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Summary: Unconstrained Paving and Plastering [1] were introduced as new 
methods of generating all-quadrilateral and all-hexahedral finite element meshes.  
Their introduction was after preliminary conceptual studies.  This paper presents 
an update on Unconstrained Paving and Plastering after significant implementa-
tion and conceptual development. 

1 Introduction 

Modeling and simulation has become an essential step in the engineering 
design process.  Modeling and simulation can be used during either the 
original design phases, or on assessment of existing designs.  In either 
case, the end result is increased confidence in the design, faster time to 
market, and reduced engineering cost. 

An essential step in modeling and simulation is the creation of a finite 
element mesh which accurately models the geometric features of the 
model being analyzed.  Meshes generated for three-dimensional models 
are typically composed of either all-tetrahedral or all-hexahedral elements.  
Some methods exist for the generation and analysis of hybrid meshes 
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which contain a mix of element types.  However, for traditional finite ele-
ment modeling of continuum mechanics, a single element type is most of-
ten used. 

Quite a debate has emerged over the advantages and disadvantages of 
hexahedral verses tetrahedral elements.  Tetrahedral meshes are typically 
much easier to generate.  On complicated models with complex geometric 
features, the time savings on generating a tetrahedral mesh rather than a 
hexahedral mesh can be orders of magnitude with the current meshing 
technology.  However, the benefit of hexahedral elements is that they often 
perform better in the analysis stage [2,3,4]. 

Regardless, the bottom line is that customers of finite element meshing 
software continue to demand improved ability to generate hexahedral ele-
ments.  This demand is what drives research in hexahedral mesh genera-
tion.

Unconstrained Plastering [1] is a new method for the automatic genera-
tion of hexahedral meshes.  Unconstrained Plastering continues to show 
promise, although several technical and implementation challenges remain.  
This paper presents the current status and some of the challenges which are 
currently being addressed. 

2 Previous Research 

The work presented in this paper is built upon the work previously pre-
sented in [1], which includes an extensive description of previous research 
done on hexahedral mesh generation at institutions across the world.  If the 
reader is unfamiliar with the existing research in hexahedral mesh genera-
tion or the current state-of-the-art in hexahedral mesh generation, they are 
encouraged to read the previous research section in [1].  Rather than re-
peating that information here, the previous research described in this paper 
will be limited to summarizing Unconstrained Paving and Plastering, and 
other algorithms which directly contributed to their development. 

Paving [5] has been shown to be a robust and efficient solution to the 
quadrilateral surface meshing problem. However, its three-dimensional ex-
tension, Plastering [6,7,8], has not done the same for hexahedral mesh 
generation.  Plastering calls for a pre-meshed boundary, which is created 
without considering global mesh topology.  Fronts are then created, from 
which hexahedral elements are advanced into the solid in an element-by-
element fashion.  As fronts collide, complex configurations of closely-
spaced randomly-oriented quadrilaterals yield complex unmeshed voids 
which Plastering is rarely able to resolve.  As a result, traditional Plaster-
ing is able to completely mesh only simple primitive models with carefully 
pre-meshed boundaries.  Plastering’s inability to mesh more complex
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solids stems from its element-by-element geometric approach and the 
added constraints of a pre-meshed boundary.  Like Paving, Plastering con-
siders only local element connectivites, with a high priority placed on in-
cremental nodal placement and single element topology.  Although this 
approach worked well in Paving for two dimensional surface meshing, the 
extra degree of freedom in three dimensions proves that more global con-
sideration of hexahedral topology is required. 

Learning from the experience of Plastering, Whisker Weaving [9,10] 
was developed with an emphasis on global hexahedral topology.  The con-
cept of the dual, or Spatial Twist Continuum [11] was key to the develop-
ment of Whisker Weaving.  Like Plastering, Whisker Weaving also starts 
from a pre-defined boundary quad mesh.  Each quad on the boundary 
represents a whisker, or incomplete chord in the dual.  The topology of the 
boundary quad mesh is traversed until groups of three or more boundary 
quadrilaterals are found whose corresponding whiskers could be advanced, 
or crossed, forming the topology of a single hexahedral element.  The spa-
tial locations of interior nodes are not calculated until the topology of the 
entire mesh is determined.  Thus, formation of hexahedral element topol-
ogy is guided by near-exclusive consideration of mesh topology logic.  
Geometric characteristics of the solid are considered secondary to the 
overall mesh topology.  This is in stark contrast to Plastering which does 
nearly the opposite.  Whisker Weaving is able to successfully generate 
hexahedral topology for a wide spectrum of solid geometries.  However, 
because it leaves geometric positioning of interior nodes until after the en-
tire mesh topology has been determined, Whisker Weaving is unable to 
make any guarantees on reasonable element quality.  In practice, the ele-
ment qualities produced by Whisker Weaving are rarely adequate, and are 
often inverted. 

Research on Plastering and Whisker Weaving has shown that any algo-
rithm which attempts to automatically generate hexahedral meshes must 
take both model topology as well as geometric model characteristics into 
consideration.  Failure to consider geometric features of a solid will almost 
always result in poor element quality.  Failure to consider global mesh and 
model topology will almost always result in a failure to generate a valid 
hexahedral mesh topology. 

It is with this background that research on Unconstrained Paving and 
Plastering began.  The authors introduced the concepts of Unconstrained 
Paving and Plastering in [1], and briefly summarize them here for clarity.  
Based on recent research and development efforts, this paper details new 
discoveries that help move this technology closer to a general all-purpose 
hexahedral mesh generator. 

Unconstrained Paving and Plastering removes the constraint of a pre-
meshed boundary. This allows the meshing process to consider more 
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global model topologies without being constrained by local mesh anoma-
lies.  The domain is then systematically partitioned through the advance-
ment of fronts.  In traditional advancing front methods [5,6,12], individual 
solid elements are generated by following geometric reasoning to build in-
dividual nodes, edges and faces, starting from a predefined boundary mesh 
and advancing inwards.  In contrast, Unconstrained Paving and Plastering 
advance geometric layers or partitions independent of element distribution.  
Unconstrained Paving and Plastering delay the final definition of elements 
until it is absolutely necessary, thus removing any artificial constraints that 
a pre-meshed boundary imposed. 

Unconstrained Paving and Plastering partition the domain into regions 
classified based on the number of remaining degrees of freedom.  The Spa-
tial Twist Continuum [11] defines quadrilateral elements as the intersec-
tion of two chords and hexahedral elements as the intersection of three 
chords.  As such, a domain which is to be meshed with quadrilaterals must 
constrain two degrees of freedom for the entire domain corresponding to 
two chords required for each quadrilateral.  Similarly, a domain which is to 
be meshed with hexahedra must constrain three degrees of freedom for the 
entire domain corresponding to the three chords required for each hexa-
hedra.

Figure 1 illustrates the meshing of a simple surface with Unconstrained 
Paving.  Unconstrained Paving systematically partitions the surface into 
sub-regions  which are classified as either: 

unmeshed voids (white regions in Figure 1, no degrees of freedom 
are constrained) 
connecting tubes (light gray regions in Figure 1, one degree of free-
dom is constrained), or 
final elements (dark gray regions in Figure 1, two degrees of free-
dom are constrained). 

For Unconstrained Plastering, the regions are classified as either: 
unmeshed void (no degrees of freedom are constrained), 
connecting tubes (one degree of freedom is constrained), 
connecting webs (two degrees of freedom are constrained), or 
final elements (three degrees of freedom are constrained).

A front advancement as shown in Figure 1a introduces an unconstrained 
row of elements with an undetermined number of quadrilaterals.  The ad-
vancement of a row essential introduces a single new chord to the dual of 
the eventual mesh.  However, the number of quads in this row or chord is 
left unconstrained at this point.  Since a quadrilateral is the intersection of 
two chords, the insertion of a single new chord through a single front ad-
vancement does not uniquely determine any quadrilaterals unless the chord 
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inserted happens to cross previously inserted chords.  In Figure 1b, an ad-
ditional front is advanced inserting a second chord.  At the bottom two 
corners, this newly inserted row crosses the previously advanced row, thus 
defining a quadrilateral element at each of the two row crossings. 

(a) One row advanced    (b) Intermediate step     (c) Intermediate step (d) Final mesh 

Figure 1. Unconstrained Paving 

Figure 1 a, b, and c illustrate that at all times, the unmeshed void (white 
region) is connected to the boundary either by direct adjacency or through 
connecting tubes.  For example, in Figure 1a, the unmeshed void is con-
nected to one connecting tube on the bottom, and the surface boundary on 
the top.  In Figure 1b, the unmeshed void is connected to two connecting 
tubes, one on the top and one on the bottom.  Likewise in Figure 1c, the 
unmeshed void is connected to four connecting tubes (i.e top, bottom, left 
and right).  Thus, any of the curves on the unmeshed void can be split into 
as many mesh edges as needed for resolution of the void.  Any splitting of 
the curves on the unmeshed void can be propagated back to the boundary 
through the connecting tubes. 

Similarly in three dimensions with Unconstrained Plastering, all sur-
faces of the unmeshed void are connected to the boundary either by direct 
adjacency or through connecting tubes.  As a result, any of the surfaces of 
the unmeshed void are free to be discretized as required for resolution.  
Any discretization of the surfaces of the unmeshed void can be propagated 
back to the boundary through the connecting tubes.  This is in contrast to 
traditional Paving and Plastering where the unmeshed void is completely 
discretized at all times by either element edges or quadrilateral faces.  This 
discretization proved to be the Achilles heal for traditional Plastering since 
the unmeshed void is typically discretized with closely spaced randomly 
oriented quadrilaterals.  In general, Unconstrained Paving and Plastering 
continue advancement of rows and sheets until the unmeshed void can be 
meshed with Midpoint Subdivision [13]. 

Unconstrained Paving and Plastering rely heavily upon model topology 
by removing the constraint of the pre-meshed boundary, advancing uncon-
strained rows and sheets rather than single elements, and by following 
strict guidelines which consider global ramifications when local dual op-
erations are performed.  Unconstrained Plastering also considers geometric 
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characteristics of the model by performing proximity and angle checks be-
tween nearby fronts, size checks to make sure that front advancements are 
consistent with desired element sizes, and layer checks to ensure that ad-
vancing fronts are boundary-sensitive.  In addition, like traditional Plaster-
ing, Unconstrained Plastering advances rows in the primal space which 
provides access to direct geometric properties of the model and previously 
advanced rows.  In contrast, Whisker Weaving operates in the dual space 
which is part of the reason geometric features are not considered.   It is an-
ticipated that through careful combination of both topological and geomet-
ric considerations, Unconstrained Plastering will be successful on arbitrary 
geometry assemblies. 

Although Unconstrained Plastering has matured since its initial intro-
duction, there are still several technical hurdles which must be overcome 
before success can be declared.  Section 3.0 introduces incomplete fronts 
which Unconstrained Paving and Plastering use to handle model concavi-
ties.  Model concavities appear in everything except trivial primitive mod-
els.  Section 4.0 describes the processes of merging and seaming which are 
used to eliminate proximity problems and small angles between adjacent 
fronts which occur in nearly every model as fronts collide.  Section 5.0 
shows some example models which have been meshed with the current 
implementation.  Finally, section 6.0 discusses plans for future research 
and development, followed by conclusions in section 7.0. 

3 Model Concavities – Incomplete Fronts 

Concavities are a common occurrence in even simple CAD models.  A 
strict geometric definition of a concavity is anywhere on the model where 
the interior angle at a point is greater than 180 degrees.  However, in a 
hexahedral meshing sense, a concavity is anywhere that has a large enough 
interior angle that three hexahedra would more accurately model the ge-
ometry than only two hexahedra.  Submapping technology defines this 
condition as a “Corner” [14]. 

Unconstrained Plastering handles concavities through the definition and 
advancement of “incomplete fronts.” Figure 2a shows a simple solid with 
one of the surfaces highlighted. Figure 2b shows what the ideal mesh 
would look like on this model.  The left-most curve on the highlighted sur-
face is a concavity in the model since each mesh edge on it has three adja-
cent hexahedra. Figure 2c shows the sheet of hexes which is directly adja-
cent to the highlighted surface.  Because of the concavity on the left-most 
curve, this sheet extends out into the interior of the solid.
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(a) simple model 
with one shaded 
surface.

(b) ideal mesh. (c) hex layer adja-
cent to shaded sur-
face.

(d) shaded surface 
is a complete front.

Figure 2.  Example of an incomplete front 

When Unconstrained Plastering begins, it initializes fronts from each of 
the boundary CAD surfaces.  The highlighted surface in Figure 2a would 
be initialized as a front to advance.  However, because of the concavity, 
this front is marked as an incomplete front.  In contrast, the highlighted 
surface in Figure 2d would be initialized as a complete front since all of 
the curves on it are convex.  The advancement of this or any other com-
plete front entirely defines a single hexahedral sheet.  This is accomplished 
because the topology of the model completely defines the path the sheet 
should take.  However, the advancement of an incomplete front can only 
define the portion of the sheet directly in front of the surface(s) comprising 
the front.  Any further advancement of the front would be arbitrary.  Figure 

from the incomplete front in this example.  All three are valid, and the 

used. However, choosing between them is not possible until other adjacent 
fronts are advanced.  The recommended procedure for incomplete fronts is 

shows this simple example after several adjacent fronts are advanced.  No-

that by continuing to advance adjacent complete fronts, the incomplete
front can be completed when adjacent fronts are advanced far enough to 
guide the incomplete hex sheet to completion. 

3a, b, & c shows three possible arbitrary advancements of a complete sheet 

mesh in Figure 2b demonstrates that the sheet in Figure 3b is eventually 

to advance the front to form a partial hex sheet, as shown in Figure 3d, fol-

tice that the incomplete front was advanced only once.  Figure 3f shows 

lowed by advancement of other complete fronts in the model.  Figure 3e 
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(a) Arbitrary advancement 
option 1 

(b) Arbitrary advancement 
option 2 

(c) Arbitrary advancement 
option 3 

(d) Only known advance-
ment is performed 

(e) After several more layers 
are advanced 

(f) Final sheet resolution of 
incomplete front

Figure 3. Various options and final resolution of incomplete front 

Another option would be to completely refrain from advancing this in-
complete front until adjacent fronts have been advanced far enough to 
“complete” the incomplete front.  However, doing so would leave the 
boundary of the solid exposed to direct collisions from other advancing 
fronts.  When fronts collide, seaming and merging is needed.  Seaming and 
merging operations result in nodes and edges with non-optimal valences, 
which often results in poor element qualities.  By performed seaming and 
merging directly on the model boundary the risk of creating poor elements 
directly on the model boundary is increased.  Since analysis results are of-
ten of greater interest on the boundary, care must be taken to ensure as 
high an element quality as possible on the boundary.  As such, the recom-
mendation is that each incomplete front be advanced once in order to form 
a protective layer directly adjacent to the model boundary.  After a single 
advancement, the incomplete front can wait until adjacent complete fronts 
are advanced far enough to complete the incomplete front. 
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4 Front Collisions 

As fronts are advanced in Unconstrained Paving & Plastering, certain op-
erations must be performed.  The operations that are performed most often 
are merging and seaming.  Merging is defined as the resolution of small 
gaps between fronts.  Seaming is defined as the resolution of small angles 
between adjacent fronts.  Merging and seaming must be performed itera-
tively since merging often creates seaming cases; likewise seaming often 
creates merging cases. 

4.1 Merging 

During Unconstrained Paving and Plastering, cases requiring merging oc-

trates the partial meshing of an example surface using Unconstrained Pav-

the front to advance.  The dashed dark line represents the desired advanced 
location of this front, which clearly shows the proximity problem which 

can be resolved by collapsing out the connecting tube, with the solid dark 

the model would look like after the advancement of additional fronts after 
the merge operation.  Essentially, the merge operation inserts a 5-valent 
node in the quad mesh. 

case, proximity problems exist throughout the entire connecting tube.  As a 
result, it makes geometric sense to collapse the entire tube.  However, on 
other geometries, it is possible that the connecting tube might expand in 
some regions, making proximity only an issue for a portion of the tube.  

proximity, if part of the tube requires collapsing, then the entire tube must 
be collapsed in order to keep topological consistency throughout the 
model.  In order to reconcile sizing in cases where only part of the tube has 
proximity, pillowing [15] can be performed to make the tube sizes more 

can be performed in the connecting tubes to make the size of the tube con-
sistent so the entire tube can be merged. 

cur in either the connecting tubes or in the unmeshed void.  Figure 4 illus-

ing.  Figure 4c shows a close-up of a connecting tube which is too skinny 

must be resolved before continuing.  Figure 4e shows how the proximity 

for an additional advancement.  In Figure 4d, the solid dark line represents 

line representing the modified front after merging.  Figure 4f shows what 

Figure 4c shows the connecting tube which must be collapsed.  In this 

This is illustrated in Figure 5a.  However, regardless of the geometric 

consistent.  Figure 5 illustrates that pillowing followed by row smoothing 
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(a) Example surface (b) Several rows advanced (c) Close-up view 

(d) Desired front advancement (e) Fronts merged (f) Additional fronts advanced 

Figure  4.  Merging example for connecting tube proximity 

(a) Desired front advancement (b) Pillow added (c) Row smoothing 

(d) Pillow added (e) Row smoothing (f) Merge performed 

Figure 5. Merging partial tube proximity problems with pillowing
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Merge cases can also occur in the unmeshed void as illustrated in Figure 6.  

dashed dark line shows the desired advancement which is not possible be-

merged out.  Points A and B are the extremes of the merge and are new 
topological constraints on the model where nodes must be placed.  They 
will end up being 5-valent nodes in the final mesh.  In order to maintain 
mesh topology consistency, these points must be propagated back to the 

gation of constraints to the boundary through connecting tubes is called 
“cutbacks.”  Cutbacks split the connecting tube into two or more connect-
ing tubes.  The original front that had the proximity problem then needs to 

(a) Proximity case in 
unmeshed void 

(b) Desired front ad-
vancement

(c) Merged model, A & B

(d) Cutbacks added (e) New fronts for ad-
vancement

(f) Several additional fronts 

Figure 6. Merging example for unmeshed void proximity 

The thick dark solid line in Figure 6b is the front to be advanced.  The 

cause of the proximity.  Figure 6c shows that the proximity has been 

be updated as shown in Figure 6e.  Additional fronts can then be advanced 

boundary through the connecting tubes as shown in Figure 6d.  The propa-

around the proximity as shown in Figure 6f. 

 are new model constraints

are advanced
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strained Plastering.  The unmeshed void is drawn in white, the connecting 
tubes in light gray, the connecting webs in dark gray, and the final ele-
ments in black.  Proximity in the connecting tube on the right stops addi-
tional sheets from advancing from both the top and bottom of the model.  
The proximity is resolved by merging out the connecting tube and the cor-

(a) 3D Merge Case (b) Merge Performed (c) Additional sheet advanced 

Figure 7. Unconstrained Plastering merge case 

4.2 Seaming 

cur where two fronts intersect.  The need for seaming is based on the angle 

than a specified tolerance , then seaming is required.  Seaming is per-

increases above *w, where w is a weighting factor greater than 1.0.  If
w = 1.0, then the angle will only increase to exactly the seaming tolerance.  

which would cause seaming to be required again.  If a larger w is used, 
such as 1.1, then  will have increased enough over  that nearby changes 
will be less likely to drop enough to require additional seaming. 

where the seaming stops.  Point C is a new constraint on the model where 

shows the addition of the cutbacks and the modifications to fronts A and 

vanced one additional row. 

Figure 7 illustrates a merge case in the connecting tubes during Uncon-

responding connecting webs in Figure 7b.  An additional front from the top 
of the model can now be advanced as illustrated in Figure 7c. 

During Unconstrained Paving and Plastering, cases requiring seaming oc-

intersection between fronts A and B.  If the angle of intersection , is less 

at which the fronts intersect.  Figure 8a shows the model from Figure 4 af-

Subsequent small perturbations nearby could cause the angle to decrease 

ter the merging was performed.  Figure 8b shows a close up showing the 

formed, as shown in Figure 8d, by merging the fronts together until the 

Figure 8d illustrates the completion of the seam.  Point C is the point 

a five-valent node will be located.  Similar to point A and B in Figure 6c, 
point C must be propagated back to the boundary with cutbacks.  Figure 8e 

B.  Figure 8f shows the model after fronts A and B have both been ad-
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often create a set of connecting tubes which are no longer connected to an 
unmeshed void.  These connecting tubes are like all other connecting tubes 
in that they still have one degree of freedom remaining for Unconstrained

(a) Example surface (b) Check for seaming at 
intersection of fronts 

(c) Angle of intersection 
determines if seaming is 
required

(d) Seaming is performed 
until angle increases 

(e) Cutbacks are added and 
fronts updated 

(f) Additional fronts are 
advanced

(g) Connecting tube behind 
seam no longer touched 
unmeshed void 

(h) Final mesh in seaming 
region

Figure 8. Unconstrained Paving seaming example 

The highlighted region of Figure 8g illustrates that cutbacks in seaming 
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Paving and two degrees of freedom for Unconstrained Plastering.  For 
Unconstrained Paving, these connecting tubes can be diced as many times 

Unconstrained Plastering, these connecting tubes which are no longer con-
nected to an unmeshed void represent a partition of the solid which can be 

operation is performed, an additional sheet is advanced as illustrated in 

h, connecting tubes that no longer touch an unmeshed void are often cre-
ated during seaming.  This is also the case in three dimensions with Un-
constrained Plastering.  The two light gray surfaces on the top of the model 

surfaces can be meshed with quadrilaterals and swept [16,17,18] through 

tion, the topology of connecting tubes in three dimensions has only a sin-
gle source and a single target, which simplifies the sweeping process to 1-1 
sweeping.

(a) 3D Seam Case (b) Seam with cutbacks performed 

(c) Additional front advanced  (d) Another seaming operation performed 

Figure 9. Unconstrained Plastering Seaming example 

as required to get the proper element resolution as shown in Figure 8h.  For 

Figure 9 Illustrates a seaming case in Unconstrained Plastering which 
is a result of the merge operation performed in Figure 7.  After the seaming 

Figure 9c.  This sheet advancement creates an additional seaming case 

meshed with traditional paving and sweeping [16,17,18]. 

which is seamed as illustrated in Figure 9d.  As illustrated in Figure 8g & 

in Figure 9d represent two such connecting tubes.  These two light gray 

the corresponding connecting tube to obtain the final mesh.  By defini-
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5 Unconstrained Plastering Examples 

Conceptually, Unconstrained Paving and Plastering can handle a wide va-
riety of model complexity.  The logic is available to handle concavities, 
small model angles, collisions between fronts, seaming of adjacent fronts, 
and assembly models.  However, as is often the case, implementation of 
the logic lags the conceptual progression.  At the time of its initial intro-
duction [1], no solids had yet been successfully meshed with Uncon-
strained Plastering.  Since then implementation has progressed to success-
fully mesh numerous models of simple complexity. 

Plastering.  However, the concavity requires the use of incomplete fronts.  
In addition, merging in both connecting tubes and in the unmeshed void 
were required.  As expected, the resulting mesh topology is that of a sub-
mapped mesh [14].  The minimum scaled Jacobian in this mesh is 0.92 on 
a scaled from 0.0 to 1.0 where 1.0 is the perfect hexahedral element. 

Unconstrained Plastering meshed the model in Figure 11 with a mini-
mum scaled Jacobian of 0.62.  The topology of the model is that of a sim-
ple brick, however, the top surface has the shape of a rhombus, which re-
sults in non-perpendicular angles leading to lower quality elements and 
some irregular transitioning nodes on the top and bottom surface.  The 
mesh topology of the mesh is that of a swept mesh. 

Figure 12 illustrates a model which is also relatively simple.  The top 
surface is a curved nurb.  The tapered end caused the merging and seaming 

regular nodes on the side of the volume.  The irregular nodes on the top of 
the model are introduced by the quad mesher which meshes the top surface 
of a connecting tube which is then swept as described in section 4.2.  The 
minimum scaled Jacobian in this mesh is 0.577.  The mesh topology is nei-
ther mapped or swept, but a true unstructured mesh topology.  Although 
the model topology of this model could yield a swept mesh topology, this 
example illustrates that Unconstrained Plastering is not restricted to such 
simple mesh topologies.  Rather, Unconstrained Plastering is free to insert 
hexahedral sheets into the solid as required to adequately model the geo-
metric complexity. 

Figure 10 shows a seemingly simple model meshed with Unconstrained 

cases illustrated in Figure 7 and Figure 9 to arise which resulted in the ir-
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Figure 10. Example model 1 Figure 11. Example model 2

Figure 12.  Example model 3

6 Future Research 

As mentioned previously, implementation of Unconstrained Plastering lags 
the conceptual development.  As a result, resources are currently allocated 
to implementation of the currently available logic.  Current implementa-
tion resources are focused on more complicated concavities, models with 
very thin sections, boundary topology which intersects at extreme angles, 
and assembly models.  It is anticipated that as implementation progresses, 
additional cases will be encountered which will require additional logic 
and operations which are not yet considered. 

At the time of publication of [1], implementation on Unconstrained 
Plastering had begun, but implementation of Unconstrained Paving was 
not a priority.  Priorities and resources have since been modified.  As a re-
sult, implementation of Unconstrained Paving has now begun.  It is antici-
pated that Unconstrained Paving will behave much better than traditional 
Paving on surfaces that have skinny regions as illustrated in Figure 13. 
Figure 13a shows the result from traditional Paving.  Since the boundary 
edges are meshed apriori, the nodes are placed without considering prox-
imity to other curves.  As a result, the gray elements illustrate that skewed 
elements often result in thin sections such as this.  Figure 13b shows what 
a more desirable mesh would be where the nodes opposite the thin section 
line up.  Since Unconstrained Paving is not constrained by an apriori 
boundary mesh, it is anticipated that the cutback process resulting from the 
merging in this region will result in a mesh similar to that in Figure 13b. 
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(a) Traditional Paving result (b) Unconstrained Paving result 

Figure 13.  Mesh comparision between traditional Paving and Unconstrained Pav-
ing

7 Conclusions 

The conceptual understanding of Unconstrained Paving and Plastering has 
progressed significantly since its initial introduction.  Conceptually, many 
complex models can be handled.  Implementation lags the conceptual de-
velopment, but is the focus of current resources. 

Triangular and tetrahedral meshing algorithms are accompanied by 
long accepted mathematical proofs and theorems [19].  In contrast, Uncon-
strained Paving and Plastering, like traditional Paving [5], are quite heuris-
tic and currently lack complete mathematical verification.  Regardless, tra-
ditional Paving is accepted as a robust solution to the quadrilateral 
meshing problem because it has been implemented dozens of times at both 
academic and commercial institutions resulting in robust and efficient 
mesh generation software.  Likewise, the current implementation of Un-
constrained Plastering indicates that once a complete implementation is in 
place, Unconstrained Paving and Plastering may also provide efficient and 
robust mesh generation tools.  Future advances in mathematics and mesh 
generation may provide the mathematical backing they currently lack. 
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