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Abstract

Edgebreakers a simple schemedor compressinghe triangle/vertexincidencegraphs(sometimescalled connectivityor
topology) of three-dimensional triangle meshes. Edgebreaker improves upon the worst case storagdyepreredusly
reported schemes, most of which require O(nlogn) bits to store the incidenceofirapheshof n triangles. Edgebreaker
requires only 2n bits or less for simple meshes and can also support fully geestady using additional storageper
handleand hole. Edgebreaker'ssompressiorand decompressioprocesseperformthe sametraversal of the mesh from
onetriangle to an adjacentone. At each stage,compressiorproducesan op-codedescribingthe topological relation
between the current triangle and the boundafythe remainingpart of the mesh.Decompressionisestheseop-codesto
reconstructthe entire incidencegraph. BecauseEdgebreaker'scompressionand decompressiorare independenpf the
vertex locations, they may be combinedwith a variety of vertex-compressingechniquesthat exploit topological
information about the mesh to better estimate vertex locations. Edgebreaker may becosagrésshe connectivityof
an entire mesh bounding a 3D polyhedron or the connectivity of a triangulated surface patch whose boundaot beeds
encoded. Its superior compression capabilities, the simplicity of its implementatioits arasatility make Edgebreaker
particularly suitablefor the emerging3D data exchangestandardsfor interactive graphic applications. The paper also
offers a comparative survey of the rapidly growing field of geometric compression.

Introduction

Interactive 3D graphics already plays an important role in
manufacturing, architecture, petroleum, entertainment,
training, engineeringanalysisand simulation, medicine, and
sciencelt promisesto revolutionizeelectroniccommerceand
many aspectsof human-computeiinteraction. For many of
these applications, 3D data sets are increasingly accessed
through the InternefThe numberand complexity of these3D
models isgrowing rapidly, dueto improveddesignand model
acquisition tools, to the widespread acceptanceof this
technology,andto the needfor higher accuracy.In many of
theseapplications,human productivity or satisfactionwould
be significantly enhancedy the possibility of an immediate
access to remotely located 3D data setwvifsual inspectionor
manipulation. Even when image-basedendering[21, 20, 5]
and progressiveransmissiortechniqueq 12, 14] for adaptive
resolutiongraphicsare usedto reducethe fraction of the 3D
representatiorthat must be transferredat any given time,
geometry transfer remains the bottleneck. The anticipated
phone and network bandwidth increases will not, by
themselvessuffice to offset the explosionof the complexity
and popularity of 3D models.Consequentlyjt is urgentto
develop optimal bit-efficient formats and associated
compressionand fast decompressionalgorithms for 3D
models.

Although many representationdiave beenproposedfor 3D
models[28] polyhedra(or more preciselytriangle mesheskre
the de facto standafdr exchangingandviewing 3D datasets.
This trend is reinforced by the wide spreadof 3D graphic
libraries (OpenGL [24], VRML [3]) and other 3D data
exchangefile formats, and of 3D adaptersfor personal
computersthat have beenoptimized for triangles. Graphic
subsystemsan convertpolygonsand curvedsurfacesinto an
equivalent (or approximating) set nbn-overlappingriangles,

which may be renderedefficiently using hardware-assiste
rasterizerg 26, 24]. But to avoid the cost of this runtime
conversion, most applications precompute and store the
triangle meshes. Therefore, triangle count is a suitaiglasure
of a model's complexity and triangle-meshes aneppropriate
target for current efforts on compressiaf]|

A triangle meshmay be representedby its vertexdataand by
its connectivity. Vertex data comprisescoordinatesof all the
vertices and optionally the coordinates of #ssociatechormal
vectors and textures. In its simplest form, connectivity
capturesthe incidencerelation betweenthe triangles of the
meshandtheir boundingvertices.lt may be representedy a
triangle-vertexincidencetable, which associateswith each
triangle the referencego its three boundingvertices.For all
meshesthat are homeomorphicto a sphere,andin fact for
most meshedn practice,the numberof trianglesis roughly
twice thenumberof vertices.Consequentlywhen pointersor
integerindicesare usedas vertex-referenceand when floating
point coordinates are used to encode vertex locations,
connectivity data consumestwice more storagethan vertex
coordinates Furthermore for most applications, vertex data
may be compressed down to about a tentthe@luncompresset
connectivity data, with an averageof 12 bits per vertex
location and 6 bits per vertex normal [4, 33, 37].
Consequently,we need to deploy aggressiveschemesfor
compressinghe triangle-vertexincidence table, from which
most popular boundary data structures may be easily derive

It is possibleto hide someor all of the connectivity cost in
the vertex encoding. For example, one could use some
automatically computed triangulation as a first guess for
connectivity and then only encode the necessary
transformationghat producethe correctconnectivity. Another
approach, proposed for 2D triangulationsnny and Sohler
[7], would be to encode theerticesin a specific order, which,
when comparedto a lexicographical(left-to-right) sorting of
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these vertices, defines a permutation number. That nuislaer
sequenceof bits, which, for sufficiently large n, sufficesto
identify one among the possible labeled planar triangulated
graphsof n vertices.Unfortunately,theseapproachesre not
compatible with the schemes mentioned above for
compressingertex data.Indeed,these schemesequire access
to the connectivity information fgpredictingthe datafor each
new vertex from previously encodedneighbors. They use
variable length codes for the coordinate correctlgtsveenthe
predictedand the actual data. The better the predictions, the
shorter the codes. THack of connectivityinformation andan
encoding of verticeg an orderthat doesnot capturesomeof
their proximity relations would considerably increase the
storage neededto encodevertex data, which already is the
bottleneck when previously proposed connectivity
compression schemes are usgdf.

To meet thesetwo objectives, we have developeda new
compression schemealled Edgebreakerlt encodesinto 2t
bits or less the connectivityf any meshof t trianglesthatis
homeomorphicto a sphere.The encodingis independentof
vertex locationsPreviously proposedapproachesequiremore
storage or even exhibit non-linear asymptotic worst-case
storage complexity. More general meshes Widixterior edges
andh handlesrequire 2t+b+(log,(h)+log,(t)+k)h bits or less,
wherek is a small constant.In practice, for mesheswith
relatively few handles and feboundingedgesthe compressed
datarequiresbetweenl.5 and 2 bits of storageper triangle.
This ratio may be evenlower for compressingatcheswith a
complexboundingloops and relatively few interior vertices.
Their results do not rely on statistic-basedentropy or
arithmeticcoding schemeswhich in generalperform poorly
on small or irregular data sets. Consequently Edgebreakers
suitablefor compressingll modelsand particularly attractive
for compressindarge catalogsof small models for remote
instant access without overhead.

Edgebreakerorganizesthe vertices of the model along a
spiraling vertex-spanningree that is almost identical to the
vertex-traversabrders producedby several recently proposed
compression scheme33, 37, 1(. Therefore,our connectivity
compression technique may ti&vially combinedwith several
previously proposed schemes for compressing vertex data.

The rest of this paperis organizedas follows: we start by
defining our Terminology and Notation and proceedto a
Comparative Analysis of Prior Art; we introduce the
Edgebreaker approach fiyst focusingon simple mesheghat
arehomeomorphido a half-sphereand provide the details of
CompressingSimple Meshes the Compressed-ormat, and

Decompressing Simple Meshes; then we discuss Externtsions

More General Triangle Meshes.

Terminology and notation

To define our notation and domaing use simple conceptsof
topology. Their precisedefinitions may be found in [22] or
othertextbookson this topic. Let |X| denotethe number of
elementsin the set X. Let T denotea set of topologically
closedtrianglesT;, for integeri in [1..|T|]. {T} is the closed
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pointsetof T, {T} is the union of these pointsetsfor all
trianglesin T. Let V denotethe set of the verticesof T. For
simplicity, and without loss ofienerality,we assumethat the
verticesof V may be uniquely identified by integer numbers
betweenl and|V|. The connectivitymay be representedy a
triangle-vertexincidencetable, which associatesachtriangle
with three integer labels that reference its bounding vertice:

The compressioralgorithm described here is restricted to
manifold representation®f triangle meshes.In a manifold
mesh, each edge undingone or two trianglesandthe star
of each vertew (i.e., its incidenttrianglesand edges)emains
connectedwhenv is removed.By replicating some of their
non-manifold vertices, non-manifold meshes may be
represented using dastructuresor manifold meshesand may
hence be processed by our compression algorithms.

Edges that bound twinianglesare called interior edges Edges
that bound exactly one triangle are called exterior edgesand
their union is denoted b{T} and called theundaryof {T}. The
connectedcomponentsof b{T} are one-manifold polygonal
closedcurves,calledloops Verticesof T that do not bound
any exterior edgeare called interior vertices The set of all

interior verticesis denotedV,. The otherverticesare called
exterior verticesand their set is denoteg¢.V

A choice of the cyclic order for the boundingvertices of a
triangle X defines an orientation for X and imposes
orientationson its boundingedges.The orientationsof two
adjacenttriangles are compatible, if they impose opposite
orientationson their common edge. A manifold mesh is
orientable if andonly if thereexistsa choice of orientations
that makesall pairsof adjacenttrianglescompatible.In this
paper,we assumethat the meshis always orientable.Non-
orientable surfaces maybe cut into orientable pieces by
replicating interior edges by pairs of coincident exterior one

We definea simple meshto be a triangle meshthat forms a
connectedprientable, manifold surfacethat is homeomorphic
to a sphereor to a half-sphere Such mesheshaveno handles
and have either no boundaryor have a boundarythat is a
connectedmanifold, closedcurve,i.e.: a simple loop. The
core of this paperdealswith the compressiorof connectivity
graphsthat may—butneednot—be imbeddedin such a way
that they represent the connectivity of simple meshes.

The Euler equation for simply meshgslds t—e+v=1, wheret

is the number of triangles, |Mherev is the total numberof

vertices, |V,|+|Vg|, and wheree is the total number of the
externalandinternal edges Sincethereare |V¢| externaledges
and (3|T|-|\])/2 internal edges,we obtain by substitution:
I TI=[Vel =3[ TI/2+[\e|/2+[Vi|+[Vel=1 and | T|=2|V{|+[Vel-2. When
[Vel<<|V||, thereare approximatelytwice more trianglesthan
vertices.

Comparative analysis of prior art

In this section, we first summarize the most relevant
approachesfor compressingvertex data and then review
previously published schemes for compressing the
connectivity of triangle meshes. We also propose
improvementdo some of thesetechniquesand discusstheir
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expectedor worst case connectivity cost For compressed
formats, where connectivity information is combined with
vertex data, we define the connectivity ctsbe the difference
betweenthe overall storagecost and the cost that would be
necessaryor compressinghe vertexdataalone. We organize
the prior art of compressingonnectivityinto five categories:
uncompressedatastructurestriangle strips, vertex insertion,
graph encoding, and vertex permutations.

Vertex data compression techniques

Typically, tessellatedmodels are used for visualization,
interferencedetection, or finite-element analysis. They are
often approximations of curveshapeswhich may haveto be
representedvith higher degreesurfacesfor manufacturingand
more advancedsimulation and analysis applications. Even
when amodelrepresents shapethat is polyhedralby nature,
the accuracyof the modelis often limited during its creation
by numericround-off errorsin the computationof geometric
intersections by the limited resolution of input techniques
during design, or by measuremenerrors. Applications for
which such numeric inaccuraciesor such crude polyhedral
approximationsof curved shapesare acceptabledo not in
general require that vertex coordinatesbe stored with full
floating point precision, as long &se geometrypreserveshe
important topological and adjacency relations.

Following [6, 4, 33], we suggestto representthe vertex
coordinates withk bits each,as integersbetween0 and 2 -1,
defined over the smallestaxis-alignedbox that containsthe
model. For example,10-bit quantization(k=10) will resultin
better than 0.5mm accurafyr any part of a carengine.Note
that the quantization needs not be uniform for the entodel,
but may be adjusted localljependingon the smallesttriangle
sizeor largestsurfacecurvature[4]. Different accuracylevels
for vertex data should be associatedvith different levels-of-
detail for the mesh complexity, so as to integeafgogressive
vertex data accuracy refinement witprgressivedownloadof
increasingly detailed approximations of the mesh [19].
Consequently, theoordinatesof a vertexmay often be stored

using less than 30 bits, instead of 3 floating point numbers.

Furthermorethe storagefor vertex datamay be considerably
reduced by using variable lengthcoding[6, 13, 33, 37,19].
Indeed, if the compressionand decompressionalgorithms
computeidentical estimatedor the location of eachvertex, it
suffices to encodethe corrective displacementvectors: The
decompression algorithm will estimate the locatiornhef next
vertex andsimply addit to the correctivevector. If the vertex
coordinatesare quantizedto a small numberof bits andif the
estimatesare good, many of the coordinatesof the corrective
vectors will be small integers. Entropy coding or other
variable length schemesreplace the frequently occurring
integers with shorter codes. Thus, highly tessellatednodels
with guantizedcoordinatescompressiorratios for V depend
primarily on the precision of the vertex estimates.

For example, Taubin and Rossignac[33] have used vertex
estimators basedn a few ancestorsn a vertex-spanningdree,
whose edgescorrespondto some of the edgesof the mesh.
Each new vertex is expressedeéstbB+cD+dD+E, whereA,
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B, C, andD arethe successiveancestorof v in the vertex-
spanningtree,whereE is the correctivevectorthan must be
encoded, and wheeg b, c,andd are scalarvaluescomputedto

minimize the E's over the entire mesh. For highly complex
models with finely tessellated surfaces, their technique
approached 2 bits per vertex, which representsn averageof

only 4 bits per coordinate (& bits pertriangle). Toumaand
Gotsman[37] suggestedo use the estimateA+CB for the
third vertexof the triangleincidentupon the gateg, whereA

andB arethe verticesof g and C is the third vertex of the
other previously processed triangle incident upon g.

To provide a meaningful basis foomparingthe storagecosts
of the various coding schemes, we assuméismsection:that
it sufficesto representertex coordinatesvith an accuracyof
1/1024 with respectto the overall dimensionof the model;
that |Vg|«|V|; and that there are no holes or handles. To
simplify notation,v will stand for |V| throughout this sectior

Uncompressed data structures

Storing each triangle independently of all ottr&anglesas the
list of 10-bit integer coordinatesfor each one of its three
verticeswould require90 bits per triangle. In such a simple
representation, the connectivity is not coded explichilyt can
be recoveredhroughgeometrictestson the vertex locations.
The location of a verteis repeatebn averaget times. Thus,
the storage used in excesstloé vertexlocationis 60 bits per
vertex or approximately 30 bits per triangle.

To avoid storing multiple representationsf eachvertex, we
could store the vertex data table in a sequenceand store
connectivity as a sequencetatingle descriptorsgachtriangle
beenrepresentethy 3 integer numbersthat eachidentify the
position of a vertexin the abovevertex sequenceWe would
need at modilog,(v)Cbits per reference, whefé&[ldenoteshe
lowest integer greater than x. For simplicity, wél omit the
"[I7 from the formulae in the remainder of the paper. Vfitis
scheme the connectivity cost is 3log,(n) bits per triangle.
When the vertex datdoesnot include anythingbut the vertex
coordinates, this solution becomes more expensive than
storing independentrianglesfor modelswith more than 512
vertices.

The advantagesf both schemesnay be combinedby storing
only the triangles, eachrepresentedy 3 vertex descriptors.
Each vertex descriptor would start with a one-bit switch

indicating whetherthis is a new vertex for which the three
coordinatesand other vertex datafollow or whetherthe vertex
has alreadybeen encounteredin which casethe rest of the

vertex descriptorcontains [log,(i)0 bit which identify one of

the i previously encounteredvertices. This representatior
requiresa total of 31v+5vlog,(v) bits. If we subtract30v for

the vertex coordinatesthe connectivitycostis v(5log,(v)+1),

or approximately 2.5lofv)+0.5 bits per triangle.

The decompression algorithm may keep track of whistices
are interior tothe part of the meshthat hasbeenrecoveredso
far and which vertices are still exposed,i.e., are on the
boundaryof that part. Becauseonly the exposedvertices need
to be referencedjt is suitableto reducetheir number. Bar-
Yehudaand Gotsmanhave proposeda techniquefor visiting



J. Rossignac

the trianglesin an orderwhich guaranteeshat no more than
13()°® vertices are exposed at agiyen time [2]. Using such
an improvement would lead to a connectivity cost of
1.25log(v)+9.25 bits per triangle.

Triangle Strips

A representationbased on triangle strips, supported by
OpenGL p4] and other graphiclibraries, is usedto reducethe
numberof times the samevertex is transferredand processed
by the graphicssubsystemBasically, in a triangle strip, a
triangle is formed by combining rew vertex descriptionwith
the descriptions of thewvo previously sentvertices,which are
temporarily stored in two buffers. Each new triangle,shares
an edge with the previous triangle in the strip. Using a
convention toorient the surfaceof the strip, we canlabel the
other two “free” edges of Xasthe left andthe right edge.One
bit per triangle suffices to indicate whether the triangle is
incident upon the left or the right edge of the previtizmsgle.
The first two verticesarethe overheador eachstrip, so it is
desirable tdouild long strips, but the automationof this task
remainsa challengingproblem[9]. Insteadof using such a
left/right bit, OpenGLrequiresto alternatebetweenleft and
right edgesthroughoutthe strip (seeFig. 1). Note that two
consecutiveright or left “moves” may be implementedin
OpenGL by encodinga vertex twice without breaking the
strip.

L 3 : 3
Vi ° Z|713 1.0 2
4

4 4 4567

6 6
7 6 b5
Figure 1: The triangulated boundary of a polyhedron
(left) may be cut (thick blue edges, center) into a flat
triangulated polygon without interior vertices (right).
When this polygon has no bifurcation, it may be
represented by a single triangle strip, where triangles
are attached to free edges of the previous triangle.
OpenGL requires to alternate between the left and the
right free edge Except for the first and last ones, each
vertex has 3 incident edges (right). Note that, each
vertex, except for 3 and 7, which are the end-points of the
cut, is encoded twice. Indeed, in general vertices appear
either in the boundary of two separate strips or are used
by non-consecutive triangles within the same strip.

Let us improve the triangle strip format and avoid vertex
replication by usingas above,in lieu of a replicatedvertex, a
referenceto a previously decodedone. Assuming strips of
length k«1 andusing one bit pertriangleto indicate whether
the next triangle is attached tioe left or the right edgeof the
current one and another Ipier triangle to indicatewhetherthe
next vertex has beenalready encoded,the connectivity cost
becomes dits per triangle plus an averageof 5/6log,(v) bits
per triangle for the referencedo previously decodedvertices.
The total connectivity cost of our modified triangle strip
approach is (5/3)og,(v) bits.

Deering's compressed format [6] was designed for
decompressionby a hardware graphics adapter with very
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limited memory. Thus, random access to previously
decompressed vertices was out of the question. Indbesling
usesa 16-registercacheto store16 of the previously decoded
verticesfor subsequenteferencesWhena previously decoded
vertex no longer in cachis neededa new instanceof it must
be decodedChow hasproposeda techniquefor traversingthe
triangles of a mesh in an order that exploits Deering's
architecture[4]. He sweepsa front of edgesin a spiraling
patternto avoid creating isolated vertices. The generalized
triangle strip is formed by connectingthe triangle-corridors
definedby two consecutivepositionsof the swept front. We
estimatethat on averageone vertex out of eight must be
encoded twice.

Deering's cache idea could be adapted for software
decompressioby providing accessto all previously decoded
vertices. Sevenout of eight verticeswould be in the cache
when neededmore than once and could be identified using 4

bits. One out of eight reusedvertices would be in main

memoryandwould requirea referenceof log,(v) bits. So the
average cost of identifying reusedvertexis (7*4+ log,(v))/8,

plus onebit to distinguishthe cachedverticesfrom thosein

RAM. The connectivitycost would also include one bit per
vertex to indicate whether each newdscodedsertex shouldbe
saved in the cache and twds pertriangleto indicatehow to

form the next triangle. Assuming that each vertex is used
twice, the total connectivity cost would be 7.5+0.125log(n)

bits per vertex.

Progressive Vertex Insertion

Hoppe's Progressive Meshds3[ permit to transfer a 3Bbnesh
progressively startingfrom a coarsemeshand then inserting
new vertices one by one. Instead of a vertex inserti@plib a
single triangle, as suggestedn [8] for convex polyhedra,
Hoppe applies a vertex insertion that is tteerseof the edge
collapse operation used in many mesh simplification
techniques12, 27, 11]. A vertex insertion identifies a vertex
andtwo of its incidentedgeslt cutsthe meshopen at these
edgesandfills the hole with two triangles. Vertex v is thus
split into two vertices.In Hoppe’'s scheme,each vertex is
transferred onlyonce. The connectivitycost for eachvertexis
the identification of one of the previously transferredvertices
(on averagamorethan 0.5log,(Vv)) plus the cost of identifying
two of the incidentedges(5 bits are sufficientif no vertexis
bounding more than 32 edges). Thus, ¢hanectivity cost per
vertex would be more than 5+0.5/09).

Taubin et al. [35] proposedto group Hoppe's splits into
refinementsEachrefinementdoublesthe numberof triangles
at an averageexpectedcost of 3.5 bits per triangle. Each
refinement oftheir progressiveforestsplit methodidentifiesa
set of cutedgeswhich are groupedinto maximally connected
components and stored as spanning vertex-tR@sovingthe
cut edges of a tree produces a topolodgicdé that is a simple
polygon, whoseboundaryis known. The triangulationof the
interior of that polygon, which doesnot contain any interior
vertices,may be encodedusing a simplified version of the
Topological Surgery oTaubinandRossignad33], which, as
discussed later, exhibits a non-linear worst case behavior.
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Li and Kuo [19] combine progressive transmission of
connectivityrefinementswhich insert new verticesone at a
time, with progressive transmission \wértex data,which adds
resolution to the vertex coordinates. Thesea simple vertex-
decimation scheme to produce series of operatiisdecrease
the levels-of-detail of the model. Theyencode the inverse
connectivity refinementoperationsby identifying the base
triangle where the vertex must beserted,and by labeling the

surrounding edges to indicate which of these must be flipped

restore the correct incidence. Thigproachleadsto an average
connectivity cost of logv)+10 bits per vertex.

Graph encoding

The adjacency information for a simple mesh without

boundaryis a labeledtriangulatedplanar graph and may be

represented by the triangle-vertex incidence table (&g (v)

bits per triangle. However, if we adopt a convention for

constructinga vertex-spanningree of such graphsandif we

accept to label the vertices with integénat correspondo the

order in whichthey arevisited by a traversalof this spanning
tree, our compressionproblem may be reducedto one of

computing a bit-efficient representationof an unlabeled
triangulatedplanargraph. Turan hasshown that the structure
of a labeledplanargraphmay be encodedusing slightly less
than 12v bits [38]. Having a constantnumber of bits per
vertex has a significant advantage over the previous
approachesywhich all include a log,(v) factor, especiallyfor

highly complexmeshes.Turan builds a vertex-spanningree
and uses it to represetiie boundaryof a topological polygon
of 2v-2 edges. The structure of this tree is encoded ubing

bits. Thereareat most 2v-5 edgesthat do not belongto the

vertex-spanning tree. These maydmeodedising 4 bits each.
The overall connectivity cost is thus, 24 bits.

A triangle-spanningree of T is a binary tree, whoseaodes
correspond to all the triangles of T and whesggescorrespond
to someof the interior edgesof T. A depth-first traversalof

such a spanning tree corresponda tealk on the entire mesh
that starts at the root triangle and recursively visits the

neighboringtrianglesthat have not been previously visited.

The spanning tree may lemcodedusing 2 bits per triangle as
follows. Eachtriangleis visited by coming to it from an

adjacent,previously visited neighbor triangle. Becausethe

surface isan orientablemanifold, the othertwo edgesmay be

uniquely labeled as tHeft and theright edge.We canuseone
bit for eachone of theseedgesto indicatewhetherthey areto

be broken or not during the traversal (i.e., whether they
connect triangles that hold a parent-child relation in the

triangle spanning tree).

Figure 2: The two meshes have identical boundaries and
triangle-spanning trees, which are shown by red arrows
and described by the sequence of moves: left, right, left,
right, right, left, right.

GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 5

If we could always derive a complete representatiorof the
connectivityfrom the spanningtree of the trianglesof T, we
would have attained our objectives and would have a very
simple schemefor encodingsimple meshesusing 2 bits per
triangle. Unfortunately, the triangle-spanningtree does not
capture by itself the entire topology of the incidegcaph(see
Fig. 2for a counterexample).

The Topological Surgery method recently developgdraubin

and Rossignad3, 34 encodes both a vertex-spanning teed

its dual triangle-spanningree. Cutting through the edgesof

the vertex-spannintree producesa triangulatedsurfacethat is

a simple mesh without internal vertices and thus may be

completely representedby a triangle-spanningtree. As

demonstrate@bove, encodingthat tree would not, by itself,

suffice to representhe connectivity. Taubin and Rossignac
encode both the triangle-spannimmge andthe topology of the

vertex-spanningtree. Together, these two graphs provide
enoughinformationto recoverthe connectivity of the mesh.
Basically, the vertex-spanningree matchespairs of edgesin

the boundaryof the polygon definedby the triangle-spanning
tree. Taubin and Rossignacencodeboth trees using a run

length methodEachsequencef consecutiveancestoraith a
single child is groupedinto a run and encodedby simply

storing its length, using Oh( bits. Two bits per branching
nodes are used to capture the topology of the tree. For

pathological cases, with non-negligibleproportion ofmulti-

child nodes.this approachdoesno longer guarantees linear
storagecost, but for complex meshesthe cost of encoding
both trees may amount to less than a bit per triangle.

The authorasproposeda variation of the aboveTopological
Surgerymethod[31], where, instead of using a run-length
encoding of the vertex- artdangle-spannindrees,one uses2

bits per vertexto encodethe vertex-spanningtree (one bit

indicatesthe presenceof a child while the other bit indicates
the presence of a right sibling) and 2 bits per trianglentmde
the triangle-spanningree (one bit indicatesthe presenceof a
right child, while the otherbit indicatesthe presencef a left

child). With twice moretrianglesthan vertices,the guaranteec
worst case connectivity cost of this representatidh lists per
triangle.

Following Tutte's studies [39] and using an enumeration
theorem,ltai and Rodeh[15 show that any unlabeledrooted
non-separable triangulated planar graphsa vertices(i.e., the

incidence graph of triangle meshessmeomorphido a sphere)
may be representedby 4n bits. Furthermore they proposea
linear algorithm for constructinga representationof any
labeledplanargraphusing at most 1.5nlog(n)+6n+0O(log(n))

bits, while the theoreticalminimum is nlog,(n)+O(n). Their

approachusesa triangle as the initial outer loop and then
shrinksthat loop by removing one triangle at a time. They
always delete the triangle that is incident to sheallestvertex
v, in the outer loop and is bounded by théerloop edgethat
startsat v,. They distinguishfour cases(1) The third vertex
precedes yin the outer loop; (2) It follows the successowvgf
(3) It is somewhere else in the outeop; and(4) it is not on
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the outer loop. Operation8) and(4) eachrequirelog,(Vv) bits

to identify a vertex in the not yet processed part of the mesh.

A variationof Itai and Rodeh'smethodwas recently reported
by Gumhold and Strasser[10]. It is closely related to the
Edgebreaker method reported here. Although developed
independently, both the Edgebreakerand the method of
Gumhold andStrasseperformthe sametraversalof the mesh
and, at eachstep,removea triangle and encodethe necessary
information to reconstruct the triangle by distinguishing
severalcasesthat include the four casesof Itai and Rodeh.
Edgebreaker uses the letters L, Ra&]C to identify casesl
through 4 of Itai and Rodeh. Gumhold and Strasser adchee
where a boundary edge is reached. Edgebreakendbesedto
distinguish this case, since it encodes the bounidiog at the
beginningof the vertexarray. However,Edgebreakeaddsthe
caseE, which correspondso the situation where the current
triangleis not adjacento any other remainingriangle. Both
theseapproachesvoid the log,(v) bits cost associatedwith
case (4) of Itai and Rodeh by encodthg verticesin the order
in which they are used by case (4). With each case (3)

operation, Gumhold and Strasser must encode the refereace to

vertex in thecurrentboundary,which requireslog,(v) bits and
makes their storage costs a non-linkenction of v. Note that
Edgebreakeruses a decompressionpreprocessingstep to
compute these vertex-references fromsbguenc®f symbols,
and therefore exhibits a linear storage cost. For common
meshes,Gumhold and Strasserreport compressionresults
between 1.7 and 2.15 bits per triangle using Huffracoding
of the bit stream.

Keeler and Westbrook[16] improve on Turan's results and
propose a technique for encoding plageaphswith 4.6v bits.
They also build a triangle-spannindree. Eachtriangle of the
tree, exceptthe root, sharesan edgewith its parentand may
have zero, one, or two children atiis two, one, or zerofree
edges.They appendfree edgesto the leavesof the triangle-
spanningtree and label them. Encoding the graph and the
labels requiresan averageof 1+log,(3)/3 bits per edge. The
authorssuggesta coding schemebasedon a seriesof graph
transformations.

Toumaand Gotsman[37] also encodethe verticesalong the
vertex-spanningtree in the same order as Taubin and
Rossighac, Gumhold and Strasser,and Edgebreaker.They
distinguishonly two caseswhich correspondo the caseg3)
and (4) of ltaiand Rodehandto the Edgebreaker'sasesS and
C. The othercasesare not encoded.Instead, Touma and
Gotsman encode the degmfeeachvertex,i.e., the numberof
incident edgesand use it to automaticallyidentify the other
cases. During decompression, they keep track afitineberof
the already decoded triangldmat are incident upon eachvertex
andarethus capableof identifying the R, L, and E triangles
automatically. For highly tessellated regular modetserethe
degreeof the verticesfollows almost regular patterns,they
report compression results of less tlzabit per triangle using
Huffman encoding. However, for smaller and less regular
meshes,the required storagemay easily exceed2 bits per
triangle. As Itai and Rodeand as Gumholdand Strasserthey
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require that with each S operation be associateda vertex
reference,which requires log,(v) bits, prior to Huffman
compression.

Vertex permutation

Inspired by L7] and improving onZ3, 32], Denny and Sohler
haverecentlyproposeda techniquefor encodingthe incidence
of planar triangulations of sufficiently large size as a
permutation of the vertices M [7]. They show that thereare
lessthan 282 *00°%) yalid triangulationsof a planar set of v

points, and that for sufficiently large eachtriangulationmay
be associatedwvith a different permutationsof these points
(there are approximately 2 '°9¥ such permutations). Their

approachrequiresfirst transmitting an auxiliary triangle that
contains the entire sandthenthe verticesof V in a suitable
order,computedby the compressioralgorithm. The decoding
process receives the vertices in batches, sorts them
lexicographically, computes a permutation number by
comparingthe orderin which the vertices were receivedwith

their lexicographic order, then sweeps over the current
triangulationfrom left to right. At eachvertexof the current
batch, it identifies the enclosing triandles] andthe vertexis

inserted according to the incidence relatitanivedfrom the bit

string that encodesthe permutation number. Compression
constructsthe successivebatchesthrough repetitive plane-
sweepsduring which vertices are removedincrementallyand
the resulting holes re-triangulated. For each point, the

information neededo reconstructhat triangulationis encoded
in the permutation of the vertices of the bafthe batchesare
decompressedn inverse order. Although for sufficiently

complexmodelsthe costof storing the connectivity is null,

the unstructured order in which the verticesraeivedandthe

absenceof the incidence graph during their decompressior
makes it difficult to combine thiapproachwith the predictive
techniques for vertex encoding discussed earlier.

Compressing Simple Meshes

We focus inthis sectionandthe nexttwo on simple meshes.
Then, we explain how to generalize our schemeto non-

manifold triangulated surfaceswith an arbitrary number of

handles and several bounding loops.

The Edgebreakecompressioralgorithm performsa seriesof
steps.Eachstepremovesone triangle from the currentmesh.
At each stage, the remaining portiohthe meshis composed
of one or several regions, denoted R;, which are simple
meshesTechnically,eachregionis the union of triangles of
T, whoseinterior is containedin one maximally connected
componentof the interior of the union of the remaining
triangles. Note that two regions may share a vertexnbuan
edge.The edgesboundingeachregionform a closedmanifold
polygonalcurve, calledloop, which hasno self-intersections
One edge of eachloop is called a gate. A stack contains
references, $S,, S,... to all the gates.The top of the stack,
S, references the activgate,g. Let R, be the regionincident
upon g and let B denote th®undingloop of R,. Note that B
contains g. This notation is illustrated in F&). Note that for
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simple meshes the initial configurationhas a single region
and a single loop.

AR X

E S

Figure 3: During compression, the top of the stack, So,
points to half-edge g, called the gate, which identifies the
boundary B of the active mesh Ry. The only triangle that
is incident upon g (shown in green) will be removed from
Ro. When present, the other entries in the stack point to
half-edges included in the bounding loops of regions that
will be compressed later. These will become gates when
they are popped to the top of the stack. Note that Ry may
later be split into separate regions, which will be tracked
using the stack.

At each step, Edgebreaker identifies the unique trianglehax,
is part of R andis incidentupong. Let v be the only vertex
of X that doesnot boundg. Edgebreakeanalyzegshe relation
that v haswith respectto B and g, distinguishing5 cases
labeled C, L, E, R, and S (see Fig. 4).

Figure 4: The triangle X, identified because it is the only
triangle in the remaining portion of the mesh that is
incident upon the gate g, will be removed. The associated
operation is of type C if the third vertex v of X that is not
bounding g has not yet been visited. If v has been visited,
then it is included in B. If it both immediately follows the
end-vertex of and immediately precedes the start vertex of
g along B, then X is the last triangle of Ry and we record
an E operation. If v immediately follows g, but does not
precedes it, we record an R operation. If v does not
immediately follow g but precedes it, we record an L
operation. Finally, if v lies in B but is not the vertex that
immediately precedes or follows the vertices of g, then we
record an S operation.

The selection of the appropriatasemay be performedby the
following sequence of tests:

IFvOBTHENcase C
ELSE IF v follows g
THEN IF v precedes g THEN case E ELSE case R
ELSE IF v precedes g THEN case L ELSE case S
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Edgebreaker constructscompressiorhistory H by appending
op-codesselectedrom the set{C, L, E, R, or S} to identify

the successive steps that mustusedto reconstructhe mesh
during decompressionEdgebreakeralso builds a list P of

vertex identifiersjn the orderin which they arereachechy C

operations as the third vertex, of the triangleincidentupon
the gate. This list will definethe orderin which the vertices
will be encoded.The history H will be compressedising
binary codes or any desiredmpression schem8&urprisingly,
as demonstrated itme sectionon Decompressioilgorithms

the information containedin H sufficesto recoverthe labeled
planar triangulated graph thagpresentshe connectivityof T.

The verticesreferencedby the graph are labeledwith integer
indices (1, 2, 3...) that representthe order in which the

correspondingrertex datawill be recoveredat decompression
During compressionit sufficesto encodethe verticesin the

order of their references I For mesheswith boundary,P is

initialized to the references of the vertiagfsthe initial loop B

as they are encountered by walking aroitndtartingwith the

end-vertex of the gate. Fig.ltustrates this process.

Figure 5: This mesh may represent the final stages of the
compression of a large region in the mesh or the full
compression of a small simple mesh with boundary.
Starting at gate g, Edgebreaker removes triangles by
following the dark arrows: first red, then green, then
blue. Triangles are color-coded as in Figure 4 indicating
the type of the associated operation(C yellow, R blue, S
green, L brown, and E vred). The history is
H=CCRRRSLCRSERRELCRRRCRRRE. The thick dotted
dark green line is the gate. The rest of the boundary is
shown with a thick brown line. The thick black lines
identify edges that have never been gates. Together, the
thick solid lines define a vertex-spanning tree rooted at
the end-vertex of g and cutting the surface into a
topological polygon. The thick black dotted edges are
gates that have been on the stack. The vertices are
marked with integer indices that indicate the order in
which their references are to be included in P. Note that
each interior vertex corresponds to a C operation (yellow
triangle).
To clarify some implementation details, Wweroducea simple
data structure for storing both the connectivity of tieshand
the links between theuccessiveedgesin the boundingloops.
This data structures basedon the conceptof a half-edgeused
in many polyhedralrepresentationgsee the author's survey
[28)). A half-edge h is the association of an eégaf T with a
triangle X incident upon e. Note thefchhalf-edgeis oriented
andthat to eachinternaledgeof T correspondwo half-edges
with oppositeorientation,eachinducedby the corresponding
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triangle. With eachhalf-edgeh, we associatethe following
entities (see Fig. 6):

» h.sis the starting vertex for h

* h.eis the ending vertex for h

* h.vis the third vertex of X that does not bound h

* h.nis the half-edge that follows h in the boundary of X

» h.pis the half-edge that precedes h in the boundary of X

* h.ois the opposite half-edge (When e is an interior edge,

h.o associates e with the other incident triangle.)
* h.Nis the half-edge that follow h in B that contains h
* h.Pis the half-edge that precedes h in B that contains h

h.o

Figure 6: A half-edge, h, green arrow (left), points to its
starting and ending vertices, h.s and h.e and to the
opposite vertex h.v. The other two edges of the triangle
associated with h are denoted h.p and h.n (red and blue
arrows). The opposite half-edge, h.o (lime arrow)
provides access to the adjacent triangle when it exists.
Curved red bi-directional arrows (right) represent links
h.P and h.N that organize the bounding black half-edges
of B into a doubly-linked cyclic list.

For clarity, we have extendedthe object-orientednotation to

reference the various fields associatedwith a half-edge
structure.In the algorithms presentecbelow andin Figs. 7

through 11, we assume the following semantics: The

assignmenth.x=y changesthe content of the field h.x

associated with h so thit pointsto y. For example,if these
referencesvere storedas parallel arraysof integerindices, the

statemenh.x=y would be codedas x[h]=y and the statement
g.n.o.P=g.p.ocould be codedas P[o[n[g]]]=o[p[g]]. Efficient

techniquesfor storing and constructingsuch tables from a

triangle-vertex incidence array are suggeste@ah [

The compressioalgorithmsalso usesbinary flags, v.m and
h.m, to mark eachpreviouslyvisited vertexv and each half-
edge h that isn a boundingloop of the remainingportion of
the mesh.The vertex-flagsare usedto distinguishbetweenC
and S caseswithout havingto traverseB. The edge-flagsare
usedduring S operationsto acceleratethe processof finding
the boundinghalf-edgeb suchthat g.v is b.e. The notation
P=P|v means that the referent® vertexv is appendedo the
list P and H=H|C means that the op-ode tloe C operationis
appendedo the history H. We also use the # sign to start
inline comments.

During the initialization part of the compressionprocess,
Edgebreakerloads into P the referencesto the vertices
encounteredby marching along the initial bounding loop,

starting from the end-vertexof the gate. It also marks the
bounding edges and vertices and sets the .P alidk&for all

bounding edges. It initializes the stack to point tohbi-edge
that is the initial gate.
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Then compression identifies the operation type using:
IF NOT g.v.m THEN case C # v not marked
ELSE IF g.p==¢.P # left edge of Xisin B
THEN IF g.n==g.N THEN case E ELSE case L
ELSE IF g.n==g.N THEN case R ELSE case S
and then performs the corresponding changes to the half-ec
data structure, as explained in Figs. 7 to 11.

Figure 7: Case C

The initial mesh (left) corresponds to a C case. The
result (right) is obtained by creating 3 bi-directional
links in B (two-headed red arrows). Thicker arrows
show bounding half-edges.

H=HIC; # append C to history
P=Plg.v; # append vto P
g.m=0; g.p.o.m=1; # update flags

g.n.o.m=1; g.v.m=1;
g.p.0.P=g.P; g.P.N=g.p.o;
g.p.0.N=g.n.o; g.n.0.P=g.p.o;
g.n.0.N;=g.N; g.N.P=g.n.o
g=g.n.0; StackTop=g;

#fixredlink 1in B
#fixred link 2 in B
#fix red link 3in B
# move gate

4 VA
¢ 7

=Po Stack
Figure 8: Case E g P

H=HIE; # append E to the history
g.m=0; g.n.m=0; g.p.m=0; # unmark edges
PopStack; g=StackTop; # pop stack: next region

Figure 9: Case L
H=HIL; # append L to history

g.m=0; g.P.m=0; g.n.o.m=1;

g.P.P.N=g.n.o; g.n.0o.P=q.P.P;

g.n.0.N=g.N; g.N.P=g.n.o;
g=9g.n.0; StackTop=g;

# update marks
#fixredlink 1in B
#fixred link 2in B
# move gate
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Figure 10: Case R

H=HIR; # append R to history
g.m=0; g.N.m=0; g.p.0.m=1; # update marks
g.N.N.P=g.p.0; g.p.0.N=g.N.N; # fix red link 1in B
g.p.0.P=q.P; g.P.N=g.p.0; # fix red link 2 in B
g=0.p.0; StackTop=g; #move g

Figure 11: Case S

H=HIS; # append S to history
g.m=0; g.p.0.m=1; g.n.o.m=1; # update marks

b=g.n; # initial candidate for b
WHILE NOT b.m DO b=b.o.p; # turn around v to marked b
g.P.N=g.p.0; g.p.0.P=g.P; # fix red link 1 in B
g.p-0.N=b.N; b.N.P=g.p.o; # fix red link 2 in B
b.N=g.n.o; g.n.o.P=b; #fix red link 3in B
g.n.0.N=g.N; g.N.P=g.n.o; # fix red link 4 in B
StackTop=g.p.0; PushStack; # push g.p.o on stack
g=g.n.0; StackTop=g #move g

Because the preconditions for the L, R, Ca&] E operations
are mutually exclusive and cover all possible cases,and
because these operations all decrenttemtriangle countin T,

the compression process removes all triangfeé and always
terminates.

Compressed format

The compressedormat containsa few Selectorsthe History,
and thevertex DataWe discuss them in reverse order.

Vertex data
We distinguish three situations:

1. To compressan isolated, triangulated surface, we may

need to encode a simple mesh along with its boundary.

2. To compress the subset of a largygangle mesh,we need
to encode the connectivity and interior vertices.aimple
mesh,but neednot encodeits boundingvertices,because

they will be already available prior to decompression.

This, for example may be thesewhenwe compresghe
refinement of a specific feature in a larger mesh
represented at a coarse level-of-defid] |
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3. To encode the triangulated boundary afimply connected
manifold solid, we needto encodea closedmeshwithout
boundary.

For situation 1the vertexdatastreamstartswith the exterior
verticeslisted in the order in which they occur around B,
startingwith the end-vertexof g. For situation2, that list is
omitted. For situation 3, aedgeis selectedasthe initial gate
andits end-and start-verticesarefirst codedin the vertex data
stream.

The rest of the vertex dattreamcontainsdatafor the interior
vertices, encoded in the order specifiedhia remaining parof
P. The binaryformat that is usedfor encodingvertex data
depends on which compression scheme is used.

History
The bestcoding strategiedor the history, H, dependson the
size of the mesh and on the ratig||\W/|.

For very complex meshesthe most effective option is to
temporarily store H as a sequence of symbais the set{C,
L, E, R, S} and to compute, aspost-processingompression
step, an optimal custom schemefor each individual mesh.
Someagreed-uporconventioncould then be usedto include
the description of the particular codisghemebeforeH in the
compressed format. An alternative isu®e progressivecoding
schemes[41, 40, 25]. A number of general-purposedata
compressiorschemesnay be usedfor this purposeand will
not be further discussedhere. They may yield very high
compressionrations for large regular meshes, but often
perform poorly for large and irregular meshesand for small
mesheslinsteadwe focus our discussiornon practicalschemes
that are effective for small meshesandon demonstratinghat
for simple meshes,Edgebreakeprovidesthe best guaranteec
worst case compression.

If we usefixed binary op-codeswith 1 bit to encodeeachC

operationand 3 bits to encode each other operation (for

example, we use 0O for C, 100 for S, 101 for R, id0L, and
111 for E), the total numberof bits neededto encodeH is

c=|C|+3(|S|+|L|+|R|+E|Wwhere|X| denotesthe humberof X-

type operations in H. Because theraigne-to-oneassociation
betweenthe verticesof V, andthe trianglesprocessedyy a C

operation, we have |C|5|V

Hence, |S|+|L|+|R|+|E|=|FIC|=[TH|V\| and c=|V||+3(|THV/]),

which yields: c=2|T|+(|T+2|V||). Given that |TF-2|V,|=|Vel-2,

we obtain c=2|T|+|\{[-2. Consequently for simple meshes
with a relativelysimple initial boundary,we have|V¢[<<|V||,

leading to |\¢<<|T|, and tac=2|T]|.

To encode a simple mesh without boundarghas the entire
surfacethat boundsa manifold 3D solid, it sufficesto “cut

open” one of its edges, declargdtbe the initial loop, B, and
include the encoding of its two vertices at the ¢tdghe vertex
list, as discussed above. tlmat case,|V¢|=2 and c=2|T|, which

is exactly 2 bits per triangle. Thennectivityof suchmeshes
is a planar triangulated graph. Thug haveintroduceda new

representatiorof such graphs,which is more compactthan

previously proposed solution89, 15, 38, 23, 16
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The CL and CE sequencesof operations correspond to
situationswhere two triangles are identical (have the same
vertices). By definition, these situations are impossible in
simple meshesWe canexploit this constraintto increasethe
expected compression ratid Edgebreakeby using a slightly
more complex coding schem@éle usetwo different codesets:
the general codset proposedabovefor operationsthat do not
follow a C operation and specialcodeset for operationgthat
follow a C. The special code set is still O forlit reducego
a 2-hit op-code fothe othertwo operations:10 for S, and11
for R. In the worst case,with long sequence®f consecutive
C'’s, this encodingmethodhasno effecton the bit-count. At
besthowever,whenall C’s are separatedit reducesthe bit-
count to an average of 1.5 bit per trian{decausehereare as
many C’s as other operations).

When Edgebreakeis usedto compresssmall surfacepatches
with a relatively large numberof edgesin their boundary the
abovebinary codeswill neverexceedan averageof 3 bits per
triangle, but are not optimal. Becausejn such cases,the R
operationis the most frequentin the sequencethe op-codes,
proposedearlier,shouldbe replacedby others,whereR is a
one-bitcode(say0) andthe other four operationshave 3-bit
codes. Under thesgew conditions,c=3|T|-2|R|which implies
that, if most of the triangles correspondto an R operation
(which is the casefor a fan of triangles), the sequence

representing G may be compressed down to 1 bit per triangle.

For mesheghat do not fall in thesetwo categories(interior-
heavy or boundary-heavy),we suggesta post-processing
compressiorstep, which would computethe optimal op-code
assignmentfor each operation, taking into account their
frequenciesandthe constraintson impossible sequencesThe
resulting codeswould be transmittedbefore H, using some
convention.For example we may uselength-valuetuples (2
bits to encodethe bit length followed by the actual code) for
all the 8 cases discussed earlier: C followeng, R following
a C, E following a C, andoccurrencesf C, R, L, S, andE
that do not follow a C. This table will take at most 42 bits.

Selectors

The compressedormat may start with selectors,indicating
whetherthe externalverticesare included and which coding
method is used for the history.

Decompressing simple meshes

The decompression algorithm receives a binary encatfirige
history, H, which containsonly the sequenceof op-codes
generatedby the compressionalgorithm describedabove. It
produces a triangle tablehereeachtriangleis representedby
threelabels. Theselabelsare consecutivantegersassignedto
vertices in the ordein which the verticesarefirst encountered
by the decompression algorithm. Note that it is sheeorder
as the one in which they are first encounteredby the
compression algorithm.

Decompressiomperformstwo traversal of the input stream:
PreprocessingomputegT]|, |Vel, |V||, and the offsets for all
the S operations,which are storedin the offset table O;
Generationcreates the triangles in the order in whilthy were
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deleted by the compressionprocessand, for each triangle,
storesthe labels of its 3 vertices. To computethe correct
labels at decompressionwe simply increment an integer
vertex-counterg, eachtime we encountera C operationand
use c as the label of the new vertex, g.v. We provide the
details for both phases and illustrate them on an example.

Preprocessing

The Edgebreakedecompressiopreprocessingphasereadsthe
input stream,i.e.: an encodingof the sequencenf op-codes,
decodeghe op-codesone at a time, storesthemin H for the
Generationphase,and performsthe actions describedbelow.
This process continuamtil the numberof encounteredE op-
codes exceeds the number of encountered S op-codes.

It use the following variables and data structures:

* t, initialized to zero, tracks the total numberapferations.
The final value ot is the triangle count.

* d,initialized to zero,tracksthe value |SF|E|. d becomes
negative after processing the last E operation of H.

* ¢, initialized to zero,tracks the numberof C operations
encountered so far. The final valuecag|V/||.

* g initialized to zero, tracks the valBE|+|L|+|Rt|C}|S].
The final value ofe is |V|. Valuesof e resultingfrom S
operations will be pushed on the stack.

* s, initialized to zero, tracks the numberof S operations
encounteredso far. We use s to relate e to the
corresponding S, when e is pushed onto the stack.

* An initially empty stack, where we save (e,s) pairs
resulting from S operationsand use them during the
corresponding E operations to compute the offset.

* 0O, an initially empty table of offsets.

At eachstepdependingon the op-code,Edgebreakeperforms
the following operations:
Case S: e—=1; s+=1; pushg§,s); d+=1;
Case E: e+=3; (e's)=pop; OF|=e-e-2; d—=1;

IF d<0 THEN stop. # This is the end of the history
Case C: e—=1; c+=1,;
Case R: et+=1;
Case L: e+=1;
At the end of the preprocessing phase,t|T\4|=c, |V¢|=e, and
O contains the desired offsetgrtedin the orderin which the
correspondings operationsoccurin H. The remainderof this
subsectionexplainswhy this simple procedureproducesthe
desired results.

|T|t, because each operation corresponds to a differangle.
Since only C operationsrequire the introduction of new
vertices, |\=|C|. Deriving thecount of externalvertices,|V¢|,
is slightly more complex. We know that at the end of the
whole decompressioprocessthe boundaryof the remaining
region of T must have zero edges,becausethis region is
empty. If we canextractfrom H how many edgeshave been
addedor deletedby the stepsof the compression processye
will know the initial length of B. Each operationaltersthe
total count of edges(andthus of vertices)in B asfollows. R
deletestwo edgesfrom B, but exposesa new one, thus
decreases thedgecountby 1. L doesthe same.E removes3
edges. C and S increase #tuge-counby 1 becauseahey each
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removeone edgefrom B and insert two new edges.We can
track the total countregardlesof the topological changesin
the boundarythat may be producedby S operations.These
edge-countschangeslead to the following formula: The
number of edges, and hence of vertiegegthe initial bounding
loop, B, is 3|E|+|L|+|R|CHIS|.

To compute theoffsets,we first notethat S andE operations
are paired and work ggrenthesem the following senseany
sub-string of H that starts at an S and finishes at the
correspondinge operationencodesthe incidence graph of a
simple mesh that is a subset of T. We ade track the value
of the expression 3|E|+|L|+{RE}|S| for thealreadyprocessed
subsetof H. The differencebetweenthe valuesof e at the E
operation and the value efat the corresponding S operatisn
the numberof verticesin the boundaryof that subset. We
subtract 2 fronthat number,becauseve are not countingthe
two vertices of g as part of the offset.

To keep track of matching S and E operatioms,usea stack,
which we push for S operations and dop E operations.The
stack is used to save thwalue foreachS. Whenthe stackis
popped, we will subtract this value from the current ealie,
which is associated with the matching E.
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The order inwhich S operationsare encounteredn H may be

different from the orderin which the matching E operations
occur. Becauseachoffset valueis only computedwhenan E

operationis reachedwe cannotsimply saveit in the next

available entry in O. Therefore,we associatewith each e

pushedon the stack the correspondingvalue of s, which

identifies the S operations. When popped from the stackst
value, denoted’, is the index of the entryin O for the offset

e-e-2, wheree'is the value oé that waspushedon the stack
along withs".

We illustrate the preprocessingphaseof decompressioron

H=CCRRRSLCRSERRELCRRRCRRRE, whicorresponds
to mesheswith a connectivityhomeomorphido the meshof

Fig. 5. After eachoperation,the table below indicatesthe

resulting valuesof the variables:d, c, e, and s, as defined
above. The variables ands' refer tothe contentof the top of

the stack. Note thahis procesdirst entersan offset value of

1 in O[2] andthenentersan offset value of 6 in O[1]. The

final value ofe indicates16 verticesin the externalloop. The

final value ofc indicates 5 internal vertices. We didt include
the triangle count, which is incremented from 1 to 24.

C|C|R|IR|IR|S|L|C|R|]S|]E|R|IR|E|L|C|R|IR|R]|C|R|R|R|E

d ofojofojJo| 1|2 2| 2) 2| 2] 2 2y Oof Oof Oof of O O 49 4 Q¢ 0-1
c 11221221 2(2] 3| 3| 3| 3 3| 3| 3] 3| 4 4 4 5 § § 1 !
e 112|-1f{of2 o120 2])0)] 3| 4| 5| 8 9| 8| 9/10]11]|10| 11| 12| 13| 16
s ofojJof|o|oO| 1|1 2 1] 2 2] 2 2| 21 2 21 2 22 2 24 24 2 1 y
e o(lojJofo]jJoOo|lO]jO]O
s' 1 (2111121 1]1]1
O[s 1 6

Generation At each stage, the gate, G, already identifies two ofi¢intices

The generationphase allocatesa table of triangle-vertex
incidencerelations, denoted TV, of |T| entries, each will
combinethe threeintegervertexlabelsof a triangle. Then, it
initializes the vertex counter,c to |V¢|, so that referencego
external vertices precedereferencesto internal vertices. It
constructs the boundingops, B, a circular doubly-linkedlist
of |Vg| edgesgeachedge,G, containingthe pointer G.P to its
predecessoand G.N successolin the loop, and an integer
label, Ge, which identifies the end-vertex &. The labelsare
initialized with increasing integers between 1 to |V
Edgebreakenlso createsa stack of referencesto edgesand
initializes it to a single entrywhich refersto the first edgein
the loop. The top of the stackis calledthe gate,and will be
denotedG. We use upper caseletters for the edgesof B to
distinguish them from the half-edgasedduring compression.
Finally, Edgebreaker initializes a triangle counterands, the
counter of S operations, to zero.

After this initialization, EdgebreaketraversesdH and,for each
operation, it increments stores the labels dhe 3 verticesof
the current triangle X in entry numbert of the table of
triangles, and updates B, G, and the stack, if necessary.

of the current triangle, X. Theseare G.Pe and G.e. The

computation of the third vertex depends on¢bheentop-code.
Dependingon the currentop-code,we perform the operations
listed below. We use the following notation: x++ returnssh
value and therincrementsx while ++x incrementsx first and
returns the result. The terms "REPEAT" and "n TIMES"

delimit a block of instructions. For simplicity, we do not

include operations that release the menaigcatedduring the

process.

Case C: TV[++1]=(G.Pg, Geg, ++C);.
New Edge A; Ae=c;

G.P.N=A; A.P=G.P;

AN=G; G.P=A;
TV[++1]=(G.Pg, Ge, G.N.g);
G.P.N=G.N; G.N.P=G.P;
G=G.N;

TV[++t]=(G.Pe, Ge, G.P.Pe);
G.P=G.P.P; G.P.P.N=G;

TV[++t]=(G.Peg, Ge, G.N.g); G=pop;

Case R:

Case L:

Case E:
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Case S D=G.N; REPEAT D=D.N; O[++s] TIMES;
TV[++t]=(G.Pg, Geg, D.g);

New Edge A; Ae=D.g;

G.P.N=A; A.P=G.P;

pop; push(A);

A.N=D.N; D.N.P=A;

G.P=D; D.N=G;

push(G);

Although in practice only a smadftaction of operationsare of

the S type and the average length of the loop is proportional

the square roatf |V| (see[10] for a discussionof this issue),
the useof a linked list for B implies a linear costfor eachS

operation, and hence makes the asymptotic worst case
complexity of the computationalost of decompressio®(\?).

This cost may be reducedto O(vlogv) by maintaining a
balanced binary search tre&, [rather than aloubly linked list,

for representing the sequenakverticesin the activeloop, B.

On hardware platforms that support fast blockmorytransfer
operationsan attractivealternativeis to usea linear array to

store the ordered set of index-references toéitgcesof B and

to perform insertions and deletions via block memory
transfers.This latter solution turns updating B and accessing
the offset vertex into constantcost operations,at least for

models of moderate size.

Again, we illustrate th&enerationphase of thelecompression
process on the initigbart of the samesequenc®f operations,
CCRRRSLCRSERRELCRRRCRRRE,produced by the
compressiorof the meshin Fig. 5. Given that |V¢|=16, we
start withan initial loop of 16 edgescontainingthe labels1,
2, .3... Thefirst edgeis the gateG, which is associatedvith
its end-vertexlabeled1. c is initialized to 16. The first C
operationfills TV[1] with the three values: 16, which is
G.Peg; 1, which is G.e; and 17, which is the result of
incrementinge. We also create aew edge,A, andstorel? as
its label. Therwe insert A beforeG by updatingthe pointers
as follows:G.P.N=A; A.P=G.P; A.N=G; G.P=A. The second
C operation creates triangle (17, 1, 18) and inserts anedger
before G withthe label 18. Thenthe first R operationcreates
triangle (18,1,2), deletes the gate frdime loop and makesthe
edge labeled 2 the current gate. The second and third R
operationscreatethe triangles (18,2,3) and (18,3,4) reducing
the loop to contain the  vertex  sequence
{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18ecauseO[1] is 6,
the first S operationskips the six vertices5, 6, 7, 8, 9,and
10. Thenit fills triangle numbe®B with the labels (18,4,11)
and splits the loop into {11,12,13,14,15,16,17,18}and
{4,5,6,7,8,9,10,11}.The bottom of the stack points to the
edge(18,11),the first one in the first loop. The top of the
stackpointsto edge(11,4), the first onein the secondloop.
Then the Loperationcreatedriangle (11,4,10)and deletesthe
last edgeof the secondloop. At this point G is the edge
(10,4). This processcontinues,reachingthe second S, at
which point there are 3 entriesin the stack pointing to the
loops: {11,12,13,14,15,16,17,18}, {7,8,9,10,19}, af%6,7},
which includesthe currentgate(7,5). The next operation,E,
creates the triangle {7.5.6} and pops the stackthat the new
gate is edge (19,7). Theext 3 operationsR, R, andE create
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the 3 triangles of that regiokVe pop the stackand have edge
(18,11) as gate. The remainingportion of H, which now
contains LCRRRCRRRE, is processed similarly.

General triangle meshes

The Edgebreakeapproach,as presentedso far, is capableof
encodingthe connectivity of any planar triangle graph with
zero or one hole. We describe here how to extend the
Edgebreakercompressedformat and the compressionand
compressionalgorithms, so as to support meshes with
multiple holes and with one or more handles.

Holes

In a mesh with several holes, i.e.: with more than one
bounding loop, the compression algorithm may firtdangle,
whose third vertex, g.m, lies on the boundary of laole rather
than on the currentloop. Insteadof splitting the currentloop
into two, we merge it with théole by openingboth loops at
their common vertex and reconnectingthem into a single
cyclic list. We use the symbol M tdentify suchcasesn the
history. To distinguishthesesituationsfrom the S cases,we
initialize the .m marksof all verticesand edgesof the initial

loop to 1 and of all other external vertices and external etig
2. Internal verticesand edgesare still markedwith zero. This
assignmentmay be easily performedby traversingthe half-

edge data structure and, each timeiamarkedexternaledgeis

encounteredby following the loop that containsit and by

marking all the verticesand edgeswith a 1 for the first loop
and with a 2 for all subsequentoops. We assume for

simplicity that the union of all external edges forms a
manifold curve with one componentper hole. Surfaceswith

non-manifold boundary may be converted to such a
representation by replicating their non-manifold vertices.

C casesow correspondo situationswhereg.v.m==0. M cases
correspondto situations where g.v.m==2, all other cases
correspondto situations where gv.m==1 and may be

distinguishedas before. Each time a hole is reached,the

references to all of its vertices are appenidel, startingwith

the contact vertex gw.In addition,the extendedcompression
algorithm associates with each M operationldregth| of the

corresponding hole by appending it ttist of hole length, L.

The processingof the M operation during compressionis

illustrated Fig. 12.

During the preprocessinghaseof the extendeddecompressior
algorithm, eachtime an M operationis reachedto correctly
compute the offset table, the valdd, ratherthan 1, must be
subtracted from the edge-coumnt

Then, during the generationphase,at eachM operation,after
the boundingloop hasbeenmergedwith the hole, as shown
Fig. 12, it contains theedgesof the hole insertedjust before
g. The vertex label for the last onetbéseedgesis c+1. The
labels of the first—1 of these edgeare assignedy successive
increments o€. The pseudo-code for the M operation follow
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TV[++f=(G.P.e, G.e, c+1);

# new triangle with the contact point

D=G.P; # initialize an end-of-list edge pointer
REPEAT # insert [ +1 edges after G.P
New Edge A; # create new edge

D.N=A; A.P=D; A.e=++c;
D=A;

# link it after D and set label
# move end-of-list

I TIMES; # last edge has wrong label
New Edge A; # create new edge
D.N=A; A.P=D; Ae=c- [ +1; # link it after D and set label
AN=G; G.P=A; # link end-of-list to G,

< f <
—_—
b.N p 9.P
g.v,
2" \¥ S 3
g.n.o »
Y.p.o ] " 1 4 N
9. 9.p g ush g
—_—
Figure 12: Case M
H=HIM; # append M to history
g.m=0; g.p.0.m=1; g.n.o.m=1; # update marks
b=g.n; # initial candidate for b
WHILE b.m#2 DO b=b.o.p; # turn around v
g.P.N=g.p.0; g.p.0.P=g.P; #fix red link 1in B
g.p-0.N=b.N; b.N.P=g.p.o; # fix red link 2 in B
b.N=g.n.o; g.n.o.P=b; # fix red link 3in B
g.n.0.N=g.N; g.N.P=g.n.o; # fix red link 4 in B
g=9g.n.0; StackTop=g # move g
b=b.N; # start here the traversal of the new edges
I=0;
WHILE b.e#g.s DO { # until old g.v. is reached do
b.m=1; b.s.m=1; # mark hole
[ ++; # counts length of hole
P=Plb.s; # append new vertex reference to P
b=b.N }; # move to next edge around hole
L=LII; # appends the length of hole to L

The additionof the M operationrequireschangingour coding
scheme. A simple approaetould be to use4-bit codesfor S
andM (for example,S could be 1000andM could be 1001.
This solution adds |S| bits to the overall compressed
representationin addition to the cost of encoding the M
operations.If we expectthe number of holes to be small
compared to |S|, it is advantageous to use the sadador all
M and S operationgndto distinguishthem by including, in
the compressedormat, right before the encodingof H, a
representation of an M-table. The M-tablentainstwo entries
for eachM operation.The first entry is the number of S
operations encountered since the previous M operatignce
the beginning of H for the first M operation. Each onghaise
numbers indicateeow many consecutiveS operationsshould
not be treatedas M operations.The secondentry in the M-

table is the lengthof the boundary of the corresponding hole.
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Handles

An S operationsplits the current bounding loop into two
parts, which may be independently processed by the
compressiorand by the decompressioralgorithms. However,
when an S operationis performedas describedearlier on a
mesh where the current boundary wraps arounainale,a new
hole is createdjnsteadof a separatecomponentof the mesh.
Indeed, the current loop is split into two loops without
disconnecting the remaining portion the mesh.Sucha split
may, for example transforma toroidal surfacewith one hole
into a cylindrical surface(a meshwith two holes). Several
suchholesmay be createdduring compressionThey will be
mergedinto the currentloop by subsequeni operations,as
described above. However, they wilbt necessarilybe merged
in the order in which they have been created.

We modify the S operatioas follows. Whenthe currentloop
is split into the left and right sub-loops (Fig. 11), we midu
vertices and edges of the left sub-logiph a 3. The first half-
edge of this lefsub-loopis pushedonto the stackalong with
the location of the corresponding S op-ode in H.

During compression, when we later reach a vemexkedwith

a 3, we perform a differemherging operationidentified by the
op-code M', which merges the tlmops, but doesnot append
to P the referencesto the vertices of the hole. M' also
computesthe position, p, of the associatedjate in the stack
and the offsetp, between that gate and the reacheiht. p, o,

and the numbeof S operationsencounteredfter the previous
M' operation are stored in the M'-table.

During decompressionof an M' operation, Edgebreakel
performs the following steps:
D=remove(p); # fetches and removes entry p from
stack
REPEAT D=D.N o TIMES; # find edge to connecting vertex
TV[++f=(G.P.e, G.e, D.e); # new triangle with the contact point

New Edge A; # create new edge
G.P.N=A; AP=G.P # link 1
AN=D.N; D.N.P=A; # link 2
D.N=G; G.P=D; #link 3

Boundaries of solid models with triangulated surfaces haag
handlesbut do not haveholes. Therefore when dealing with
solid models,it is not necessaryto support holes and the
operations otype M' may be encodedby using the sameop-
codeasfor the S operations.The entriesof the M'-table may
be used to distinguish them, as discussed above for holes.

For mesheswith handlesandholes, both types of operations
must be supported. Therefore, during compresshmyertices
may be marked with a 0, 1, a 2 oBaThesemarkingspermit
to distinguish between C, S, BhdM' operations Again, we

suggest tausea combinedM-M'-table to distinguishbetween
S, M, and M' operations and to encode the associatec
parameters.With this convention, the history still only

contains CL, E, R, andS op-codesFor edgeswith a small

number of handles and holes relative to the number of

triangles, the storage cost of the M-M'-table has lgffecton

the connectivity cost per triangle.
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Summary of contributions

We have presented a new compression/decompression

techniquefor codingthe connectivity,i.e., the triangle/vertex
incidence graph, of arbitrary triangle meshes.The research
contributions reported in this paper héhath a theoreticaland

a practical value. They include an extensive survgyriof art,

an improvementover the best known encoding of planar
triangulatedgraphs,i.e., an algorithm which guaranteeghe

lowest known upperboundon the connectivity storagecost,

and a detailed descripti@f very effective simple compression
and decompressiomlgorithmsfor the connectivity of a large

class of triangle meshes.

Our surveydiscussesheoreticalcontributionson labeled and
unlabeled planar triangulated graphs and practical
implementationsof compressionalgorithms developed for
graphicapplicationg[36]. We also proposeseveralvariations,
which improve or combine these approaches in novel \&ags
haveidentified the associatedonnectivity cost, which we use
as a basis of comparison.

Through theintroductionof a novel decompressiotechnique,
which in one pass automatically extractsthe offsets of S
operations from the compression history, H, we have
eliminated theneedto encodetheseoffsetsexplicitly andthus
have achieveda linear connectivity cost for mesheswith a
constantnumberof handlesand holes. This result improves
over recently published, independentlydevelopedapproaches
[37, 10], which exhibit an asymptoticO(vlogv) connectivity
cost, evenfor simple mesheswithout holesor handlesOn a
more theoretical aspect, we have also improvedlbprevious
work on coding planar triangulated grapB8,[15,38, 23,16]
by providing a linear code with the lowest constant: a
guaranteed 2 bits per triangle or less.

On a practicalside, the Edgebreaketechniqueintroducedhere
offers a simpler to implement and, in many cases, more

effective alternative to previously proposed connectigdgling

schemeg6, 13, 33,34]. The compressiomalgorithm, which

we describein details, uses a half-edge data structure and

simply traverseshe meshfrom onetriangleto a neighboring
one, recording the history: a simple list of thygcodedor the

C, E, R, L, andS operations.The decompressioralgorithm

traverseghe history onceto computethe numberof internal

and external verticeandthe offset for eachS operation.Then

it recreateghe triangles,oneat a time, in the orderin which

they have been visited by tltempressioralgorithm. It labels
the vertices with successiveintegers. This labeling of the

verticesis alsocomputedas a byproductof the compression
processand definesthe orderin which vertex data should be

compressed.

Edgebreakemay be easily combinedwith a variety of vertex

datacompressiorschemeg33, 37] basedon vertex estimates
that are derived from the incidengeaphandfrom the location

of previously decoded vertices.

Edgebreakecompressethe connectivity of simply-connected
manifold triangle meshedown to betweenl.5 and?2 bits per
triangle. By allowing additional bits, the basic techniqueis
extendedo supporttriangle mesheswith holes and handles.
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For highly complexmeshes theseresults are comparableto
those reportedby other authors[33, 37, 10], who through
Huffmann coding may achievewer bit counts,especiallyfor
meshes with an almoségulartopology [37]. Becausegeneral
purposestatistical compressionschemesperform poorly on
smaller or very irregular data, these compressiomethods
require more bits per triangle when dealing with simpler or
irregular triangle meshes. Edgebreakerdoes not rely on
statistical methods and thus guarantees its lowdints.It is
thereforea practical solution for compressingooth large and
small meshes.

In conclusion, Edgebreakemprovides a simple and effective
connectivity compression tool for a variety of 3D applicatio

We believe that the area of 3D compressionwill grow

significantly over the next few year#/e plan to focuson the

integration of Edgebreaker'ssonnectivity compressionwith

progressivanethodg[14, 35] for connectivity refinementand
with methods for the progressivefinementof vertex-accuracy
[19]. We also plan to explore variations of Edgebreaker
format that are suitable for hardware decompressiorgeaghic
accelerationand would offer easierto program compression
algorithms andnore compactformatsthan currently available
methods ¢, 4].
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