
Anisotropic Triangular Meshing of Parametric Surfacesvia Close Packing of Ellipsoidal BubblesKenji Shimada �Carnegie Mellon UniversityAtsushi Yamada and Takayuki Itoh yIBM Research, Tokyo Research LaboratoryAbstractThis paper describes a new computational method of fully automated anisotropic triangulation of a trimmedparametric surface. Given as input: (1) a domain geometry and (2) a 3 x 3 tensor �eld that speci�es adesired anisotropic node-spacing, this new approach �rst packs ellipsoids closely in the domain by de�ningproximity-based interacting forces among the ellipsoids and �nding a force-balancing con�guration usingdynamic simulation. The centers of the ellipsoids are then connected by anisotropic Delaunay triangulationfor a complete mesh topology. Since a speci�ed tensor �eld controls the directions and the lengths of theellipsoids' principal axes, the method generates a high quality anisotropic mesh whose elements conformprecisely to the given tensor �eld.Keywords: unstructured mesh, anisotropy, parametric surface, metric tensor, Delaunay triangulation1 IntroductionAlthough most automatic mesh generators try to create a regular isotropic mesh, in some FEM analysis an anisotropicmesh is more e�cient in terms of computational time and solution accuracy. For example, in uid dynamics simulationan anisotropic mesh stretched along shock/boundary layers and stream lines is preferred.This paper presents a versatile computational method of automatically generating an anisotropic triangular mesh ofa trimmed parametric surface, applicable to various FEM analyses. Assuming that an anisotropy is given as a 3 x 3tensor �eld de�ned over the domain to be meshed, this surface triangulation problem can be stated as follows:Given:� a geometric domain on a parametric surface S(u;v) trimmed by trimming curves Ct(s)� inside curves Ci(s) and vertices V on which nodes are exactly located� a desired anisotropic node spacing distribution, given as a 3 x 3 tensor �eld M(x)Generate:� an anisotropic triangular mesh that is compatible with trimming curves, inside curves, and inside verticesIn the above problem statement, each surface patch is de�ned as a mapping, denoted as S(u;v) =�x(u; v); y(u; v); z(u; v)�, from a rectangular region called parametric space into a 3D coordinate system called ob-ject space. A surface patch can be trimmed by restricting the rectangular region to a subset called the trimmedregion, and its boundary curves are called trimming curves, denoted as Ct(s) = �x(s); y(s); z(s)�. Occasionallywe need to de�ne extra curves and vertices inside the trimmed region so that some nodes are exactly located onthose geometric elements. These curves and vertices are referred to as inside curves and inside vertices, denoted as�Kenji Shimada, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.shimada@cmu.edu, http://www.me.cmu.edu/faculty1/shimada/yAtsushi Yamada and Takayuki Itoh, IBM Research, Tokyo Research Laboratory,1623-14, Shimo-tsuruma Yamato-shi, Kanagawa-ken 242, Japan, ayamada@trl.ibm.co.jp, itot@trl.ibm.co.jp



Ci(s) = �x(s); y(s); z(s)� and V = (x; y; z) respectively. The actual curve and surface representations can be of anyform, as long as they are continuous and a derivative vector can be calculated anywhere on the curves and surfaces.In order to generate an anisotropic triangular mesh over a given trimmed parametric surface, we modi�ed andextended the bubble mesh method that we previously proposed for isotropic meshing [8, 11, 10, 16]. The originalbubble meshing procedure consists of two steps: (1) pack an appropriate number of spheres, or bubbles, closelyin the domain, while the sizes of the spheres are adjusted based on a speci�ed node spacing scalar �eld, and (2)connect the bubbles' centers by constrained Delaunay triangulation to generate node connectivity. The novelty ofthis method is that the close packing of bubbles mimics a pattern of Voronoi regions that yield well-shaped trianglesand tetrahedra. Although the original bubble mesh using sphere packing creates a well-shaped, graded triangularor tetrahedral mesh, its application is limited to isotropic meshing because the close packing of spheres, or isotropiccells, naturally generates an isotropic node distribution.In this paper, to apply the bubble mesh concept to anisotropic meshing of parametric surfaces, we assume as input a3 x 3 tensor �eld that speci�es the desired anisotropy of a mesh. With this tensor �eld, a spherical bubble is deformedto an ellipsoid whose directions and lengths of the principal axes are calculated from the eigenvectors and eigenvaluesof the tensor respectively. By packing ellipsoidal bubbles closely in the domain, a set of nodes is distributed so that agraded, anisotropic triangular mesh is formed when the nodes are connected by anisotropic Delaunay triangulation.2 Related Work2.1 Anisotropic MeshingIn approximating a curved surface by piecewise linear triangular elements, it is e�cient to use an anisotropic meshwhose edge sizes are adjusted according to the directions of the principal curvatures. In order to equidistribute anapproximation error, the edge length should be longer in a low curvature direction, and shorter in a high curvaturedirection. Similarly, in �nite element analysis of a physical phenomenon, when the phenomenon has a strong di-rectionality as in uid dynamics, an anisotropic mesh is more e�cient in terms of computational time and solutionaccuracy than an isotropic mesh.One common way to represent an anisotropy is to de�ne a metric tensor �eld, M, over the domain [3, 2, 1]. M is asymmetric positive-de�nite 2 x 2 matrix in two dimensional problems, and a symmetric positive-de�nite 3 x 3 matrixin three dimensional problems. Castro-D��az et al. showed how a metric tensor can be de�ned so that it improves thequality of the adapted meshes in ow computations with multi-physical interactions and boundary layers [3]. Bossenand Heckbert used as input a 2 x 2 metric tensor in generating a 2D planar anisotropic triangular mesh using a systemof interacting particles [2]. Borouchaki et al. showed how a metric tensor can be used to generate an anisotropictriangular mesh on a surface and to convert it to a quadrilateral mesh [1]. Shimada used a 2D vector �eld equivalentto a 2 x 2 tensor for 2D anisotropic meshing [9].In this paper we use the same metric tensor to control the size and the shape of an ellipsoid to be packed in thedomain.2.2 Interacting ParticlesA particle system is a collection of particles that moves over time according to either a deterministic or a stochasticset of rules or equation of motion. In computer graphics, a particle system was originally used to model and rendernatural fuzzy phenomena such as fog, smoke, and �re [7]. While early particle systems had little or no interparticleinteraction, particle systems with proximity-based force interaction are recently used for di�erent purposes, includingTurk's re-tiling of a polygonal surface [14], Szeliski's surface modeling [13], de Figueiredo et al.'s polygonization ofimplicit surfaces [4], Witkin and Heckbert's sampling and controlling of implicit surfaces [15], and Fleischer et al.'stexture generation [5].These interacting particle systems use either repelling only or repelling and attracting forces among particles. Ifthe magnitude and range of the force are uniform, the system creates a uniform distribution of particles yielding ahexagonal arrangement. Uneven, or graded, distribution can also be obtained by adjusting the magnitude and therange of the interparticle forces.Bossen and Heckbert applied an interacting particle system to 2D anisotropic FEM mesh generation [2]. The methodassumes a 2 x 2 metric tensor to specify an anisotropy in a planar region, similar to Castro-Diaz's [3], and generates
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triangulationFigure 1: Bubble meshing proceduresa anisotropic node distribution using a proximity-based force similar to Shimada's [8, 11]. This approach seems tobe successful and to create a high-quality anisotropic 2D mesh. In terms of the de�nition of the interacting force, itis most similar to our bubble mesh in the 2D case.2.3 Bubble MeshThe bubble system is similar to the particle systems used in computer graphics in the sense that discrete bodiesinteract in 3D space as a result of the application of pairwise, repulsive/attractive forces. However, there are severalunique characteristics that make this method particularly suitable for FEM mesh generation:� A bubble system can triangulate a curved domain, a planar domain, a surface domain, a volumetric domain,and a hybrid of these domains (a non-manifold geometry) in a consistent manner. Bubbles are packed in orderof dimension, i.e., vertices, edges, faces, and volumes, easily identi�ed in CAD data. (See Figure 1.)� Unlike some early particle systems for rendering, particle motion and its dynamic simulation themselves arenot the focus. The model and the numerical solution of a bubble system are devised speci�cally to minimizethe computational time necessary for reaching a force-balancing con�guration.� A quick initial guess at the �nal bubble con�guration is obtained by using hierarchical spatial subdivision. Thisreduces the computational time necessary for the normally time-consuming process of dynamic simulation, orphysically based relaxation.� Unlike in a system of uniform particles, bubble diameters are adjusted individually by the node-spacing function.This makes precise control of triangle size possible throughout the mesh.� A population control mechanism is used during relaxation to remove any superuous bubble that is largelyoverlapped by its neighbors, and to subdivide any lone bubble missing some neighbors, so that a given domainis �lled with an appropriate number of bubbles. This automatic feature drastically reduces the time necessaryfor the system to converge to a force-balancing con�guration.
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mesh nodesFigure 2: Ellipsoidal bubble packing procedure.In the original bubble mesh, spheres are closely packed to create isotropic meshes in 1D, 2D, surface, and 3D domains[10, 8, 11, 16]. The method was later extended to generate a 2D planar anisotropic mesh by packing ellipsoids insteadof spheres and modifying a circumcircle test in Delaunay triangulation [9]. In this paper, we demonstrate that thesame idea of packing ellipsoids can be applied to anisotropic meshing of a trimmed parametric surface. The proposedsurface meshing can be used as a subprocess of 3D and non-manifold meshing, and anisotropic meshing of suchvolumetric domains can be performed by the same ellipsoidal bubble packing. (Simply replace the spheres in Figure1 by ellipsoids.)3 Anisotropic Triangulation of Parametric Surfaces3.1 Triangulation ProceduresThe novelty of our anisotropic meshing lies in the process of packing ellipsoidal bubbles closely in a domain. Weachieve this close packing con�guration by de�ning a proximity-based interbubble force and then solving the equationof motion numerically to yield a force-balancing con�guration.This packing process should be performed in order of dimension as shown in Figure 2, that is:1. Bubbles are placed on all the vertices V, including inside vertices, as well as endpoints of trimming curves andinside curves.2. Bubbles are packed on all the trimming curves Ct and inside curves Ct.3. Bubbles are placed inside the trimmed region of the surface S.Because bubbles are placed in order of dimension two �xed bubbles are already placed at the two endpoints ofthe curve when bubbles are packed on a curve, and these two bubbles are stable throughout the packing process,preventing moving bubbles from escaping the range of the curve. Similarly, when bubbles are packed inside thetrimmed region of a surface, the trimming curves are already �lled with �xed bubbles, preventing moving bubblesfrom escaping the trimmed region. In this way we put higher priority on the bubble placement of lower dimensionalelements, i.e., vertex bubbles over edge bubbles, and edge bubbles over face bubbles. This strategy makes sensebecause lower order geometric elements are often more critical in FEM analysis.Once all the bubbles are packed so that they cover the entire region of a trimmed parametric surface, their centersare connected by anisotropic Delaunay triangulation, detailed in Section 3.5, for a complete mesh topology.3.2 Ellipsoidal BubblesWe assume as input a symmetric positive-de�nite 3 x 3 metric tensor �eld M(x) that speci�es a desired anisotropy,as in previous work of anisotropic mesh generation [3, 2, 1]. We then use this metric tensor to specify the shapes



and the sizes of the ellipsoidal bubbles packed in 3D space. Such a 3 x 3 tensor matrix can be characterized by threeeigenvalues �i; i = 1; 2; 3. and three eigenvectors vi; i = 1; 2; 3.The eigenvalues de�ne the inverse squares of the radii of the major, medium, and minor radii of the ellipsoidal bubble,and they are calculated by solving the equation det��M� �I�� = 0: (1)After the eigenvalues �i are determined, the eigenvectors vi can be found by solving the equationMvi = �ivi; i = 1; 2; 3: (2)The three eigenvectors are thus expressed as vi = �iei; i = 1; 2; 3; (3)where ei; i = 1; 2; 3 are unit vectors in the directions of the eigenvectors vi; i = 1; 2; 3. These unit vectors are mutuallyorthogonal, and they are used to de�ne the directions of the major, medium, and minor axes1 of an ellipsoidal bubble.Given unit vectors of the major, medium, and minor axes of an ellipsoid, e1, e2, and e3, and the diameters alongthese axes, d1, d2, and d3, a 3 x 3 metric tensor is written asM = R �1 0 00 �2 00 0 �3 !RT = R0B@ �d1=2��2 0 00 �d2=2��2 00 0 �d3=2��2 1CART ; (4)where R = � e1 e2 e3 � =  e1x e2x e3xe1y e2y e3ye1z e2z e3z; ! (5)and di; i = 1; 2; 3 are ellipsoid's diameters along the principal axes. The size and the shape of an ellipsoidal bubbleis thus given as a function of its center position using the above 3 x 3 tensor �eld.3.3 Metric Tensor for Parametric SurfacesAlthough we need a 3 x 3 metric tensor �eld M(x) to specify the size and the shape of an ellipsoid, a desiredanisotropy is often given by a 2 x 2 metric tensor �eld de�ned in either parametric space or object space. A goodexample of such a case is when a surface is triangulated based on its curvature. Hence it is important that we discussthe following two issues in this section:� How to �nd a corresponding ellipse, or a 2 x 2 tensor in parametric space, when an anisotropy is de�ned by a2 x 2 tensor in object space. This is necessary for anisotropic Delaunay triangulation in parametric space.� How to de�ne an ellipsoid, or a 3 x 3 tensor, in object space, necessary for the force calculation, when only a 2x 2 tensor is given as input.Given a point on a surface, we can calculate two tangent vectors in the u direction and v direction, @S@u and @S@vrespectively. We then de�ne a local coordinate sytem x0y0z0 in such a way that: (1) the x0-axis is parallel to @S@u ;(2) the z0-axis is parallel to the normal direction @S@u � @S@v ; and (3) the y0-axis is parallel to the cross product of thez0-axis and the x0-axis (See Figure 3(b)).A 2 x 2 metric tensor Mx0y0 represents an ellipse in object space lying on the tangent plane x0y0, and this tensor canbe expressed as Mx0y0 = R2(�) �d1=2��2 00 �d2=2��2 !R2(�)T ; (6)1In some computational mechanics applications, particularly in the study of materials, these axes are referred to as the principalaxes of the tensor and they are physically important. For example, if the tensor is a stress tensor, the principal axes are the directionsof normal stress with no shear stress.
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where �min and �max denote the minimum radius of curvature and the maximum radius of curvature respectively,e a target constant error between the original surface and the mesh, and Dmax the allowable maximum size of thediameter of an ellipsoid. Setting this maximum size is necessary because, when a surface is nearly at in one direction,�max approaches in�nity, yielding an oversized mesh element.As mentioned earlier in this section we also need to �nd how to de�ne a 3 x 3 metric tensor, or a tensor ellipsoid, whenonly a 2 x 2 metric tensor is given on the surface. This is essential because, as detailed in Section 3.4, interbubbleforces are calculated using ellipsoids de�ned by a 3 x 3 metric tensor. To decide the diameter along the third axis,parallel to the normal to the surface, we compare the two diameters d1 and d2 along the two principal axes on thetangent plane x0y0 and give the smaller value to the diameter along the third axis. The 3 x 3 metric tensor is thusde�ned as Mxyz = R0BB@ �d1=2��2 0 00 �d2=2��2 00 0 �min�d1; d2�=2��2 1CCART : (12)3.4 Bubble Packing by Proximity-Based ForcesIn isotropic meshing the ideal node con�guration is a regular hexagonal arrangement, a repeating pattern oftenobserved in nature. One such example of a regular hexagonal arrangement is a molecular structure; The pattern iscreated by the van der Waals force, which exerts a repelling force when two molecules are located closer togetherthan the stable distance and exerts an attracting force when two molecules are located farther apart than the stabledistance. One of the mathematical representations of this van der Waals force isf(r) = 12Ar�13 � 6Br�7; (13)where A and B are positive constants, and r is the distance between two points. The �rst term describes the repulsionforce, and the second the attraction force.Since the van der Waals force creates a regular layout of points, as observed in metal bonding, we could simplytake one of the standard mathematical models of this force and implement it as the interbubble force �eld. This isnot a good approach however, because our goal is not a realistic simulation of molecules' behavior, but is to �nd aforce-balancing con�guration e�ciently. This is why we devised the following simpli�ed force model using a singlepiecewise cubic polynomial function.Let the positions of adjacent bubbles i and j be xi and xj ; the current distance between the two bubbles l(xi;xj); thetarget stable distance l0(xi;xj); the ratio of the current distance and the target distance w(xi;xj) = l(xi;xj )l0(xi;xj ) ; andthe corresponding linear spring constant at the target distance k0. Our simpli�ed force model can then be written asf(w) = � k0l0 �1:25w3 � 2:375w2 + 1:125� 0 � w � 1:50 1:5 < w: (14)As shown in Figure 4, this force model applies either a repelling or attracting force between two bubbles based on thefollowing distance comparison. Assuming that two bubbles are adjacent to each other, a repelling force is applied ifl is smaller than l0, or if w < 1:0. An attracting force is applied if l is longer than l0, or if 1:0 < w < 1:5. No force isapplied if two bubbles are located exactly at the stable distance or if they are located much farther apart, the caseswhere w = 1:0 or 1:5 < w.In original isotropic bubble meshing, where two bubbles are spherical, the stable distance can be calculated simplyas the sum of the radii of the two bubbles [8, 11, 16]l0(xi;xj) = d(xi)2 + d(xj)2 ; (15)where d(xi) and d(xj) are the diameters of bubble i and bubble j respectively. If two bubbles are ellipsoidal, however,this target stable distance should be calculated as the summation of the two lengths, measured along the line segmentthat connects the centers of the two ellipsoids, from the center to boundary of each ellipsoid (See Figure 4). Let thesetwo lengths be lij and lji; the target stable distance l0 is then given asl0(xi;xj) = lij + lji; (16)
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w(a) The van der Waals force (b) Implemented simpli�ed forceFigure 5: Interbubble proximity-based force.where lij is calculated with a relatively low computational cost by multiplying the tensor matrix M(xi) and a unitvector from xi to xj , and lji is calculated similarly. Note that Equation 15 is a special case of Equation 16.Compared to the van der Waals force, our force, as also shown in Figure 5, has the following two characteristics thatmake it suitable for our physically-based relaxation:� The force is saturated near w=0, where two bubbles are located extremely close together. This prevents theinterbubble force from growing in�nitely large and causing numerical instability in dynamic simulation.� The force interaction is active only within a speci�ed distance and only when two bubbles are adjacent.The second point is particularly important to reduce the single most time consuming process in physically-basednode placement: calculation of pairwise interaction forces. In our implementation, we run the anisotropic Delaunaytriangulation, detailed in Section 3.5, every certain number of iterations in order to identify adjacent pairs of bubbles.Force is exerted, consequently, only on adjacent bubbles.Given the proximity-based interbubble force, our goal of physically-based relaxation is to �nd a bubble con�gurationthat yields a static force balance in a direction tangential to the surface. In other words, we want the summation ofinterbubble force vectors applied to a bubble to be parallel to the surface normal direction. This condition can bewritten as fi � ni = 0; i = 1; : : : ; n; (17)where fi represents the total force on bubble i from all its adjacent bubbles, ni the surface normal @S@u � @S@v at thelocation of the bubble center xi, and n the number of mobile bubbles.Due to an arbitrarily de�ned tensor �eld and geometric constraints on bubble locations, Equation 17 is highlynonlinear, and thus it is di�cult to solve the equation directly by a multidimensional root-�nding technique such asthe Newton-Raphson method. Our alternative approach is to assume a point mass m at the center of each bubbleand the e�ect of viscous damping c, and to solve the following equation of motion2 by using a standard numericalintegration scheme, the fourth-order Runge-Kutta method.m�xi(t) + c _xi(t) = fi(t); i = 1; : : : ; n: (18)2The �rst order equation can also be used [2]. In either case, the essential point is that after a certain number of iterations thesystem reaches a virtual equilibrium, where both the velocity term _x and the acceleration term �x approach zero, leaving a static forcebalance.
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(a) Isotropic triangulation (b) d1 axis direction (c) Anisotropic triangulationd1 = 2 and d2 = 1Figure 7: An example of anisotropic Delaunay triangulation.nodes and then �nding the metric tensor at this barycenter3fMuv =Muv�x1 + x2 + x3 + x44 �: (19)Figure 6 shows a case where a di�erent pair of triangles is selected when the circumcircle test is performed after thepositions of the four nodes are transformed.To demonstrate the e�ectiveness of this anisotropic Delaunay triangulation, Figure 7(a) and Figure 7(c) comparethe original Delaunay triangulation and the anisotropic Delaunay triangulation. Given the same set of triangulargrid nodes, the anisotropic Delaunay triangulation creates anisotropic mesh that is stretched and \ows" along thedirection of the major eigenvectors shown in 7(b).4 ResultsThe anisotropic meshing described above has been implemented in C and C++. Three meshing results are shown inFigures 8, 10, and 12, and their quality measures are shown in Figures 9, 11, and 13 respectively. Table 1 summarizesthe statistics of these three meshes, including: (1) the numbers of mesh nodes and elements; (2) CPU times for theinitial meshing, intermediate meshing after 30 iterations of dynamic simulations, and the �nal meshing after 100iterations of dynamic simulations; and (3) mesh irregularity after 100 iterations. The CPU time was measured on anIBM Unix workstation (PowerPC 604e, 133MHz).To measure the mesh irregularity shown in Figure 9, Figure 11, Figure 13, and Table 1, we used two types ofirregularity measure, topological irregularity and geometric irregularity.For topological irregularity, we de�ned the following measure, similar to that de�ned by Frey and Field [6]:"t = 1n nXi=0 j�i � 6j (20)where �i represents the degree, or the number of neighboring nodes, connected to the ith interior node, and n representsthe total number of interior nodes in the mesh. As elements become more equilateral, this topological irregularityapproaches 0, but vanishes only when all the nodes have exactly 6 neighbors, a rare situation. Otherwise, it has apositive value that measures how much the mesh topologically di�ers from a perfectly regular triangular lattice.For geometric irregularity we de�ne the following measure, "g, using the ratio of the inscribed circle radius to thecircumcircle radius "g = 1m mXi=0 (0:5� riRi ) (21)3Slightly di�erent anisotropic Delaunay triangulation schemes are used by other researchers [3, 2, 1]. For example, an alternativeway to take an average of four metric tensors is: fMuv = 14�Muv(x1) +Muv(x2) +Muv(x3) +Muv(x4)�.



Table 1: Mesh statistics.Mesh Nodes Elements CPU time CPU time CPU time Mesh irregularityfor initial mesh for 30 iteration for 100 iteration after 100 iterationMesh 1 1468 2872 3 sec. 13 sec. 45 sec. "t = 0:2689 "g = 0:0197Mesh 2 442 782 0.4 sec. 4 sec. 12 sec. "t = 0:2472 "g = 0:0243Mesh 3 415 732 0.2 sec. 2 sec. 8 sec "t = 0:2555 "g = 0:0321where m is the number of triangles, and ri the inscribed circle radius of the ith triangle, and Ri the circumcircleradius of the ith triangle. Since a resultant mesh is anisotropic and stretched according to a given tensor �eld, radiiof inscribed circles and circumcircles should be calculated after the triangles' three node locations are transformedso that an ellipsoid is mapped back to a circle, a process similar to that of the anisotropic Delaunay triangulationdescribed in Section 3.5. An average tensor for each triangle is calculated at the barycenter of the triangle. Sincethe ratio ri=Ri is at maximum 0:5 for an equilateral triangle, an ideal element, the smaller the value of "g, the moregeometrically regular the mesh.Figure 8 shows an example of graded isotropic meshing of a single bicubic parametric surface. The diameters of thepacked ellipsoids are adjusted by the minimum radius of curvature as followsd1 = d2 = d3 = min�2p2e�min � e2;Dmax� (22)where �min denotes the minimum radius of curvature, e a target constant error between the original surface and themesh, and Dmax the allowable maximum diameter of an ellipsoid. With this metric tensor de�nition all the bubblesbecome spheres, yielding a graded isotropic triangular mesh.In addition to the minimum radius of curvature we can also calculate the maximum radius of curvature and use bothradii to shape ellipsoids to be packed, as shown in Figure 10. In this case the metric tensor is de�ned withd1 = min�2p2e�max � e2;Dmax�;d2 = d3 = min�2p2e�min � e2;Dmax�; (23)where �max denotes the maximum radius of curvature, and Dmax the allowable maximum value of the major diameterof an ellipsoid.Figure 12 shows an anisotropic triangulation of a trimmed parametric surface with �ve trimming curves Ct and oneinside curve Ci as shown in Figure 12(a). Because we pack bubbles on these curves before packing bubbles inside thetrimmed region, mesh nodes are placed exactly on these curves in the �nal mesh shown in the right of Figure 12(b).Figure 14 shows how bubbles are moved to a force-balancing con�guration during dynamic simulation, yielding themesh shown in Figure 10. During the mesh relaxation process both topological irregularity and geometric irregularityare reduced as shown in Figure 15. Although we can get a reasonably good mesh after about 30 iterations, meshquality can be still improved after 100 iterations. The actual termination criteria of iterations should be decidedbased on analysis requirements.5 Discussion and ConclusionWe have presented a new physically-based method for anisotropic triangulation of a trimmed parametric surface. Ourcentral idea was to pack ellipsoids (and ellipses in parametric space) closely in a domain to create a well-shaped meshthat conforms to a given 3 x 3 metric tensor �eld that speci�es a desired anisotropy. The application is not limitedto surface meshing as previous techniques are; in fact the method is designed so that it can be used as a subprocessin anisotropic meshing of 3D and non-manifold domains.In our original sphere packing method for isotropic meshing, the hexagonal pattern created by the close packingof spheres mimics a Voronoi diagram corresponding to a well-shaped isotropic Delaunay triangulation. In our new



method of packing ellipsoids for anisotropic meshing, the same concept applies, except the space is stretched, or de-formed, by an anisotropic metric tensor. Consequently if an anisotropic mesh generated by our method is transformedby the inverse of the metric tensor, the node arrangement will be close to a regular hexagonal pattern.Providing a good initial node distribution is essential in physically-based meshing approaches like ours. Althoughit is possible to start with a minimum number of \seed nodes" or \seed triangles" and wait until more nodes ortriangles are added adaptively during the relaxation process, starting from a good initial con�guration helps toreduce convergence time signi�cantly. Also, when speed is more critical this initial node distribution can itself beused for a quick triangulation solution.In this paper we assumed that a desired anisotropy is given by a 3 x 3 metric tensor, which decides the shape andthe size of an ellipsoid to be packed. This is because we wanted to make our method consistently applicable to 1D,2D, surface, 3D, and non-manifold domains. In some cases, however, a desired anisotropy is naturally given by a 2x 2 metric tensor in parametric space or on the tangent plane in object space; all of the curvature-based meshingexamples in Section 4 are such cases. To deal with this situation, we proposed a simple rule to \expand" a 2 x 2metric tensor to a 3 x 3 metric tensor by adding a third eigenvalue and eigenvector based on the �rst two.References[1] Houman Borouchaki, Pascal J. Frey, and Paul Louis George. Unstructured triangular-quadrilateral mesh gener-ation. application to surface meshing. In Proc. of 5th Intl. Meshing Roundtable, pages 229{242, 1996.[2] Frank J. Bossen and Paul S. Heckbert. A pliant method for anisotropic mesh generation. In Proc. of 5th Intl.Meshing Roundtable, pages 63{74, 1996.[3] M. J. Castro-D��az, F. Hecht, and B. Mohammadi. New progress in anisotropic grid adaptation for inviscid andviscous ows simulations. In Proc. of 4th Intl. Meshing Roundtable, pages 73{85, 1995.[4] Luiz Henrique de Figueiredo, Jonas de Miranda Gomes, Demetri Terzopoulos, and Luiz Velho. Physically-basedmethods for polygonization of implicit surfaces. In Proc. of Interface '92, pages 250{257, 1992.[5] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and Alan H. Barr. Cellular texture generation. In Proc.of SIGGRAPH'95, pages 239{248, 1995.[6] William H. Frey and David A. Field. Mesh relaxation: A new technique for improving triangulations. Intl. J.Numer. Meth. Eng., 31:1121{1133, 1991.[7] W. T. Reeves. Particle systems{a technique for modeling a class of fuzzy objects. In Proc. of SIGGRAPH '83,pages 359{376, 1983.[8] Kenji Shimada. Physically-Based Mesh Generation: Automated Triangulation of Surfaces and Volumes viaBubble Packing. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, U.S.A., 1993.[9] Kenji Shimada. Automatic anisotropic meshing via packing ellipsoids. In Proc. of Annual Autumn Meeting ofIPSJ, 1995. (in Japanese).[10] Kenji Shimada and David Gossard. Computational methods for physically-based FE mesh generation. In Proc.of the IFIP TC5/WG5.3 Eight International PROLAMAT Conference, pages 411{420, 1992.[11] Kenji Shimada and David C. Gossard. Bubble mesh: Automated triangular meshing of non-manifold geometryby sphere packing. In Third Symp. on Solid Modeling and Appls., pages 409{419, 1995.[12] S. W. Sloan. A fast algorithm for constructing delaunay triangulations in the plane. Adv. Eng. Software,9(1):34{55, 1987.[13] Richard Szeliski and David Tonnesen. Surface modeling with oriented particle systems. In Proc. of SIG-GRAPH'92, pages 185{194, 1992.[14] Greg Turk. Re-tiling polygonal surfaces. In Proc. of SIGGRAPH '92, pages 55{64, 1992.[15] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit surfaces. In Proc. ofSIGGRAPH '94, pages 269{277, 1994.[16] Atsushi Yamada, Kenji Shimada, and Takayuki Itoh. Energy-minimizing approach to meshing curved wire-framemodels. In Proc. of 5th Intl. Meshing Roundtable, pages 179{191, 1996.



(a) Packed bubbles and a triangular mesh in parametric space
(b) Packed bubbles and a triangular mesh in object spaceFigure 8: Mesh 1: graded isotropic mesh based on the maximum curvature (1468 nodes, 2872 elements).d1 = d2 = d3 =min�2p2e�min � e2;Dmax�.
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iFigure 9: Mesh 1: mesh quality histogram after 100 iterations.



(a) Packed bubbles and a triangular mesh in parametric space
(b) Packed bubbles and a triangular mesh in object spaceFigure 10: Mesh 2: graded anisotropic mesh based on the principal curvatures (442 nodes, 782 elements).d1 =min�2p2e�max � e2;Dmax�, d2 = d3 = min�2p2e�min � e2;Dmax�.
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(a) Packed bubbles and a triangular mesh in parametric space
(b) Packed bubbles and a triangular mesh in object spaceFigure 12: Mesh 3: mesh quality based on the arbitrarily de�ned metric tensor (415 nodes, 732 elements).
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(a) Initial con�guration. (b) After 10 iterations.
(c) After 30 iterations. (d) After 100 iterations.Figure 14: Dynamic simulation of bubble movement (Mesh 2).
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