-corner of thehexagon can be moved to its position without running out of the angle bounds. Non-centered points can be centeredby re�ning or dere�ning the quad-tree. Section 5.4 gives exact de�nitions and algorithms.The triangulation of corner points of the boundary splits into a number of cases depending on the interior angle �between the two segments meeting at the corner. Three main cases can be identi�ed:1. � � 60�:In this case the corner is cut o� the rest of the domain by inserting two edges - one for each boundary segment- which are perpendicular to \their" segment and either meet in a common point or are connected by a thirdedge (cf. Fig. 12). The resulting polygon with four or �ve corners is triangulated by its own (without generatingsteiner points on the \cut-o�-edges"). The edges to cut o� the corner are chosen is a way to ensure that



the insertion of normal border-boxes can start right behind them. The details of the construction split into anumber of cases depending on the relative position of the corner to the generated rhomboid mesh (see Sec. 5.6).2. 60� < � � 150�:This case can be handled by shifting the rhomboid mesh in a certain way. The intersection of the bisector of �with the mesh gives a point which has to occur in the triangulation. Not only a single node of a neighboringrhomb is shifted to this point but the whole side of the rhomb. The amount of side shifting should not beto large. Therefore, the sides of neighboring boxes up to a distance of three are shifted, too. Afterwards, theinsertion (and triangulation) of border-boxes in the normal way gives a valid triangular mesh meeting the anglebounds (cf. Sec. 5.7).3. 150� < �:This case, again, splits into a number of parts. The triangulation is based on the rule to handle isolated interiorpoints. The corner of the boundary is centered within a hexagon and the hexagon's mid-point is moved to thecorner. The segments meeting at the corner then intersect triangles of the hexagon. The �nal triangulationdepends on the angle between the segment and the side of the intersected triangle lying in the interior of thedomain. Section 5.8 gives more details.This was only a brief description of the technique. The next sections will give more details. It should be pointed outthat the method as described here is only able to handle the interior or exterior of polygonally bounded area. Segmentslying completely within the area of triangulation are not allowed because they would result in non-conforming meshes(because of the insertion of border-boxes at segments).Additionally, is should be mentioned that the standard technique of doubling [1, 10] can be used to handle non-crowded boxes containing more than one segment (i.e. they contain two or more pieces of the boundary, but thepieces are not neighbored). In this case the triangulations of the di�erent pieces do not inuence each other and canbe performed on di�erent local copies of the box (one for each segment).3 De�nitionsLet P be a polygonally bounded region. The boundary �P of P is described by a set of corners GP := fa0; ::; an�1g,n 2 IN , and a set of lines SP := fS[ai; a(i+1) mod n]g where S[a; b] de�nes a line between points a and b. Input to themesh generator is a polygonally bounded region P , a set H := fH1; ::;Hhg, h 2 IN , of holes, where each Hi is itselfa polygonally bounded region, and a set G := fg1; :::; gjg, j 2 IN , of single interior points. fP;H;Gg is a permittedinput if the following conditions hold:1. Each polygon has more than three corners and its border does not intersect itself.22. Each hole lies completely inside the region P and does not intersect other holes.3. Each single point lies inside the polygonal region P and outside of the holes H.The mesh generator creates additional lines and points (those of the quad-tree and those needed for the �nal trian-gulation). A line or point is called element. Two elements E1; E2 are called foreign if they do not have a commonpoint. The distance dist(E1; E2) is de�ned as the shortest Euclidean distance between the two elements. The circleC(c; r) is de�ned as the circle of radius r 2 IR centered at c 2 IR2.During our algorithm, we often need to insert edges between two elements E1 and E2. If at least one of them is aline, the edge has to be perpendicular to it. If E1 (E2) is a line, then let F1 (F2) be a point on this line. We de�ne asegment (E1; E2) as:31. (E1; E2) := S[E1; E2] if E1 and E2 are points.2. (E1; E2) := S[F1; E2] if E1 is a line and E2 is a point. In this case, F1 is chosen such thatS[F1; E2] ? E1 (if possible).3. (E1; E2) := S[E1; F2] if E1 is a point and E2 a line. Here, the choice of F2 ensures thatS[E1; F2] ? E2 (if possible).4. (E1; E2) := S[F1; F2] if E1 and E2 are lines. F1 and F2 are chosen arbitrarily such thatS[F1; F2] ? E1 (if possible).2The de�nition of crowded requires a polygon to have more than three corners (otherwise, a rhomb would probably not splitsu�ciently). Inserting an extra node on one of the edges of triangular input polygons can avoid any problems.3Note that the de�ned perpendicular sides exist in all cases considered here.



Figure 4: A virtual box. Figure 5: First neighbors. Figure 6: Third neighbors.A border-box (cf. Fig. 2) is given by two points p; q and one line S of the boundary. It is de�ned by the segments(p; q); (p; S); (q; S) and (q0; p0), where p0; q0 are the endpoints of the segments (p; S) and (q; S).The algorithm uses a quad-tree, a geometrical division of the plane into a tree of rhombs. Each rhomb is either a leafof the tree or is split into four equal-sized children. During the construction, we sometimes work with virtual boxeswhich are possible neighbors of a rhomb but do not directly exist in the tree (because the rhomb lies at the boundaryof the tree or the actual existing tree does not contain this box, see Fig. 4). A neighbor of a box might be a virtualbox if not explicitly mentioned that is has to exist. A rhomb has four possible direct neighbors and we distinguishbetween �ve possible types of neighbors:1. A neighbor of a rhomb is a rhomb of the same size sharing a side.2. An extended neighbor is a rhomb of the same size sharing at least one corner.3. A �rst neighbor of a rhomb B is an existing rhomb of the quad-tree which is not B, but shares at least onecorner with B (Fig. 5).4. A second neighbor of a rhomb B is an existing rhomb of the quad-tree which shares at least one corner withone of B's �rst neighbors but is not equal to B or one of B's �rst neighbors (Fig. 5 and 6).5. A third neighbor of a rhomb B is an existing rhomb of the quad-tree which shares at least one corner with oneof B's second neighbors but is not equal to B and not included in the set of B's �rst and second neighbors(Fig. 6).The �rst, second and third neighbor de�nitions describe the rhombs around B with a distance of 0; 1 and 2. A cornerof a rhomb is one of its four vertices. The corners of the quad-tree are the points which are corners of its rhombs.The side of a rhomb is split if the extended neighbor sharing this side is split. All used quad-trees are balanced, i.e.each rhomb has at most two split sides and a �rst neighbor is of same or double size. This includes that, except theend points, at most one corner of the quad-tree is lying on each side of a rhomb. Such a corner is called splittingpoint. A rhomb B is crowded if the rhomb B0 of size x � B centered at B contains at least two foreign elements andthere exists a path between these elements lying completely in the interior of B0 and P . The exact size of B0 dependson the kind of elements included in B0. If it contains a polygonal corner, x has to be 7, otherwise, x is chosen to 5.Boxes including points or polygonal corners must be surrounded by rhombs of the same size up to a distance whichdepends on the type of the corner (especially on the enclosing angle � between the two lines meeting at the corner).The corner condition for a rhomb B including the point p is given by:1. p is a single point or � � 60�: B and its �rst neighbors must have the same size.2. 60� < � � 150�: B and its �rst, second and third neighbors must have the same size.3. � > 150�: B and its �rst, second, and third neighbors must have the same size.Corners of the quad-tree lying near the polygon boundary are shifted into the interior of the domain. To be able tomove nodes, certain moving conditions have to be satis�ed which are rules on the re�nement of the tree. Note thatwe can not avoid that neighboring boxes of di�erent size are cut by boundary segments (otherwise, the mesh wouldbecome to �ne). So we have to give rules on how to re�ne parts of the mesh to make nodes lying to close to theboundary \movable". Section 5.1 gives more details.The root box is a rhomb containing the whole polygonally bounded region given as input.During the quad-tree shifting, certain boxes, mainly around corners or single interior points, become protected.Protected boxes are split no further during the tree construction and the creation of border-boxes at boundary lines



stops if a protected box is reached. This mechanism is used to prevent the creation of border-boxes from runninginto areas which are needed to handle the correct triangulation of corner points.4 The AlgorithmLet fP;H;Gg be a permitted input. Throughout the algorithm, whenever a rhomb is split into four smaller ones, thebalancing condition is propagated as far as necessary. The algorithm consists of the following steps:1. Calculate a root rhomb.2. As long as a crowded rhomb B exists split B into four equal sized smaller ones.3. For each leaf rhomb including a corner point p ensure that the corner condition is valid. Split larger rhombs ifnecessary.4. For each leaf rhomb B including a corner point p which belongs to a polygonal corner with an angle � > 150�do: If p is not centered in B then split B and all �rst, second and third neighbors of B. Let B0 be the newrhomb including p. If p is not centered in B0, three of the �rst neighbors of B0 and B0 are melt (cf. Sec. 5.4 foran exact description). Afterwards, p is de�nitely centered in the resulting larger rhomb ~B. Ensure that all �rstand second neighbors of ~B are of the same size, i.e., melt rhombs is necessary, and protect ~B and all its �rstand second neighbors.5. For each leaf rhomb B including a single interior point p do the same centering as in 4). Protect ~B and its �rstneighbors.6. For each leaf box B including a corner point p which belongs to a polygonal corner with � � 60� do: Find the�rst rhomb B0 lying completely inside of the polygonal corner (cf. Fig. 12) and protect all rhombs from B to B0and the �rst neighbors of B0. All protected rhombs must have the same size, otherwise they are split to satisfythis condition.7. For each leaf rhomb B including a part of a segment do: Ensure that the moving condition is valid (cf. Sec. 5.1for more details).8. For each unprotected leaf rhomb including a part of a segment S do: Move the corner p which is nearest to Sto the interior of the domain (if necessary, cf. Sec. 5.2 for details). Insert the edge (p; S). This process createsborder-boxes. Rhomb edges intersecting the boundary can be deleted afterwards (cf. Fig. 3).9. Delete all rhombs outside of the polygon.10. Triangulate the remaining rhombs B:(a) B has degenerated to a triangle: Nothing has to be done.4(b) B has no split side: Inserting the shortest diagonal divides B into two triangles with angles boundedbetween 30� and 90�.(c) B has one split side: Inserting the shortest diagonal divides B into two equilateral triangles. Connectingthe splitting point with the opposite corner of B divides one of the triangles into two right-angled ones.The case of a rhomb with shifted corners having only one split side does not occur. Thus all angles arebounded between 30� and 90� (cf. Sec. 5.2).(d) B has two split sides: Inserting the shortest diagonal divides B into two equilateral triangles. If thesplitting points are lying in di�erent triangles both can be divided into right-angled ones. Otherwise, anew splitting point is inserted at the center of the diagonal. The two splitting points and the center pointdivide the triangle into four equilateral triangles and the other one can be divided into two right-angledtriangles. Again, corners of such rhombs are not shifted (Sec. 5.2).11. Triangulate border-boxes (cf. Fig. 2): Inserting a steiner point v on the segment S and connecting v to thecorners p and q divides the box into three triangles. Section 5.3 shows that the angle bounds can be satis�ed.12. Triangulate protected rhombs B belonging to a single point p: Move the nearest corner of B to p. Inserting theshortest diagonal triangulates all protected rhombs (cf. Sec. 5.5).13. Triangulate protected rhombs which belong to an angle � � 60� (cf. Sec. 5.6).14. Triangulate protected rhombs which belong to an angle � � 60� � 150� (cf. Sec. 5.7).15. Triangulate protected rhombs which belong to an angle � � 150� (see Sec. 5.8).16. Merge neighboring triangles with an angle �1 < 30�: If such a case occurs the corresponding triangle is right-angled and can be melt with its neighbor (cf. Sec. 5.3).4A rhomb can degenerate to a triangle by either moving two of its corners to the same point or by deleting one of its sides andinserting a new edge. Both cases occur when nodes near the boundary are shifted to the interior (cf. Fig. 3, Sec. 2).



5 Angle BoundsThe following descriptions often need a quad-tree corner p and a corresponding hexagon. Let p be a corner of arhomb which intersects the boundary. p is the center of a hexagon with the corners ai; i 2 f0; :::;5g and the sides(ai; a(i+1) mod 6) of length l. Let vi be the intersection point of the polygonal boundary and the sides (ai; p) and letdist(vi; p) :=1 if vi does not exist. Let dist(vj; p) � dist(vi; p) 8i 6= j. Let (~ai; p) be the side of double length whichincludes (ai; p) and the part (~ai; ai) lies in the interior of the polygon (see Fig. 8).
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������ p p Sa0a1 = aj S a4a2 a1 = aja4a3a2 a5 v1 = vja3 a0 a5Figure 7: Moving conditions.5.1 Moving ConditionsStep 7 of the algorithm requires to ensure that corners of the quad-tree lying near the boundary are movable. If p isa corner of four equal sized rhombs, it is movable and nothing has to be done (cf. Fig. 3).If p is a splitting point or a corner of rhombs of di�erent size, it is not necessarily movable and so the larger rhombhas to be split. Let l be the length of the largest rhomb belonging to p. The side (aj ; aj+3) splits the hexagon aroundp into two equal parts. Figure 7 shows the situation with j = 1. If it is not possible to triangulate each part intoequal sized triangles, the larger rhomb or only a part of it is split. This means that the larger rhomb is divided intotwo equal sized triangles and each triangle is split into four smaller ones if it intersects the considered part of thehexagon.5.2 Moving CornersThe way how corners of the quad-tree near the polygonal boundary are moved to the interior depends on theirdistance from the boundary and on whether of not the rhombs meeting in that point are of the same size. Twodi�erent cases are possible:1. p is a corner of four equal sized rhombs. The moving operation of p to p0 is de�ned as:p0 := p if dist(p; vj) � 0:5lp0 := (p; a(j+3))z=2 otherwise (see Figure 3)2. p is a splitting point or a corner of rhombs of di�erent size. Let l be the length of the largest rhomb side. Themoving operation of p to p0 is de�ned as:p0 := aj+3 := (vj; ~aj+3)=2 if dist(p; vj) < 0:25l (cf. Fig. 8)p0 := aj+3 := (p; aj+3)=2 if dist(p; vj) � 0:25l (cf. Fig. 9)In this case moving p indicates a slightly di�erent moving operation for its neighbors aj�1 or aj�2 where bothhave to be points of the smaller rhombs.5delete aj�1 and setaj�2 := aj�2 � dist(vj�1; aj�1)y if dist(vj�1; aj�1) < l=8 (Figure 8)aj�1 := (aj�2; aj�1)=2 if dist(vj�1; aj�1) < l=4aj�1 := (aj�2; vj�1)=2 if dist(vj�1; aj�1) � l=4 (Figure 9)z(p; q)=2 := center of the segment (p; q).5Depending on the position of large to smaller rhombs, the numbering is clock- or counter clockwise.yMove aj�2 by distance dist(vj�1; aj�1) into the direction of the boundary (see Figure 8).
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��ajaj+1 . .paj�1vj aj�2aj+2S ~aj+3aj+3Figure 9: Moving Corners.5.3 Triangulating Border-Boxes v2v1 �1l4Sv1 l4 l3B� p1 p2 = p02v2p01 p01 p2 = p02S Sl3l4l2 � l1l1 l2 l01 l1 l2l02 l1 l2y x �1�1�2�Figure 10: Bounds of a Border-Box.To de�ne a triangulation of a border-box we need some more information about the length of the sides l1; l2; l3; l4and the angle �1. All identi�ers are shown in Figure 10 and w.l.o.g., we assume l2 � l1. The algorithm creates 7di�erent types of border-boxes:BB 1 is created by a rhomb which is neighbored by rhombs of equal size (cf. Fig. 10).BB 2 is created by a rhomb which is neighbored by a larger rhomb (cf. Fig. 8).BB 3 is created by a rhomb which is neighbored by smaller rhombs (cf. Fig. 8).BB 4 is created by a rhomb with two sides of length l � x, caused by grid shifting (cf. Fig. 13).BB 5 is created by a rhomb with two sides of length l + x, caused by grid shifting (cf. Fig. 13).BB 6 and BB 7 are created during the triangulation of a corner with � � 60� (cf. Fig. 12).Depending on the corner moving operation the length of the sides l01; l02 can be bounded. Depending on this boundsand the angle � between the side l01 and the segment S, the bounds of the sides l1; l2 are calculated. The results areshown in Table 1. min(l1) max(l1) min(l2) max(l2) min(l3) max(l3) max(�1)BB 1 0:433l 1:00l 0:433l 1:00l 0:866l 1:000l 30.00�BB 2 0:433l 0:75l 0:433l 1:00l 0:866l 1:000l 30.00�BB 3 0:650l 1:00l 0:866l 1:50l 0:866l 1:146l 40.90�BB 4 0:433l 1:00l 0:433l 1:00l 0:741l 0:875l 37.43�BB 5 0:433l 1:00l 0:433l 1:00l 0:991l 1:125l 29.78�BB 6 0:433l 1:00l 0:433l 0:72l 0:567l 0:750l 45.00�BB 7 0:433l 0:72l 0:433l 1:00l 0:750l 0:756l 37.09�Table 1: Bounds of Border-Boxes.



Now we have to calculate the bounds on the angle �1 and �2. We do not distinguish between the name of a side itslength. The following general properties are available (cf. Fig. 10):1) l1 = sin(�1)l3 + l2 2) l4 = cos(�1)l3 3) x+ y = l4 4) tan(�1) = x=l2 5) tan(�2) = y=l1This leads to:cos(�1)l3�(tan(�2)(sin(�1)l3+l2))l2 = tan(�1) and cos(�1)l3�tan(�1)l2sin(�1)l3+l2 = tan(�2)De�ning the angle6�1 := arctan((cos(�1) � l3l2 � tan(30�) + sin(�1)) + 30� � arctan(l3)l2 � tan(30�) + l21:7 � 30�results to the bounds. The border-boxes BB 3, BB 4, BB 5, BB 6, BB 7 are of a special type and sometimesare triangulated by inserting the shortest diagonal.5.4 Centering PointsLet B be a rhomb and p a single point in the interior of B. All other identi�ers are shown in Figure 11. Let l be theside length of the rhomb, l = dist(a; b). W.l.o.g. dist(p; a) � dist(p; b) � dist(p; c).7 p is centered in B if1: C((a; c)=2; 0:5l) \ p = ;z 2: C(a; 0:6l) \ p = ; 3: C(c; 0:6l) \ p = ; a4a bcma6a1 B p l �2 �3�6 2 3�2�1 �1 �3 �4�4 4�5�556 �61D1 D2 D3D4D5D6a1 a2 a3
a5a6 b~B l0Figure 11: Center a point and the resulting triangulation.Let ~B be a rhomb of side length 2l = l0 including B and b is a corner of ~B.Claim: If p is not centered in B than p is centered in ~B.Proof: dist(p; (a1; a6)) � dist(m; (a1; a6)) = 1:299l = 0:6485l0 > 0:6l0~B and the extended neighbors of ~B include the rhombs to be melt in step 4 of the algorithm (Sec. 4).6All values li are divided by l.7p could lie anywhere inside of the shaded area in Figure 11.zp does not lie in the interior of a circle of radius 0:5l which is centered in the middle of edge (a; c).



5.5 Triangulating Rhombs with a Single Interior PointLet B be a rhomb and p be a single point which is centered in B. All other identi�ers are shown in Figure 11. Letb be the corner nearest to p. b is the center of a hexagon which could be triangulated with equilateral triangles.Moving point b to the single point p and using the condition that p is centered in B gives the following bounds tothe length of the sides:0:5l � (a1; p) � l 0:866l � (a2; p) � 1:33l l � (a3; p) � 1:5ll � (a4; p) � 1:5l 0:866l � (a5; p) � 1:33l 0:5l � (a6; p) � lThese length together with the fact that p is centered in B result in the desired angle bounds of 30� to 90�. Thecalculated bounds are displayed in Table 2.i min(�i) max(�i) min(�i) max(�i) min(i) max(i)1 60� 90� 49.11� 90� 30� 60�2 60� 90� 40.89� 60� 40� 60�3 60� 80� 35.26� 60� 60� 80�4 40� 60� 40.89� 60� 60� 90�5 30� 60� 49.11� 90� 60� 90�6 30� 60� 60.00� 90� 30� 60�Table 2: Angle bounds of the triangulation.5.6 Triangulating Corners with Angle � � 60�Wd0 v3 Vp w1 w2 w3 dv2 f 0 f� .w0j�1v1 w00j = v00i W Vv1 v2 v3ff 0 v002 v02w3w2dd0w1p BB 6BB 7Figure 12: Triangulating a corner with an angle � � 60�.Let W;V be the segments with the common end-point p and the enclosing angle �. Let v1; :::; vn be the intersectingpoints of V with the rhombs in sorted order. Let v0i be the corner of a rhomb B which lies in the interior of P and(vi; v0i) is a part of a side of B. Let v00i be the corner v0i after corner moving. wj; w0j; w00j are de�ned in the same way.The �rst points v00i ; w00j which satisfy the distance condition: 0:433l � dist(x;Y ) � l (where x 2 fv00i ; w00j g; Y 2 fV;Wg)could be used for the triangulation. Two cases are possible:1. v00i = w00jIn this case the two points are common end-point of two border-boxes where (v00i ; V ) and (w00j ;W ) are per-pendicular sides of the box. Also, v00i must lie in the center of rhomb B and therefore, v0i�1 or w0j�1 must bea corner of B. Let w0j�1 be this corner. The segment (d0; V ) which includes (w0j�1) splits the corner of thepolygon into a triangle with angles �; 90� � � and 90�. The other part is split into a triangle and a border-box by the segment (d0; v00i ). To maximize the angle between (d0; V ) and (d0; v00i ), (d0; V ) was chosen only if



14x 24x 34x x 34x 24x 14xa m b WV ZpFigure 13: Shifting the rhomb mesh.dist(v00i ; V ) � dist(w00j ;W ). Otherwise the construction is done with the segment (f 0;W ) (see Figure 12). Atriangle (d0; f 0; wj�1) can be inserted if this construction fails.2. v00i 6= w00jIn this case only one of the two points have to lie in the center of a rhomb B. Take this point to generatea triangulation in the same way as in case 1. A di�erent situation occurs because there is only one regularborder-box available for this point and so the second border-box has to be constructed. This gives two morecases which create small border-boxes. The situation is displayed in Figure 12(ri). If this construction fails, thecorner can be split up with three segments (W;w00j ); (w00j ; v00j ); (V; v00j ) triangulated by its own.5.7 Triangulating Corners with Angle 60� � � � 150�Let W;V be the segments with the common end-point p and the enclosing angle �. In this case the corner of thepolygon must not be centered because the rhomb mesh will be adapted to the situation. This will generate rhombswith di�erent sides. First calculate the bisector Z which divides the angle � into equal parts. Detect the �rstintersecting point m of Z and the rhomb mesh which satis�es the distance condition. m has the same distanceto V and W . Let a and b be the corners of the intersected rhomb side with the point m (cf. Fig. 13). W.l.o.g.,x := dist(a;m) � dist(b;m). Rhomb sides with corner a and not parallel to the intersected side are moved bydistance x. This includes that the point a is moved to m. The rhomb sides opposite of the moved sides are moved inthe same direction but only by a distance of 34x. This moving operation also occurs for the next two rhombs but themoving distance will be 24x and 14x. The quad-tree generation ensures that all shifted sides have the same length.After shifting there are three rhombs with a side length l and l � x4 and three rhombs with side length l and l + x4in each row. The triangulation of the shifted grid can be done in the normal way (creating border-boxes). This willcreate two equal triangles with angles �=2; 90� and 90� � �=2 at the polygonal corner. If an angle smaller than 30�occurs (� > 120�) the triangle can be melt with its neighbor from the border-box (see Figure 13).5.8 Triangulating Corners with Angle � � 150�Let W;V be the segments with the common end-point p and the enclosing angle �. In this case, p is centered withina rhomb B and the triangulation which would be done, if p was a single interior point is known. This triangulationis used to describe how to handle the obtuse corner (but does not appear in the �nal triangulation, cf. Fig. 14). Letai; i = f1::6g be the corners of the (point) triangulation. Depending on the angle  between the segment W and theside of the intersected triangle (the side must lie inside of the polygon and is given by (ai; p)) a triangulation of theinterior will be described. Three di�erent cases occur:1. 30� �  � 60�Inserting the edge (ai;W ) creates a triangle with angles 90�;  and 90� � .2. 60� <  � 90�Inserting the edge (ai;W ) creates a triangle with angles 90�;  and 90��. Because the angle 90�� is smallerthan 30� the triangulation of the neighboring border-box has to create a triangle which can be melt with it.
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3.  < 30�In this case the edge (ai; p) instead of the edge (a(i�1) mod 6; p) or (a(i+1) mod 6; p) has to be used and the angle0 =  + � has to be considered (cf. Fig. 15). Since 30� � � � 90�, the angle 0 has bounds between 60�and 120�. If 0 � 90�, the triangulation from above can be used. 0 > 90� implies � > 60� and this only canhappen using one of the three di�erent triangles with an angle �i > 60� which splits into �ve di�erent cases:Let D1;D5;D6 are be the possible triangles (using the same description as in Figure 11) (cf. Fig. 14).(a) The segment W intersects D1 [or D5] and D6 lies inside the polygon (cf. Fig. 16).(b) The segment W intersects D6 and D1 [or D5] lies inside the polygon. Let B be the rhomb sharinga side with triangle D1 and b1; a2; a1; b2 are corners of B. Inserting the center m of B and the edges(m;W ); (m;p); (m;a2) and (m; b1) gives a possible triangulation (cf. Fig. 17).(c) The segment W intersects D2 and D1 lies inside the polygon [or the segment W intersects D4 and D5 liesinside the polygon].i. The corner a2[a6] will not be moved (cf. Fig. 15).ii. The corner a2[a6] will be moved to the point a02[a06] and the edge (a02; p)[(a06p)] divides the angle 0into two angles greater or equal to 30� (cf. Fig. 18).iii. The corner a2[a6] will be moved to the point a02[a06] and the edge (a02; p)[(a06; p)] divides the angle 0into one angle smaller than 30� (cf. Fig. 19).(d) In all other possible cases, 0 will be smaller than 90�.The same triangulation can be done with segment V and each one only e�ects the intersected triangle and its neighbor.This gives the solution that the triangulation with W and V can be combined to an independent triangulation if� � 150�. All not triangulated rhombs can be triangulated in the normal way.6 ConclusionsA new algorithm for two dimensional triangular mesh generation of a polygonal region with holes and single pointswas presented. All angles of the generated mesh are bounded between 30� and 90�, except possibly smaller inputangles. The algorithm uses a quad-tree of rhombs to separate elements of the given boundary from each other.Shifting nodes of the tree lying near the boundary to the interior and inserting border-boxes at the boundary allowsthe triangulation to meet the angle bounds. Corners of di�erent type are handled by their own resulting in a numberof distinct cases.Allowing isolated interior points in the input gives a possible user the chance to control the mesh density.Missing up to now is an analysis of the size of the resulting mesh and the running time of the algorithm. We conjecturethat the meshes will be of minimal size but a proof has to be given. Also missing is an analysis of where to place thesteiner point while triangulating a border-box to obtain optimal angles. Details will appear in a full paper.Up to now, only parts of the method are implemented. We are working on this, as well as on a parallel implementationon distributed memory machines.AcknowledgmentsThanks are to our colleagues Petra Berenbrink, Stephan Blazy, Uwe Dralle, Klaus Meyer, Burkhard Monien, OlafSchmidt, and especially to Ralf Weickenmeier for many helpful hints, comments and suggestions.Additionally, we thank the anonymous referees for many useful comments.References[1] M. Bern, D. Eppstein, J. Gilbert: Provably Good Mesh Generation. Proc. 31st Symp. on Foundations of Com-puter Science (FOCS '90), pp. 231-241, 1990.[2] S. Blazy: Personal communication.[3] P.L. George: Automatic Mesh Generation. John Wiley & Sons, 1993.
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