Quadrilateral Meshing with Directionality Control
through the Packing of Square Cells

Kenji Shimada * Jia-Huei Liao '

Carnegie Mellon University

Takayuki Itoh
IBM Research, Tokyo Research Laboratory

Abstract

This paper proposes a computational method for fully automated quadrilateral meshing. Unlike previous
methods, this new scheme can create a quadrilateral mesh whose directionality is precisely controlled. Given
as input: (1) a 2D geometric domain, (2) a desired node spacing distribution as a scalar function defined over
the domain, and (3) a desired mesh directionality as a vector field defined over the domain, the proposed
method first packs square cells closely in the domain. The centers of the squares are then connected by
Delaunay triangulation, yielding a triangular mesh topology. The triangular mesh is further converted into a
quad-dominant mesh or an all-quad mesh that satisfies the given mesh directionality. Since the closely packed
square cells mimic a pattern of Voroni polygons corresponding to a well-shaped graded quadrilateral mesh,
the proposed method generates a high quality mesh whose element sizes and mesh directionality conform
well to the given input.

Keywords: quadrilateral meshing, unstructured grid, mesh directionality, Voronoi diagram,
Delaunay triangulation

1 Introduction

Some FEM analyses prefer quadrilateral meshes over triangular meshes. Examples of such analyses include
automobile crash simulation, sheet metal forming simulation, and fluid dynamics analysis. It is also known
that 4-node quadrilateral elements perform better than 3-node triangular elements when used in FEM
analyses of plain stress and strain[15].

Quadrilateral meshing is often a bottleneck in FEM, however, due to its severe requirements of element
shape regularity, precise node spacing control, mesh directionality control, and adaptive remeshing capability.
These requirements are also common to triangular meshing, with the exception of mesh directionality control,
which is unique to quadrilateral meshing. Quadrilateral meshing usually has a desired “mesh flow direction”
predicted by boundary geometries or the directionality of physical phenomena to be analyzed using FEM.
For example, in fluid dynamics simulation a quadrilateral mesh should align along shock/boundary layers
and stream lines. Similarly, in automobile crash simulation, a mesh should align along the direction of force
transmission.

Assuming that grid size distribution is given as a scalar field and the directionality is given as a vector
field defined over a domain to be meshed, we propose a computational method that creates a well-shaped,
well-aligned, graded quadrilateral mesh. The proposed approach is an extension of the bubble mesh method
that we previously proposed for triangular meshing [23, 21, 22, 29]. In bubble meshing, a well-shaped graded
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triangular mesh is created by (1) packing an appropriate number of spherical cells, or bubbles, closely in
a domain, while the sizes of the spheres are adjusted based on a specified node spacing function, and (2)
connecting the bubbles’ centers by constrained Delaunay triangulation to generate node connectivity. The
novelty of the bubble mesh process is that the close packing of bubbles mimics a pattern of Voronoi polygons
that yields well-shaped triangles.

In this paper, we extend the bubble mesh concept for quadrilateral meshing such that we pack square
cells, instead of spherical cells, closely in a domain, mimicking ideal Voronoi polygons that yield a well-shaped
quadrilateral mesh. Another major extension over the original bubble mesh is to allow the user to specify a
desired mesh directionality by a vector field.

The remainder of the paper is organized as follows. After reviewing previous work we outline our basic
approach to quadrilateral meshing. We then elaborate on the technical issues of: (1) how to find node
locations suitable for quadrilateral meshing, and (2) how to connect the nodes to obtain a mesh topology
that aligns along a specified mesh directionality.

2 Previous Work

There are several reviews available of mesh generation methods [27, 5, 9, 19]. Ho-Le, in his comprehensive
survey paper [9], gives a classification based on the temporal order in which nodes and elements are created.
The resultant classification is well-accepted and referred to by many other researchers. One problem, as
Ho-Le acknowledged in the paper, is that some methods do not seem to fit into any class, while others
could be put into two or more classes. In fact, as research in mesh generation has matured, most modern
algorithms utilize and combine several sub-processes to improve the quality and efficiency of meshing.

In this section, therefore, we summarize and review some of the key sub-processes commonly used in
existing quadrilateral meshing methods. These sub-processes include: (1) node placement and connection,
(2) mesh template mapping, (3) element-level domain decomposition, (4) grid-based spatial subdivision, and
(5) triangular to quadrilateral mesh conversion. One complete meshing scheme can be characterized by a
combination of these sub-processes, performed sequentially or merged into a single process.

Common limitations among previously proposed approaches to quadrilateral meshing include: (1) little
or no control over mesh directionality; (2) poor control over node spacing, and/or (3) no efficient adaptive
remeshing capability.

2.1 Node placement and connection

In this process, a mesh is constructed in two stages: (1) node placement, and (2) node connection. Node
placement and connection can serve as a complete meshing process. The process has become popular due
to its conceptual simplicity and the availability of a robust mathematical algorithm for node connection,
called Delaunay triangulation. When Delaunay triangulation is used for node connection the triangular
mesh generated must be converted to a quadrilateral mesh by using a mesh conversion process described
later under Triangular to Quadrilateral Mesh Conversion.

During node placement, an appropriate number of nodes needs to be inserted in a well distributed
configuration. Several early methods use random node placement followed by validity checks[7, 3, 4, 16]. Lee
proposed a CSG-based node placement method[12, 13] in which regular node distribution patterns prescribed
for all CSG primitives are combined by Boolean set operations into a single set of nodes.

Although most approaches place all the nodes at one time and then connect them at once in another
step, in Frey’s and Ruppert’s methods[6, 18] two stages of node placement and connection are applied in an
iterative manner.

Shimada et al.’s bubble mesh[25] and Bossen and Heckbert’s pliant method|2] use proximity-based forces
to find node locations suitable for anisotropic meshing.

2.2 Mesh template mapping

When used for 2D meshing or surface meshing, the template mapping technique maps a prescribed simple
mesh template such as a square grid into a given four-sided patch using a blending function. This mapping
technique has been one of the most popular approaches in commercial software packages. One drawback



of this method, however, is that it is applicable only to topologically simple domains, and thus it is often
necessary for users to subdivide the domain manually into a set of simple subdomains. If this manual
subdivision is carefully done the mesh directionality can be controlled to some extent. The process, however,
is highly labor intensive, and the mesh directionality cannot be controlled in a precise manner.

2.3 Element level domain decomposition

Element-level domain decomposition refers to the process of subdividing a domain to the element level either
by: (1) iterative element extraction[l, 28, 17, 14]; or (2) recursive domain splitting to the element level.
The former is more suitable for quadrilateral meshing, and the advancing front method, adopted in many
modern commercial packages, is one example of such an algorithm. In Blacker and Stephenson’s paving[1],
meshing fronts that start from domain boundaries are advanced to the interior of the domain, generating
quadrilateral mesh elements one by one. A mesh created by an advancing front type of method aligns well
along boundaries, a desirable characteristic in most engineering analysis. Such a method, however, cannot
control a mesh directionality inside the domain or generate a mesh with an arbitrary mesh directionality.

2.4 Grid-based spatial subdivision

Grid-based spatial subdivision methods superimpose a hierarchical grid, similar to a quadtree, onto the
domain to be meshed. Such methods are typically followed by a two-step procedure: (1) classification of
grid elements into three types, inside/outside/on-boundary; and (2) adjustment of on-boundary elements to
make them consistent with the domain boundary. Yerry and Shephard’s modified octree is a representative
method in this category[30, 20]. A mesh created by a grid-based method typically has a strong directionality
in the coordinate axis directions, and it is not possible to adjust mesh directionality over a domain.

2.5 Triangular to quadrilateral mesh conversion

It is well known that any triangular mesh can be converted into a quadrilateral mesh by adding a node
to the center of each triangle and by dividing the triangle into three quadrilaterals. Although the idea is
straightforward and the implementation is simple, this process introduces a significant topological irregularity
into a mesh, and thus it is usually not practical.

More sophisticated ways to convert triangles into quadrilaterals are proposed by Heighway[8] and Jonston
et al.[10].

Heighway presents a technique for combining two adjacent triangles into a quadrilateral. Isolated triangles
remaining in the mesh are then combined by moving them toward each other until they become adjacent
and can be combined.

Johnston proposes a three step procedure: (1) extract boundary information from mesh data, and apply
Laplacian smoothing; (2) identify and prioritize corner- and boundary-elements, and perform element by
element conversion by coupling elements, splitting a coupled element, and propagating the split to maintain
the conformity; and (3) combine all isolated triangles into adjacent quadrilaterals, and divide the combined
five-sided elements into three quadrilaterals by introducing nodes inside.

Shimada and Itoh propose a conversion method that uses three conversion templates: (1) from one
triangle to three quadrilaterals; (2) from two triangles to four quadrilaterals; and (3) from four triangles to
nine quadrilaterals[24]. The method first subdivides a triangular mesh into layers by offsetting boundary,
similar to the advancing front method, and then applies conversion templates within each layer.

3 Outline of the Technical Approach

This section describes our basic approach to the following quadrilateral meshing problem.

Given:

e a 2D geometric domain
e a desired node spacing distribution d(x), given as a scalar field
e a desired mesh directionality v(x), given as a vector field
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Figure 1: Quadrilateral meshing procedure

Generate:

e a well-shaped, graded quadrilateral mesh that is compatible with the given node spacing and mesh
directionality

The proposed approach consists of seven steps, as illustrated in Figure 1:

Step 1: Place square cells on all vertices.

Step 2: Pack square cells on all edges.

Step 3: Pack square cells on the face.

Step 4: Place nodes at centers of square cells.

Step 5: Triangulate the domain by Delaunay triangulation.

Step 6: Selectively combine pairs of triangles to generate a quad-dominant mesh.

Step 7: Apply mesh conversion templates to obtain an all-quad mesh.

In Steps 1, 2, and 3 we find a node configuration suitable for quadrilateral meshing by closely packing
square cells in a domain. The reason we pack squares is that the pattern of packed squares mimics a Voronoi
diagram of a well-shaped quadrilateral mesh as shown in Figure 2. Note that the sizes of the cells are
adjusted based on a given node spacing distribution d(x) and that the directions of the squares are adjusted
based on a given mesh directionality v(x).

There are two technical issues to be solved in packing square cells tightly in a domain: (1) what are the
optimal locations of the squares? (2) how many squares should be packed to fill the domain?

To solve the first issue we use a physically-based model, similar to a particle system in computer graphics.
A proximity-based force field is defined between two squares such that the force field exerts an attracting
force or a repelling force, moving the cells so that they touch each other along their edges. Also assuming a
point mass at the center of each square and the effect of viscous damping, we solve the equation of motion
numerically to find a tightly packed configuration of cells.

The second issue of obtaining an appropriate number of squares in the domain is solved by checking the
population density and then adaptively adding or removing squares during the numerical integration of the
equation of motion, or dynamic simulation.
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Figure 2: Close packing of square cells for quad meshing

Because square cells are placed in order of dimension (i.e. vertices, then edges, then faces) two fixed
squares are already placed at the two endpoints when squares are packed on an edge; these two end squares
are stable throughout the packing process, which prevent moving squares from escaping the range of the
edge. Similarly, when squares are packed on the face, the boundary edges are already filled with fixed
squares, preventing moving squares from escaping the domain. In this way we put higher priority on the
cell placement of lower dimensional elements, i.e., vertex square cells over edge square cells, and edge square
cells over face square cells. This strategy is sensible because lower order geometric elements are often more
critical than higher order elements in FEM analyses.

Once square cells are packed so that they cover the entire domain without significant gaps and overlaps,
their centers are connected by Delaunay triangulation (Steps 4 and 5), yielding a triangular mesh. Pairs of
triangles are then selectively connected to create a quad-dominant mesh that aligns along the given mesh
directionality (Step 6). When an all-quad mesh is required we further apply mesh conversion templates (Step
7). The edge lengths of the mesh elements in Step 7 are reduced by a factor of two compared with the mesh
elements in Step 6.

The next two sections, (1) Close Packing of Square Cells and (2) Mesh Topology Generation, describe
the essential elements of Steps 1 to 3 and Steps 5 to 7 respectively.

4 Close Packing of Square Cells

In this section we will first discuss how we can generate mesh directionality over the domain. We will then
describe how proximity-based forces and potential fields are specified so that square cells repel or attract
each other to yield a force-balancing configuration, or a closely packed configuration.

4.1 Mesh directionality

It is important that a desired mesh directionality be specified over the entire domain so that directions of
packed square cells are adjusted accordingly. Unless a desired mesh directionality is automatically generated
from a previous FEM result, the user typically gives only partial directions or no preference. In such a case
it is important that the algorithm generates a complete mesh directionality over the entire domain.

To store a desired mesh directionality we define a background grid that covers the whole domain. The
mesh directions are then explicitly stored at the grid nodes, and for an internal point of a grid cell a mesh
directionality vector is calculated by linearly interpolating the directions at the four grid nodes.

If mesh directionality vectors are given at only some grid nodes we need to find the mesh directionality
vectors at all the others so that the mesh directionality changes smoothly over the domain.

We solve this smooth interpolation problem by using relaxation, similar to Laplacian smoothing, widely
used to improve mesh element shapes. As in Laplacian smoothing, which moves a mesh node iteratively to
a location which represents the center of gravity of its adjacent node locations, the mesh direction vector at
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Figure 3: Potential fields

a grid node is iteratively modified to approach an average of the direction vectors at its four adjacent grid
nodes.

4.2 Proximity-based potential fields and forces

In triangular meshing the ideal node configuration is a regular hexagonal arrangement. As proven in the
original bubble mesh method [25, 21, 22|, such an arrangement can be obtained by defining a force field
similar to the van der Waals force, which exerts a repelling force when two molecules are located closer
together than the stable distance and exerts an attracting force when two molecules are located farther
apart than the stable distance.

Let the positions of adjacent nodes ¢ and j be x; and x;; the current distance between the two nodes

I(x;,%;); the target stable distance lo(x;,%x;) = % (d(x;)) + d(x;)), which is a desired element size specified by

the node spacing function d(x); the ratio of the current distance and the target distance w(x;,x;) = llo((xxi;fcj,-)) ;
and the corresponding linear spring constant at the target distance kg. The force model used in the original
bubble mesh is then written as

(G0’ - B +), 0Sws1s

flw) = { ; 0, 1.5<uw. (1)

By integrating the above force field we obtain the following potential field around the center P of the potential

field —@(iw4 19w3+2w—@) 0<w<15
16 8 ) =~ >~ L.

— ] T 24 256
Vr(w) { ’ 0, 1.5<uw, @)

Figure 3(a) shows this potential field function used in the original bubble mesh for triangular meshing.

This potential field applies either a repelling or attracting force between two nodes based on the following
distance comparison. Assuming that two nodes are adjacent to each other, a repelling force is applied if [ is
smaller than [y, or if w < 1.0. An attracting force is applied if [ is larger than [y, or if 1.0 < w < 1.5. No
force is applied if two nodes are located exactly at the stable distance or if they are located much farther
apart, the cases where w = 1.0 or 1.5 < w. Note that the potential field shown in Figure 3(a) has circular
stable positions—anywhere on the circle is equally stable.

In achieving a close packing of squares, however, the potential field shown in Figure 3(a) is not appropriate
because it does not take into account mesh directionality, essential to quadrilateral meshing. Considering a
mesh directionality there should be only four stable locations around a node, as shown in 3(b), and each of
the stable locations corresponds to a situation where two square cells are placed side by side with their edges
touching each other. In order to force squares to align this way, we need to add to the original potential
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Figure 4: Stable positions in packing square cells

field four sub-potential fields ¥p,, ¥p,, ¥p,, and ¥p, at the four corners of a square P;, P», P3 and Py as
shown in Figure 4.

If the desired element size is locally uniform the radii of the four sub-potential fields should be (v/2—1)ro,
where rg is the radius of the central potential field ¥ p,. If graded element sizes are specified, however, the
radii of the sub-potentials should be adjusted accordingly.

The potential field shown in Figure 3(b) is thus expressed as a weighted linear combination of the central
potential field and the four sub-potential fields, i.e.,

\If:\I»'po-i-(\/i—l)(\I!pl+‘pr2+‘11p3+\11p4). (3)

With the above potential field, the primary stable positions of the squares surrounding square Py are QQo,
@2, Q4 and Qg as shown in Figure 4. Once these primary stable positions are occupied by square cells, then
Q1, Q3, Q5 and ()7 also become stable positions.

4.3 Force-balancing configuration of square cells

Given the proximity-based intercell force, we apply physically-based relaxation to find a close packing con-
figuration of square cells. This is also a configuration that yields a static force balance.

Due to the nonlinearity of the force and complex geometric constraints on square locations, the force
balance equation becomes highly nonlinear, and thus it is difficult to solve the equation directly by a multi-
dimensional root-finding technique such as the Newton-Raphson method.

Our alternative approach is to assume a point mass m at the center of each cell and the effect of viscous
damping ¢, and to solve the following equation of motion® by using a standard numerical integration scheme
such as the fourth-order Runge-Kutta method.

m)"(,-(t)+cic,-(t):f,-(t), 1=1,...,n. (4)

In solving Equation (4) numerically, we adaptively adjust the number of square cells packed in the
domain. This is important because we do not know beforehand an appropriate number of squares that is
necessary and sufficient to fill the region. We generate an initial configuration by using octree subdivision,
and although this process gives a reasonably good guess of the number of squares it is still not optimal. We
therefore implemented a procedure to check a local population density and to add more squares in sparse
areas and delete squares in over-packed areas.

I The first order equation can also be used [2]. In either case, the essential point is that after a certain number of iterations
the system reaches a virtual equilibrium, where both the velocity term & and the acceleration term & approach zero, leaving a
static force balance.
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Figure 5: Converting a triangular mesh into a quad-dominant mesh

Note that the dynamic simulation and the adaptive node population control described above make efficient
adaptive remeshing possible because we do not need to rebuild a mesh from scratch when the domain
geometry, node spacing, and/or mesh directionality is slightly modified.

5 Mesh Topology Generation

Once a force-balancing configuration of squares is obtained, the squares’ centers must be connected to
form a complete quadrilateral mesh. In connecting nodes, Delaunay triangulation is first applied to create
a triangular mesh, and the triangular mesh is then converted into a quad-dominant mesh by selectively
merging two adjacent triangular elements into a quadrilateral element in such a way that the resultant mesh
aligns along the specified mesh directionality (see Figure 5). In the final step the quad-dominant mesh is
converted into an all-quad mesh by applying two mesh conversion templates: (1) splitting a quad element
into four quad elements, and (2) splitting a triangular element into three quad elements.

In converting a triangular mesh to a quad-dominant mesh we use the following three steps so that the
resultant mesh aligns along the specified mesh directions. This procedure is based on the practice of removing
the shared edge between two adjoining triangles in order to form a quadrilateral element.

1. For the ith non-boundary edge of a triangular element, calculate a score A; that measures how well
the resultant quadrilateral element aligns along the specified mesh directions if the edge is removed to
form a quadrilateral.

2. Make a priority queue of all the non-boundary edges by sorting the scores assigned to the edges.

3. Delete edges one by one from the top of the priority queue—one edge deletion creates one quadrilateral
element.

The quality score A; of a possible quadrilateral element is calculated by comparing the directions of the
four side edges of the resultant quadrilateral element with specified mesh direction vectors at the centers of
the four edges. For the jth side edge of the quadrilateral element, we take the absolute value of the inner
product A;; of: (1) the unit vector u;; of the side edge; and (2) the mesh direction vector v;; at the center
of the edge or the unit vector orthogonal to the mesh direction. A;; is thus expressed

N lwij - vl i - vigl 2 % 5)
Y L= (uy - vig)?, |wgj - vigl < 5

where 7 = 1,2, 3,4, the subscript ¢ represents the index of a quadrilateral element, and the subscript j the

index of the side edge of the quadrilateral element. Note that the the value of \;; is bounded between —-

V2
and 1.



Using the A defined above we can calculate the score A; as follows, and it measures how well the ith
quadrilateral element aligns along the given mesh direction vector v(x)

A = Aij (6)

4
=1

J

The value of A; is bounded between % and 1, and as A; approaches 1 the ith quadrilateral element aligns
more accurately along the mesh direction vector field.

6 Results and Discussions

The proposed quadrilateral meshing algorithm has been implemented in C and C++ on Unix workstations
(IBM RS6000 and SGI 02) and Windows PCs.

In this section we measure the quality of generated quadrilateral meshes using two types of mesh irregu-
larity measures, topological irregularity and geometric irreqularity.

For topological irregularity, we use the following measure [24]:

1 n
Et = — (5,‘ - D s 7
PR ™)
where §; represents the degree, or the number of neighboring nodes, and n represents the total number of
nodes in the mesh. D = 4 if the ith node is an internal node; D = 3 if the ith node is a boundary node. As
the mesh becomes topologically similar to a structured grid this topological irregularity approaches 0, but
vanishes only when the mesh is perfectly structured, a rare situation. Otherwise, it has a positive value that
measures how much the mesh topologically differs from a perfectly regular structured grid.
For geometric irregularity we define the measure, €4, that is the ratio of the radius of the minimum
inscribed circle ? to the radius of the mazimum circumcircle 3. Geometric irregularity e, is thus calculated

as
1 m
€= Z 9i, (8)
=0
where g; = (% — %), m is the number of quadrilaterals, r; the minimum inscribed circle radius of the ith

quadrilateral, and R; the maximum circumcircle radius of the ith quadrilateral. Since the ratio r;/R; takes
its maximum value % for a perfect square element, an ideal element, the smaller the value of €4, the more
geometrically regular the quadrilateral mesh.

Five meshing results are shown in Figures 6, 7, 8, 9, and 10, and some statistics are shown in Table 1 and
Figure 11 for the first four meshes. Table 1 summarizes the mesh statistics including: (1) the numbers of
mesh nodes and elements; (2) CPU times for the initial meshing and CPU times for 100 iterations of dynamic
simulation; and (3) mesh irregularity measure. All the CPU times are measured on a SGI O2 workstation
with a R5000/180MHz CPU.

In generating Mesh 1 and Mesh 2 shown in Figures 6 and 7 respectively the vector fields that represent
desired mesh directions are automatically generated from the boundary geometry. The final quadrilateral
meshes are thus aligned along the boundary directions. The node spacing functions are uniform so that the
domain is packed with squares of a uniform size, yielding uniform quadrilateral meshes.

In Mesh 3 shown in Figure 8 a non-uniform node spacing function is specified to generate a graded
quadrilateral mesh. Note that the sizes of the packed square cells in Figure 8(c) are adjusted based on the
node spacing function shown in Figure 8(b), yielding the well-shaped, graded quadrilateral mesh shown in
Figure 8(f).

Mesh 4 and Mesh 5 shown in Figures 9 and 10 respectively are meshes of the same geometric domain. The
two meshes are created, however, using different mesh direction vector fields. In Mesh 4 the mesh directions
are specified so that they align along the domain boundary, and in Mesh 5 the mesh directions are uniform.
Note that both meshes are well aligned along the specified mesh directions.

2The minimum inscribed circle is the smallest circle tangent to at least three edges of a quadrilateral element.
3The maximum circumcircle is the largest circle that goes through at least three vertices of a quadrilateral element.



Table 1: Mesh statistics.

Number of Number of CPU time CPU time Mesh irregularity
Mesh elements in nodes, quad, and tri initial mesh 100 iterations™  after convergence

all-quad mesh  in quad-dominant mesh
Mesh 1 743 222, 167, 25 0.787 sec. 4.366 sec. ¢ = 0.18468 g4 = 0.09933
Mesh 2 1748 488, 401, 48 1.259 sec. 11.631 sec. e =0.12705 ¢4 = 0.08428
Mesh 3 617 166, 134, 27 0.660 sec. 2.480 sec. ¢ =0.19880 ¢4 = 0.08841
Mesh 4 804 239, 180, 28 0.794 sec. 4.432 sec. ¢ =0.13389 ¢4 = 0.09867

* Approximately 50 to 100 iterations are sufficient to generate a reasonably good mesh.

7 Conclusion

We have presented a new physically-based method for well-shaped, graded quadrilateral meshing of a 2D
region. Our central idea was to pack squares closely in a domain to mimic a pattern of Voronoi polygons
corresponding to a well-shaped, graded quadrilateral mesh. To obtain a close packing of squares, we proposed
a physically-based approach using a proximity-based potential field.

The most powerful feature of this new approach is that we can specify arbitrary mesh directionality as a
vector field defined over a domain as well as arbitrary node spacing as a scalar field. The mesh directionality
can be either: (1) manually specified by the user; (2) automatically generated from domain boundary
directions; or (3) automatically generated from a previous analysis result.

One advantage of our physically-based packing of square cells is that the quadrilateral elements generated
are so well-shaped that no further smoothing or topological cleanup [26, 11] is necessary. Most previous
approaches require smoothing or topological cleanup to improve the mesh quality, and these operations
often destroy the node spacing or mesh directionality in the original mesh.

Another advantage of using dynamic simulation is that it makes adaptive remeshing efficient. Adaptive
remeshing is necessary in some FEM analyses in which the domain boundary, node spacing, and/or mesh
directionality change over time. Fluid dynamics simulations with moving boundaries and large deformation
structural analyses fall into this category. In these analyses it is possible that a mesh becomes too distorted
over time to yield a valid computational result, and the mesh has to be updated. Our method can handle this
remeshing efficiently because it updates the mesh easily by running a few iterations of dynamic simulation
without constructing the new mesh from scratch.

A potential limitation of the proposed method is its relatively expensive computational cost compared to
some of the purely geometric approaches. The method, therefore, can best be utilized in applications that
benefit from regular element shapes, well-controlled element sizes, and well-controlled mesh directionality.
Such applications include FEM analysis of thermal/fluid dynamics simulation, automobile crash simulation,
and sheet metal forming simulation.

Finally, like the original bubble mesh method for triangular and tetrahedral meshing, the proposed
method can be naturally extended to quadrilateral meshing of a parametric surface and hexahedral meshing
of a solid by packing cubical cells instead of square cells.
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Figure 6: Mesh 1: uniform size, mesh directionality aligned along boundary
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Figure 7: Mesh 2: uniform size, mesh directionality aligned along boundary

| =t

-+ e

T s
- - iia RN
| L] iiN.: gy
PEEERT LR

(a) mesh directionality

}T
HH

e
HEe
gl

(d) triangular mesh (e) quad-dominant mesh (f) all-quad mesh

Figure 8: Mesh 3: graded size, uniform mesh directionality
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Figure 9: Mesh 4: uniform size, mesh directionality aligned along boundary
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Figure 10: Mesh 5: uniform size, uniform mesh directionality
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(c) Mesh 3 irregularity
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(d) Mesh 4 irregularity

Figure 11: Topological irregularity and geometric irregularity



