
Small�Dimensional Linear Programming and

Convex Hulls Made Easy�

Raimund Seidely

Computer Science Division

University of California Berkeley

Berkeley CA �����

USA

Abstract

We present two randomized algorithms� One solves linear programs involv�
ing m constraints in d variables in expected time O�m�� The other constructs

convex hulls of n points in IRd� d � �� in expected time O�nbd��c�� In both

bounds d is considered to be a constant� In the linear programming algorithm

the dependence of the time bound on d is of the form d�� The main virtue

of our results lies in the utter simplicity of the algorithms as well as their

analyses�

� Introduction

One of the more exciting achievements in the theory of linear programming was
accomplished in a series of papers by Megiddo and by Dyer in the beginning of the
last decade �M����M����D����D��� who showed that if d� the number of variables in
a linear program� is considered a constant� then the linear program can be solved
in time that is linear in m� the number of its constraints� These new algorithms
were extremely complex� and� unfortunately� the running time of these algorithms
depended on d in a super�exponential way� For Megiddo�s original algorithm �M��
the dependence was doubly exponential	 subsequently this was somewhat improved
by Clarkson and by Dyer to a dependence of the form 
d

�

�C����D���
More recently a number of randomized algorithms have been proposed �DF���C���

where the most interesting one� due to Clarkson� has a remarkable expected running
time of O�d�m�
�logm�O�d�d���O���
O�d�

p
m logm�� That algorithm is relatively

�Large Portions of the research reported here were conducted while the author visited DIMACS

at Princeton University�
ySupported by NSF Presidential Young Investigator Award CCR��������� Email address�

seidel�harmony�berkeley�edu

�



straightforward� however the analysis of its expected running time is somewhat
involved�

In the �rst part of this paper we present an exceedingly simple linear program�
ming algorithm whose expected running time is O�d�m�� The analysis of its expected
complexity is completely elementary and matches the algorithm in its simplicity�

The second part of this paper concerns the problem of constructing the convex
hull of n points in IRd� For dimension d � 
 this problem was essentially solved
by the late seventies �G���PH�� For d � 
 a number of deterministic algorithms have
been proposed �CK���K���Sw���S����S��� where the best time bounds achieved were
O�ndd��e�� if measured in terms of input size n only� or O�n� 
 F logn�� if measured
in terms of input size n and output size F � the number of faces produced �S����S��
�d is considered a constant here��

In this paper we are only concerned with the case where d � 
 is a constant and
where the running time is to be bounded by the input size only� Here the main open
question has been whether it is possible to achieve a bound of O�nbd��c�� which would
be worst case optimal as the convex hull of n points in IRd can have this many faces�
So far there has been no success with deterministic algorithms� However� recently
Clarkson and Shor �CS� proposed a randomized algorithm with O�nbd��c� expected
running time�

In this paper we propose another randomized algorithm with the same perfor�
mance� Our algorithm is similar to the one of Clarkson and Shor in that it is
incremental� However� we avoid having to maintain so�called con�ict graphs� which
simpli�es our algorithm and allows a very straightforward and elementary analysis
of its expected running time�

The analyses of the expected running times of both algorithms in this paper rely
heavily on the same idea� which can be expressed as �analyze the algorithm as if
it was running backwards� from output to input�� This view has proved very useful
and is more thoroughly exploited in a forthcoming paper �S
��

� Linear Programming

Geometrically� linear programming amounts to the following� One is given a set H
of m halfspaces and a vector c in IRd� and one wants to �nd an �optimum vertex� v
of the polyhedron PH formed by the intersection of the halfspaces in H� so that v
maximizes the linear functional speci�ed by c	 in other words� v must be contained
in the tangent hyperplane of PH whose outward normal is c�

Consider the following strategy for �nding such an optimum vertex v� Choose
and remove a randomH from them halfspaces inH to obtain the setH�� Recursively
compute the optimum vertex v� of PH� �with respect to the direction c�� From v�

compute v as follows� If v� is contained in the halfspace H� then clearly v � v��
and nothing needs to be done� Otherwise v must be contained in the bounding
hyperplane h of the halfspaceH� As a matter of fact� if c is the orthogonal projection
of c into h and H� � fG � hjG � H�g� then v is the optimum vertex for the �d� ���

�



dimensional linear program speci�ed by the halfspaces H� �of h� and the direction
c� Thus v can be determined by recursively solving a �d� ���dimensional problem
with m� � constraints� �A ��dimensional problem can straightforwardly be solved
in time proportional to the number of its constraints��

This is the gist of our algorithm� A number of important details still need to
be addressed� How does the recursive procedure bottom out� What happens if an
�optimum vertex� does not exist because of infeasibility or unboundedness of the
problem�

Let us at �rst dispose of the unboundedness case� We stipulate that we are
not interested in all of IRd but just some bounding box B� �i�e� we impose explicit
lower and upper bounds �� � xi � � on the d variables xi�� This bounding box
also provides a convenient way for dealing with the bottoming out problem� If H
is empty� then the optimum solution is one of the vertices of B� and it can be
determined from the signs of the coordinates of c in O�d� time� Finally� infeasibility
of the linear program �i�e� emptiness of PH� is discovered when the recursion has
descended to the ��dimensional case�

What would the expected running time of our algorithm be� Why expected
running time� Recall that the algorithm starts by choosing a halfspace H form H
at random� The expectation of the running time is to be taken with the assumption
that whenever such a random choice is made each member of H is chosen equally
likely�

For the sake of analysis let us assume at �rst that our linear programming prob�
lem and all the subproblems encountered are well behaved in the sense that the
optimum vertex is unique� and that it is the intersection of the bounding hyper�
planes of exactly d of the given halfspaces�

We claim that under these non�degeneracy assumptions our proposed method
has an expected running time of O�d�m�� The proof� by induction on d� proceeds
in a nutshell as follows� In case d � � the problem can be solved trivially in O�m�
time� For d � � it su�ces to show that the expected time necessary to obtain v from
v� is O�d��� The interesting and expensive case happens when v� and v are di�erent�
But note that these vertices can only be di�erent if one of the d halfspaces whose
bounding hyperplanes de�ne v is H� Since H was chosen from the m halfspaces in
H uniformly at random� it follows that v is di�erent from v� with probability d�m
�at most� since some of the d hyperplanes de�ning v might derive from the bounding
box B��� By inductive assumption the expected cost of solving the ensuing �d� ���

dimensional linear program with m� � constraints is O
�
�d� ����m� ��

�
� Thus the

expected cost of obtaining v from v� is �d�m� �O
�
�d� ����m� ��

�
� which is O�d���

as claimed�
What about our non�degeneracy assumptions� We enforce uniqueness of the

optimum vertex v by requiring that it be the vertex of B� � PH that maximizes the
inner product with c and that has the lexicographically largest coordinate represen�
tation� Note that for the analysis of the running time of the algorithm it is crucial
that v is de�ned uniquely and canonically with respect to H�






Finally� the assumption that v be the intersection of the bounding hyperplanes
of exactly d halfspaces can be dropped altogether� However many halfspaces of H
are involved in the de�nition of v� among them there can be at most d halfspaces
H with the property that the optimum vertex for H n fHg is di�erent from v�

We summarize�

Theorem � Using the randomized method outlined in this section a linear program
with m constraints in d variables can be solved in expected time O�d�m��

Proof� We just tidy up the analysis of the expected running time of our procedure�
Assuming that testing whether a point is contained in a halfspace takes O�d� time�
that projecting a d�vector orthogonally into a hyperplane takes O�d� time� and that
determining the intersection of a halfspace in IRd with a hyperplane takes O�d� time
also� the expected running time T �d�m� for our procedure satis�es

T �d�m� �
���
��

O�m� if d � �
O�d� if m � �
T �d�m� �� 
O�d� 
 d

m
O�dm� 
 d

m
T �d� �� m� �� otherwise

It is now easy to check that T �d�m� � O
�P

��i�d
i�

i�
d�m

�
� which is O�d�m� since the

sum converges even without an upper bound for i�

The reader might object to our method of enforcing boundedness by imposing
explicit lower and upper bounds on the variables� The number � might be chosen
too small so that the bounding box B� does not contain the optimum vertex of
PH	 or it might also be important to determine whether PH is unbounded in the
objective direction c�

There are at least two ways of dealing with such problems� One approach would
be to amend the notion of �optimum solution� for a linear program� If PH is bounded
in the c�direction� then� as before� the optimum solution is a canonical vertex of
PH that maximizes the inner product with c	 otherwise the optimum solution is a
canonical direction in the recession cone of PH for which the unit vector maximizes
the inner product with c�

Another approach would be to continue using a bounding box B�� However�
one does not choose � explicitly but one uses for � an indeterminate number �
larger than any number that ever appears in the computation� and one deals with
� symbolically� It turns out that this way the coordinates of the intermediate and
�nal results in the computation are degree�� polynomials in �� In particular the
�nal optimum vertex is presented as v��� � u
 � �w� where u and w are d�vectors�
For all su�ciently large values for �� the vector v��� is then the optimum vertex of
B� � PH� This means that if w is the zero vector� then the problem is bounded and
u is the optimum vertex of PH	 otherwise there is some real number �� so that the
ray fv���j� � ��g is contained in PH� We will detail this approach in the appendix�

�



� Convex Hulls

This section concerns the construction of the convex hull of n points in IRd� We
are only interested in the case n � d � 
� and we assume that S is in non�
degenerate position� i�e� no d 
 � points of S lie in a common hyperplane� Such
non�degeneracy can easily be simulated with impunity using standard perturbations
techniques �E�pp����� Non�degeneracy ensures that the convex hull of any subset of
S is a simplicial polytope�

First some basics� Let P be a simplicial d�polytope� let V be the vertex set of
P � and let n � jV j� It is known that P can have at most O�nbd��c� faces �Mc�� We
call the �d����faces of P facets and the �d����faces ridges� Every facet is uniquely
identi�ed by the d�tuple of its vertices� Similarly every ridge can be identi�ed by a
�d����tuple of vertices in V � Since every ridge is contained in precisely two facets one
can represent the facial structure of P by its facet graph F�P �� which has the facets
of P as its nodes and two facets adjacent i� they share a common ridge of P � Note
that for simplicial d�polytopes the facet graph is regular of degree d� Throughout
this section� when we talk about �constructing the convex hull P of V � we really
mean constructing the facet graph F�P �� Moreover� we will not be particularly
careful with the distinction between facet F of P � the node corresponding to F in
the facet graph F�P �� and the d�tuple of vertices in V that span F � The same holds
for ridges of P � edges of F�P �� and �d� ���tuples of de�ning vertices�

Let p be some point in IRd in non�degenerate position with respect to V � We call
a facet F of P visible from p i� the hyperplane spanned by F separates P and p� We
call F obscured otherwise� We call a face G of P visible from p i� it is only contained
in facets of P that are visible from p� Obscured faces are de�ned analogously� We
call G a horizon face with respect to x i� it is contained in some visible and some
obscured facet�

This terminology allows a convenient characterization of the facial structure of
the polytope P � � conv �P � fxg� in terms of the faces of P � No visible face of P is
a face of P �	 all obscured and all horizon faces of P are faces of P �	 for each horizon
face G of P the pyramid conv �G � fxg� is a face of P �	 this yields all faces of P ��

This characterization justi�es the following method for obtaining P � from P and
x� As stated before� we assume here that the polytopes are represented by their
facet graphs� Thus� to be more precise� the procedure outlined below is intended to
compute F�P �� from F�P � and x�

�i� Locate some facet F of P that is visible from x� or determine that no such
facet exist� in which case x is contained in P and hence P � � P �

�ii� Determine the set of facets and ridges of P that are visible from x and deter�
mine all horizon ridges of P with respect to x� Delete all visible facets and
ridges�

�iii� For each horizon ridge G of P generate the new facet conv �G�fxg� of P � �i�e�
a new node for the facet graph��

�



�iv� Generate the new ridges of P � �i�e� the edges between the new nodes of the
facet graph��

Let us ignore for the moment how step �i� of this procedure can be done and let
us examine the other steps in more detail�

Step �ii� can clearly be implemented via a depth��rst�search through F�P � that
starts at F so that the time necessary is proportional to the number of visible faces
found� Since all those faces are deleted� and since each face can be deleted only
once� the cost of this step can be charged to the creation of each deleted face� and
thus in the amortized sense step �ii� incurs no cost at all�

Step �iii� is straightforward and can be completed in time porportional to Nx�
the number of new facets created�

The number of new ridges created in step �iv� is proportional to Nx� How can
they be found� For every new facet generated in step �iii� the d � � new ridges
contained in it can be determined �locally�� Radix sorting the �d � ���tuples of
vertices �or rather vertex indices� that identify these ridges then allows to match
them up and to form the new edges of the facet graph F�P �� in time proportional
to n 
Nx�

It follows� that if one ignores the cost of step �i�� the total amortized cost of
this procedure is O�n 
Nx�� where n is the number of vertices of P and Nx is the
number of facets of P � that contain x�

Let us still defer the details of how to deal with step �i� and let us consider the
following algorithm for constructing the convex hull of a set S of n � d points in
IRd in non�degenerate position�

�� Put the points of S in a random order p�� � � � � pn�

�� Form the facet graph F�Pd���� where Pd�� � conv fp�� � � � � pd��g� �Note that
this graph is simply the complete graph on d
 � vertices��


� For d
� � i � n� using the insertion procedure outlined above� form the facet
graph F�Pi� from F�Pi���� where Pi � conv fp�� � � � � pig�

What is the expected running time of this algorithm� Obviously the crux of
the question is what is the expected running time of step 
� In particular� what is
the expected cost of computing F�Pi� from F�Pi���� We know that it is O�i
Ni��
where Ni is the number of facets of Pi that contain pi� So what we need to determine
is the expected value of Ni� Assuming that step � generates each permutation with
equal probability� every one of the j � i vertices of Pi was added last �i�e� was
pi� with equal probability� Since each facet of Pi contains exactly d vertices and
since Pi has at most O�jbd��c� facets it follows that the expectation of Ni is at most
�d�j� O�jbd��c�� which is O�ibd��c���� It follows therefore that the expected cost of
the ith iteration of our algorithm is O�ibd��c���� which implies that the total expected
cost of the entire algorithm is

P
d���i�nO�i

bd��c���� which is O�nbd��c��

�



This analysis still neglects the cost of step �i� of the updating procedure� Recall
that this step must �nd one visible facet of the �old� polytope Pi�� or determine
that no such facet exists� Note that this is really a crucial step� It is exactly this
problem� for instance� that forces Clarkson and Shor to resort to con�ict graphs
in their incremental convex hull algorithm� However� there is a straightforward
solution to this problem� since it is nothing but a linear program in d dimensions
involving one constraint for each vertex of Pi��� Of course� for �xed d this can be
solved in O�i� time and for d � 
 this cost is subsumed by the cost of the remaining
steps of the update procedure� Thus the expected running time of our incremental
randomized convex hull algorithm remains O�nbd��c��

We summarize�

Theorem � Using the algorithm outlined in this section the convex hull of n points
in IRd can be constructed in expected time O�nbd��c�� for any �xed constant d � 
�

� Remarks

The problem of locating a facet of the d�polytop P � conv S that is visible from a
point x can actually be formulated as a linear program in d � � dimensions� One
wants to �nd a hyperplane that contains x and is tangent to P � This in e�ect will
locate a horizon ridge G of P and one of the two facets that contain G must be
visible from x�

In our presentation we swept one problem under the rug� How does one corre�
late the output of the linear programming problem to the facet graph� The linear
program will just produce the �d � ���set of vertices that span G� It needs a little
bit of work to get from such a set to the actual edge in the facet graph� However�
this can be done within the given time bound	 for instance as follows� Let the points
of S be numbered p�� � � � � pn according to the used random permutation� We will
maintain a sorted array of all ridges that have been created in the course of the al�
gorithm and we will correlate the array entries of the currently existing ridges with
the corresponding edges of the current facet graph� Each ridge will be represented
as an ordered �d � ���tuple of the points that span it� ordered by decreasing point
index� The array will be sorted lexicographically in increasing order� Now� if the
linear program outputs a �d � ���set T of vertices� we sort T into decreasing order
and then use binary search to locate the resulting �d� ���tuple in our array in log�
arithmic time� From this entry we can determine the desired edge of the current
facet graph in constant time� Updating the array is easy� When we add point pi to
the current hull the insertion algorithm produces already a lexicographically sorted
list of all new ridges that contain pi� Since i at that point is the currently largest
index we only have to append that list to our master array�

The scheme just outlined might be undesirable as it uses space O�ndd��e� in the
worst case since no ridge is ever deleted from the array� Worst case space O�nbd��c�
could be achieved� however� by using instead of the array a balanced tree scheme

�



that allows deletion of pointed to nodes in constant amortized or expected time�
Examples of such tree schemes are red�black trees �T� or randomized search trees
�AS��

A few words about the probability that the running times of the algorithms pre�
sented in this paper di�er substantially from their expectations� I have been unable
to prove any interesting results in this direction for the convex hull algorithm� For
the linear programming algorithm the variance turns out to be very large� and I have
not been able to prove that the probability of the algorithm exceeding its expected
running time by a constant factor tends to � as m tends to in�nity� However� it is
possible to prove something slightly weaker�

Let Zm
d be a discrete random variable measuring the number of operations made

by our linear programming algorithm when applied to an input with m constraints
in d � m variables� The measurement will be pretty rough� We will assume that
each recursive invocation of the algorithm takes one unit of time for m � � and
d � � �plus the time for recursive subcalls� of course�� and that an invocation with
d � � takes m units of time� This random variable re�ects the actual running time
of the algorithm reasonably well in that they are proportional to each other within
a �xed factor� �A factor of O�d� is easy to see� actually a factor of O��� holds��

Let pmd �x� be the generating function for Zm
d � If one slows down the algorithm

slightly so that one more constraint is used in the possible �d � ���dimensional
subcall� an upper bound for this generating function can be de�ned recursively as
follows�

pmd �x� �

����
���

xm if d � ��
� if d � � and m � ��

pm��
d �x� � x �

�
��� d

m
� 
 d

m
pmd���x�

�
if d � � and m � ��

This can be rewritten as

pmd �x� �

��
�

xm if d � ��

xm
Q

��j�m

�
��� d

j
� 
 d

j
pjd���x�

�
if d � ��

Note that this de�nition relies on the fact that there is no dependence between the
various random choices made in the course of the algorithm�

Now let c� be any positive real number and depending on this number de�ne
recursively for each d � �

cd � �� 
 c��e
dcd�� � ��

Lemma � Let m � � be �xed and let �m � �� 
 c��
��m� Then for � � j � m

pjd��m� � �� 
 cd�
j�m � � 


j

m
cd�

Proof� The second inequality is true since for any x � � and any positive � � � the
inequality �� 
 x�� � � 
 �x holds� We prove the �rst inequality by induction on d�

�



For d � � it is true with equality by de�nition� For d � � we �rst use the inductive
assumption and then the inequality �� 
 x� � ex to obtain

pjd��m� � �jm
Q

��i�j

�
��� d

i
� 
 d

i
pid����m�

�
� �jm

Q
��i�j

�� 
 d
m
cd���

� �jme
j d
m
cd�� �

�
�� 
 c��e

dcd��

�j�m
� �� 
 cd�

j�m �

Lemma � is of interest because of the following easily provable fact�

Fact � Let q�z� be the generating function of a non�negative integer random vari�
able X� and let a � � be any real number and k be some positive integer� Then

Pr�X � k� � q�a�

ak
�

Bounding the tail of the distribution of the random variable Zm
d is now easy�

Lemma � Let c� � � and cd be de�ned as above� and let k be a positive integer�

Pr�Zm
d � k� � � 
 cd

�� 
 c��k�m

Proof� Setting the a of Fact � to �m � �� 
 c��
��m and using the bound of Lemma

� we obtain

Pr�Zm
d � k� � pmd ��m�

�km
� � 
 cd

�km
�

� 
 cd
�� 
 c��k�m

�

Recalling that the expected value of Zm
d is d�m we obtain the following�

Corollary ��� For any �xed constant c � � and any function b�m� the probability
that Zm

d exceeds its expected value by a factor of b�m� is O�c�d�b�m���

Corollary ��� For any �xed constant c� � � the probability that Zm
d exceeds its

expected value by a factor of logm is O�m�c�d���

By optimizing the choice of the number c� it is possible to get more explicit
bounds for small d� For instance� for d � � the linear programming algorithm exceeds
its expected running time by a factor of �� with probability at most ���� ������ and
by a factor of �� with probability at most ��� � ����	� In the 
�dimensional case
the expected running time is exceeded by a factor of �� with probability at most
��� � ����
�

Mike Hohmeyer at UC Berkeley has implemented a version of the linear pro�
gramming algorithm� Running a ��dimensional example with ���� non�redundant
constraints �hyperplanes tangent to a common paraboloid� �� times on a DEC 
���
workstation required a minimum execution time of ��� seconds and a maximum of
���� seconds with an average execution time of ���� seconds� Various heuristics for
speeding up the algorithm are being investigated�

�



� Acknowledgements

I would like to thank Emo Welzl for inspiring discussions� I am grateful to an
anonymous referee for setting the standards high� Tetsuo Asano kindly pointed out
an error in a previous version of this paper� Finally I want to thank Ricky Pollack
for making me write this paper�

� References

�AS� C�R� Aragon and R�G� Seidel� Randomized Search Trees� Proc� ��th IEEE
Symp� on Foundations of Computer Science ��	
	� �
���
��

�CK� D�R� Chand and S�S� Kapur� An Algorithm for Convex Polytopes� JACM ��
��	��� �
�
��

�C�� K�L� Clarkson� Linear Programming in O�n
d
�

� Time� Inf� Proc� Letters ��
��	
�� ����
�

�C�� K�L� Clarkson� Las Vegas Algorithms for Linear and Integer Programming
when the Dimension is Small� Manuscript� �Oct� �	
	�� a preliminary version
appeared in Proc� �	th IEEE Symp� on Foundations of Computer Science
��	

� 
���
���

�CS� K�L� Clarkson and P�W� Shor� Applications of Random Sampling in Compu�
tational Geometry II� Discrete � Computational Geometry 
 ��	
	� �
��
���

�D�� M�E� Dyer� Linear Algorithms for Two and Three�Variable Linear Programs�
SIAM J� on Computing �� ��	

� ���
��

�D�� M�E� Dyer� On a Multidimensional Search Technique and its Applications to
the Euclidean One�Centre Problem� SIAM J� on Computing �� ��	
�� ����
��
�

�DF� M�E� Dyer and A�M� Frieze� A Randomized Algorithm for Fixed�Dimensional
Linear Programming� Mathematical Programming 

 ��	
	� ��������

�E� H� Edelsbrunner� Algorithms in Combinatorial Geometry� Springer �������

�G� R�L� Graham� An E�cient Algorithm for Constructing the Convex Hull of a
Finite Planar Set� Inf� Proc� Letters � ��	��� ��������

�K� M� Kallay� Convex Hull Algorihms in Higher Dimensions� Manuscript ��	
���

�Mc� P� McMullen� Then Maximum Number of Faces of a Convex Polytope� Math�
ematika �� ��	��� ��	��

�

�M�� N� Megiddo� Linear�Time Algorithms for Linear Programming in IR� and Re�
lated Problems� SIAM J� on Computing �� ��	
�� ��	�����

��



�M�� N� Megiddo� Linear Programming in Linear Time when the Dimension is
Fixed� Journal of the ACM �� ��	

� ��
�����

�PH� F�P� Preparata and S�J� Hong� Convex Hulls of Finite Point Sets in Two and
Three Dimensions� Comm� of the ACM �� ��	��� 
��	��

�S�� R� Seidel� A Convex Hull Algorithm Optimal for Point Sets in Even Dimen�
sions� Univ� ob British Columbia� Dept� of Comp� Sci� Tech� Rep� 
���

��	
���

�S�� R� Seidel� Constructing Higher�Dimensional Convex Hulls at Logarithmic Cost
per Face� Proc� �
th ACM STOC ��	
�� 
�
�
���

�S
� R� Seidel� Backwards Analysis of Incremental Randomized Algorithms and
Data Structures� �Manuscript�

�Sw� G� Swart� Finding the Convex Hull Facet by Facet� Journal of Algorithms �
��	
�� ���

�

�T� R�E� Tarjan� Data Structures and Network Algorithm� Society for Industrial
and Applied Mathematics ����
��

� Appendix

Here we give a more detailed description of a possible implementation of the random�
ized linear programming algorithm� The reader be warned that this is not necessarily
a practical implementation� issues of numerical stability are ignored	 most likely one
should replace one of the recursions by iteration	 employing the indeterminate � also
slows down the algorithm�

Below we detail a function LP that takes as inputs a positive integer d� a d�vector
c � �c�� � � � � cd� and a set A of �d
 ���vectors� LP either returns a pair of d�vectors
u� w that have the property that for all su�ciently large reals � the d�vector u
�w
is the lexicographically largest vector x that maximizes

P
��i�d cixi subject to the

parameterized constraints

P
��i�d aixi � ad�� 
 ad��� for each a � �a�� � � � � ad��� � A and

�� � xi � � for � � i � d�

or LP determines eventual infeasibility� i�e� for all su�ciently large � the parame�
terized constraints do not admit a common solution� ��For all su�ciently large reals
�� is to mean �for all � � ���� where �� is some real number��

Note that the variable bounds �� � xi � � imply that for any � the system
either has an optimum solution or is infeasible� Unboundedness is impossible�

��



Of course we are really interested in solving �possibly unbounded� linear pro�
grams of the formmaximize

P
��i�d cixi subject to the non�parameterized constraints

P
��i�d aixi � ad�� for each a � �a�� � � � � ad��� � A�

where A is a set of �d 
 ���vectors� This problem can be solved by our function
LP if one extends every a � A to a �d 
 ���vector by appending � as �d 
 ���nd
coordinate� In other words� formally all constraints are now parameterized as

X
��i�d

aixi � ad�� 
 � � � �

If a set A of such extended vectors is supplied to our function LP along with the
dimension d and the objective vector c� then either LP �d� c� A� determines eventual
infeasibility� in which case the original problem is infeasible� or LP �d� c� A� returns
a pair of d�vectors �u� w� with w � ��� in which case the original problem is bounded
and u is the optimal solution� or LP �d� c� A� returns a pair of d�vectors �u� w� with
w �� ��� in which case the original problem is unbounded and there is some number
�� so that the ray fu
 �wj� � ��g is contained in the feasible region�

The function LP speci�ed below uses the test ��L� which� given real numbers
p� q� r� s� is to decide whether for all su�ciently large � we have �p
 �q� � �r
�s��
Of course this just amounts to a lexicographic comparison between the pairs �q� p�
and �s� r�� The operations ��L�� �maxL�� and �minL� are to be understood and
performed analogously�

��



LP �d� c� A�

Base case d � ��

let �h 
 h��� � minL
�n
�a�
a�

 a�

a�
�� j a � A� a� � �

o
�
n
�� 
 � � ��

o�

let �	
 	��� � maxL
�n
�a�
a�

 a�

a�
�� j a � A� a� � �

o
�
n
��� � � ��

o�

let �z 
 z��� � minL
n
�a� 
 a��� j a � A� a� � �

o

if �z 
 z��� �L �� 
 � � �� or �h
 h��� �L �	
 	��� then stop and report infeasibility

if c � � then return the pair of ��vectors
�
�h�� �h��

�

else return the pair of ��vectors
�
�	�� �	��

�

Case d � ��

if A is empty then return the pair of d�vectors �u� w�� where for � � i � d

ui � �� and wi � � if ci � � and wi � �� otherwise

Select some a � A uniformly at random and remove it from A to obtain A��

let �u� w� be the pair of d�vectors returned by LP �d� c� A��

if
�
�
P

��i�d aiui� 
 �
P

��i�d aiwi��
�
�L �ad�� 
 ad���� then return �u� w�

else �� �u
 �w� violates the constraint a ��

let � � k � d be maximal such that ak �� �

if no such k exists then stop and report infeasibility

�� Eliminate variable xk from constraints in A� and from c� ��

let A� �
n
�b� bk

ak
a� with kth component removed j b � A�

o

let c � �c� ck
ak
�a� with kth component removed� where �a � �a�� � � � � ad�

�� Incorporate the constraints �� � xk � � into A�� ��

let f be the �d
 ���vector with fk � fd�� � � and all other components �

let g be the �d
 ���vector with �gk � gd�� � � and all other components �

let A � A� �
n
�f � �

ak
a�� �g 
 �

ak
a� with kth component removed

o

�� Solve the �d� ���dimensional problem and �lift� the solution� ��

let �u� w� be the pair of �d� ���vectors returned by LP �d� �� c� A�

let u be the d�vector obtained from u by inserting � as kth component

let w be the d�vector obtained from w by inserting � as kth component

let uk �
�
ak
�ad�� �P��i�d aiui�

let wk �
�
ak
�ad�� �P��i�d aiwi�

return the pair of d�vectors �u� w�

�



