
Quadrilateral Meshing with Directionality Controlthrough the Packing of Square CellsKenji Shimada � Jia-Huei Liao yCarnegie Mellon UniversityTakayuki Itoh zIBM Research, Tokyo Research LaboratoryAbstractThis paper proposes a computational method for fully automated quadrilateral meshing. Unlike previousmethods, this new scheme can create a quadrilateral mesh whose directionality is precisely controlled. Givenas input: (1) a 2D geometric domain, (2) a desired node spacing distribution as a scalar function de�ned overthe domain, and (3) a desired mesh directionality as a vector �eld de�ned over the domain, the proposedmethod �rst packs square cells closely in the domain. The centers of the squares are then connected byDelaunay triangulation, yielding a triangular mesh topology. The triangular mesh is further converted into aquad-dominant mesh or an all-quad mesh that satis�es the given mesh directionality. Since the closely packedsquare cells mimic a pattern of Voroni polygons corresponding to a well-shaped graded quadrilateral mesh,the proposed method generates a high quality mesh whose element sizes and mesh directionality conformwell to the given input.Keywords: quadrilateral meshing, unstructured grid, mesh directionality, Voronoi diagram,Delaunay triangulation1 IntroductionSome FEM analyses prefer quadrilateral meshes over triangular meshes. Examples of such analyses includeautomobile crash simulation, sheet metal forming simulation, and 
uid dynamics analysis. It is also knownthat 4-node quadrilateral elements perform better than 3-node triangular elements when used in FEManalyses of plain stress and strain[15].Quadrilateral meshing is often a bottleneck in FEM, however, due to its severe requirements of elementshape regularity, precise node spacing control, mesh directionality control, and adaptive remeshing capability.These requirements are also common to triangular meshing, with the exception of mesh directionality control,which is unique to quadrilateral meshing. Quadrilateral meshing usually has a desired \mesh 
ow direction"predicted by boundary geometries or the directionality of physical phenomena to be analyzed using FEM.For example, in 
uid dynamics simulation a quadrilateral mesh should align along shock/boundary layersand stream lines. Similarly, in automobile crash simulation, a mesh should align along the direction of forcetransmission.Assuming that grid size distribution is given as a scalar �eld and the directionality is given as a vector�eld de�ned over a domain to be meshed, we propose a computational method that creates a well-shaped,well-aligned, graded quadrilateral mesh. The proposed approach is an extension of the bubble mesh methodthat we previously proposed for triangular meshing [23, 21, 22, 29]. In bubble meshing, a well-shaped graded�Kenji Shimada, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.Tel:(412) 268 3614, Fax:(412) 268 3348, shimada@cmu.edu, http://ciel.me.cmu.edu/shimada/yJia-Huei Liao, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.zTakayuki Itoh, IBM Research, Tokyo Research Laboratory, 1623-14 Shimotsuruma, Yamato, Kanagawa, 242, Japan.



triangular mesh is created by (1) packing an appropriate number of spherical cells, or bubbles, closely ina domain, while the sizes of the spheres are adjusted based on a speci�ed node spacing function, and (2)connecting the bubbles' centers by constrained Delaunay triangulation to generate node connectivity. Thenovelty of the bubble mesh process is that the close packing of bubbles mimics a pattern of Voronoi polygonsthat yields well-shaped triangles.In this paper, we extend the bubble mesh concept for quadrilateral meshing such that we pack squarecells, instead of spherical cells, closely in a domain, mimicking ideal Voronoi polygons that yield a well-shapedquadrilateral mesh. Another major extension over the original bubble mesh is to allow the user to specify adesired mesh directionality by a vector �eld.The remainder of the paper is organized as follows. After reviewing previous work we outline our basicapproach to quadrilateral meshing. We then elaborate on the technical issues of: (1) how to �nd nodelocations suitable for quadrilateral meshing, and (2) how to connect the nodes to obtain a mesh topologythat aligns along a speci�ed mesh directionality.2 Previous WorkThere are several reviews available of mesh generation methods [27, 5, 9, 19]. Ho-Le, in his comprehensivesurvey paper [9], gives a classi�cation based on the temporal order in which nodes and elements are created.The resultant classi�cation is well-accepted and referred to by many other researchers. One problem, asHo-Le acknowledged in the paper, is that some methods do not seem to �t into any class, while otherscould be put into two or more classes. In fact, as research in mesh generation has matured, most modernalgorithms utilize and combine several sub-processes to improve the quality and e�ciency of meshing.In this section, therefore, we summarize and review some of the key sub-processes commonly used inexisting quadrilateral meshing methods. These sub-processes include: (1) node placement and connection,(2) mesh template mapping, (3) element-level domain decomposition, (4) grid-based spatial subdivision, and(5) triangular to quadrilateral mesh conversion. One complete meshing scheme can be characterized by acombination of these sub-processes, performed sequentially or merged into a single process.Common limitations among previously proposed approaches to quadrilateral meshing include: (1) littleor no control over mesh directionality; (2) poor control over node spacing, and/or (3) no e�cient adaptiveremeshing capability.2.1 Node placement and connectionIn this process, a mesh is constructed in two stages: (1) node placement, and (2) node connection. Nodeplacement and connection can serve as a complete meshing process. The process has become popular dueto its conceptual simplicity and the availability of a robust mathematical algorithm for node connection,called Delaunay triangulation. When Delaunay triangulation is used for node connection the triangularmesh generated must be converted to a quadrilateral mesh by using a mesh conversion process describedlater under Triangular to Quadrilateral Mesh Conversion.During node placement, an appropriate number of nodes needs to be inserted in a well distributedcon�guration. Several early methods use random node placement followed by validity checks[7, 3, 4, 16]. Leeproposed a CSG-based node placement method[12, 13] in which regular node distribution patterns prescribedfor all CSG primitives are combined by Boolean set operations into a single set of nodes.Although most approaches place all the nodes at one time and then connect them at once in anotherstep, in Frey's and Ruppert's methods[6, 18] two stages of node placement and connection are applied in aniterative manner.Shimada et al.'s bubble mesh[25] and Bossen and Heckbert's pliant method[2] use proximity-based forcesto �nd node locations suitable for anisotropic meshing.2.2 Mesh template mappingWhen used for 2D meshing or surface meshing, the template mapping technique maps a prescribed simplemesh template such as a square grid into a given four-sided patch using a blending function. This mappingtechnique has been one of the most popular approaches in commercial software packages. One drawback



of this method, however, is that it is applicable only to topologically simple domains, and thus it is oftennecessary for users to subdivide the domain manually into a set of simple subdomains. If this manualsubdivision is carefully done the mesh directionality can be controlled to some extent. The process, however,is highly labor intensive, and the mesh directionality cannot be controlled in a precise manner.2.3 Element level domain decompositionElement-level domain decomposition refers to the process of subdividing a domain to the element level eitherby: (1) iterative element extraction[1, 28, 17, 14]; or (2) recursive domain splitting to the element level.The former is more suitable for quadrilateral meshing, and the advancing front method, adopted in manymodern commercial packages, is one example of such an algorithm. In Blacker and Stephenson's paving[1],meshing fronts that start from domain boundaries are advanced to the interior of the domain, generatingquadrilateral mesh elements one by one. A mesh created by an advancing front type of method aligns wellalong boundaries, a desirable characteristic in most engineering analysis. Such a method, however, cannotcontrol a mesh directionality inside the domain or generate a mesh with an arbitrary mesh directionality.2.4 Grid-based spatial subdivisionGrid-based spatial subdivision methods superimpose a hierarchical grid, similar to a quadtree, onto thedomain to be meshed. Such methods are typically followed by a two-step procedure: (1) classi�cation ofgrid elements into three types, inside/outside/on-boundary; and (2) adjustment of on-boundary elements tomake them consistent with the domain boundary. Yerry and Shephard's modi�ed octree is a representativemethod in this category[30, 20]. A mesh created by a grid-based method typically has a strong directionalityin the coordinate axis directions, and it is not possible to adjust mesh directionality over a domain.2.5 Triangular to quadrilateral mesh conversionIt is well known that any triangular mesh can be converted into a quadrilateral mesh by adding a nodeto the center of each triangle and by dividing the triangle into three quadrilaterals. Although the idea isstraightforward and the implementation is simple, this process introduces a signi�cant topological irregularityinto a mesh, and thus it is usually not practical.More sophisticated ways to convert triangles into quadrilaterals are proposed by Heighway[8] and Jonstonet al.[10].Heighway presents a technique for combining two adjacent triangles into a quadrilateral. Isolated trianglesremaining in the mesh are then combined by moving them toward each other until they become adjacentand can be combined.Johnston proposes a three step procedure: (1) extract boundary information from mesh data, and applyLaplacian smoothing; (2) identify and prioritize corner- and boundary-elements, and perform element byelement conversion by coupling elements, splitting a coupled element, and propagating the split to maintainthe conformity; and (3) combine all isolated triangles into adjacent quadrilaterals, and divide the combined�ve-sided elements into three quadrilaterals by introducing nodes inside.Shimada and Itoh propose a conversion method that uses three conversion templates: (1) from onetriangle to three quadrilaterals; (2) from two triangles to four quadrilaterals; and (3) from four triangles tonine quadrilaterals[24]. The method �rst subdivides a triangular mesh into layers by o�setting boundary,similar to the advancing front method, and then applies conversion templates within each layer.3 Outline of the Technical ApproachThis section describes our basic approach to the following quadrilateral meshing problem.Given:� a 2D geometric domain� a desired node spacing distribution d(x), given as a scalar �eld� a desired mesh directionality v(x), given as a vector �eld



Step 1 Step 2 Step 3(a) mesh directionality (b) vertex square cells (c) edge square cells (d) face square cells
Step 4 Step 5 Step 6 Step 7(e) node locations (f) Delaunay triangulation (g) quad-dominant mesh (h) all-quad meshFigure 1: Quadrilateral meshing procedureGenerate:� a well-shaped, graded quadrilateral mesh that is compatible with the given node spacing and meshdirectionalityThe proposed approach consists of seven steps, as illustrated in Figure 1:Step 1: Place square cells on all vertices.Step 2: Pack square cells on all edges.Step 3: Pack square cells on the face.Step 4: Place nodes at centers of square cells.Step 5: Triangulate the domain by Delaunay triangulation.Step 6: Selectively combine pairs of triangles to generate a quad-dominant mesh.Step 7: Apply mesh conversion templates to obtain an all-quad mesh.In Steps 1, 2, and 3 we �nd a node con�guration suitable for quadrilateral meshing by closely packingsquare cells in a domain. The reason we pack squares is that the pattern of packed squares mimics a Voronoidiagram of a well-shaped quadrilateral mesh as shown in Figure 2. Note that the sizes of the cells areadjusted based on a given node spacing distribution d(x) and that the directions of the squares are adjustedbased on a given mesh directionality v(x).There are two technical issues to be solved in packing square cells tightly in a domain: (1) what are theoptimal locations of the squares? (2) how many squares should be packed to �ll the domain?To solve the �rst issue we use a physically-based model, similar to a particle system in computer graphics.A proximity-based force �eld is de�ned between two squares such that the force �eld exerts an attractingforce or a repelling force, moving the cells so that they touch each other along their edges. Also assuming apoint mass at the center of each square and the e�ect of viscous damping, we solve the equation of motionnumerically to �nd a tightly packed con�guration of cells.The second issue of obtaining an appropriate number of squares in the domain is solved by checking thepopulation density and then adaptively adding or removing squares during the numerical integration of theequation of motion, or dynamic simulation.



Quadrilateral mesh

(Delaunay triangles) Voronoi polygons Packed squares
Quadrilateral mesh

(Delaunay triangles) Voronoi polygons Packed squares(a) uniform node spacing (b) non-uniform node spacingFigure 2: Close packing of square cells for quad meshingBecause square cells are placed in order of dimension (i.e. vertices, then edges, then faces) two �xedsquares are already placed at the two endpoints when squares are packed on an edge; these two end squaresare stable throughout the packing process, which prevent moving squares from escaping the range of theedge. Similarly, when squares are packed on the face, the boundary edges are already �lled with �xedsquares, preventing moving squares from escaping the domain. In this way we put higher priority on thecell placement of lower dimensional elements, i.e., vertex square cells over edge square cells, and edge squarecells over face square cells. This strategy is sensible because lower order geometric elements are often morecritical than higher order elements in FEM analyses.Once square cells are packed so that they cover the entire domain without signi�cant gaps and overlaps,their centers are connected by Delaunay triangulation (Steps 4 and 5), yielding a triangular mesh. Pairs oftriangles are then selectively connected to create a quad-dominant mesh that aligns along the given meshdirectionality (Step 6). When an all-quad mesh is required we further apply mesh conversion templates (Step7). The edge lengths of the mesh elements in Step 7 are reduced by a factor of two compared with the meshelements in Step 6.The next two sections, (1) Close Packing of Square Cells and (2) Mesh Topology Generation, describethe essential elements of Steps 1 to 3 and Steps 5 to 7 respectively.4 Close Packing of Square CellsIn this section we will �rst discuss how we can generate mesh directionality over the domain. We will thendescribe how proximity-based forces and potential �elds are speci�ed so that square cells repel or attracteach other to yield a force-balancing con�guration, or a closely packed con�guration.4.1 Mesh directionalityIt is important that a desired mesh directionality be speci�ed over the entire domain so that directions ofpacked square cells are adjusted accordingly. Unless a desired mesh directionality is automatically generatedfrom a previous FEM result, the user typically gives only partial directions or no preference. In such a caseit is important that the algorithm generates a complete mesh directionality over the entire domain.To store a desired mesh directionality we de�ne a background grid that covers the whole domain. Themesh directions are then explicitly stored at the grid nodes, and for an internal point of a grid cell a meshdirectionality vector is calculated by linearly interpolating the directions at the four grid nodes.If mesh directionality vectors are given at only some grid nodes we need to �nd the mesh directionalityvectors at all the others so that the mesh directionality changes smoothly over the domain.We solve this smooth interpolation problem by using relaxation, similar to Laplacian smoothing, widelyused to improve mesh element shapes. As in Laplacian smoothing, which moves a mesh node iteratively toa location which represents the center of gravity of its adjacent node locations, the mesh direction vector at
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(a) potential �eld in the original bubble mesh (b) new potential �eld for quadrilateral meshingFigure 3: Potential �eldsa grid node is iteratively modi�ed to approach an average of the direction vectors at its four adjacent gridnodes.4.2 Proximity-based potential �elds and forcesIn triangular meshing the ideal node con�guration is a regular hexagonal arrangement. As proven in theoriginal bubble mesh method [25, 21, 22], such an arrangement can be obtained by de�ning a force �eldsimilar to the van der Waals force, which exerts a repelling force when two molecules are located closertogether than the stable distance and exerts an attracting force when two molecules are located fartherapart than the stable distance.Let the positions of adjacent nodes i and j be xi and xj ; the current distance between the two nodesl(xi;xj); the target stable distance l0(xi;xj) = 12 (d(xi)) + d(xj)), which is a desired element size speci�ed bythe node spacing function d(x); the ratio of the current distance and the target distance w(xi;xj) = l(xi;xj)l0(xi;xj) ;and the corresponding linear spring constant at the target distance k0. The force model used in the originalbubble mesh is then written asf(w) = � k0l0 � 54w3 � 198 w2 + 98�; 0 � w � 1:50; 1:5 < w: (1)By integrating the above force �eld we obtain the following potential �eld around the center P of the potential�eld. 	P (w) = � �k0l0 � 516w4 � 1924w3 + 98w � 153256�; 0 � w � 1:50; 1:5 < w; (2)Figure 3(a) shows this potential �eld function used in the original bubble mesh for triangular meshing.This potential �eld applies either a repelling or attracting force between two nodes based on the followingdistance comparison. Assuming that two nodes are adjacent to each other, a repelling force is applied if l issmaller than l0, or if w < 1:0. An attracting force is applied if l is larger than l0, or if 1:0 < w � 1:5. Noforce is applied if two nodes are located exactly at the stable distance or if they are located much fartherapart, the cases where w = 1:0 or 1:5 < w. Note that the potential �eld shown in Figure 3(a) has circularstable positions{anywhere on the circle is equally stable.In achieving a close packing of squares, however, the potential �eld shown in Figure 3(a) is not appropriatebecause it does not take into account mesh directionality, essential to quadrilateral meshing. Considering amesh directionality there should be only four stable locations around a node, as shown in 3(b), and each ofthe stable locations corresponds to a situation where two square cells are placed side by side with their edgestouching each other. In order to force squares to align this way, we need to add to the original potential
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Q5 Q6 Q7Figure 4: Stable positions in packing square cells�eld four sub-potential �elds 	P1 , 	P2 , 	P3 , and 	P4 at the four corners of a square P1, P2, P3 and P4 asshown in Figure 4.If the desired element size is locally uniform the radii of the four sub-potential �elds should be (p2�1)r0,where r0 is the radius of the central potential �eld 	P0 . If graded element sizes are speci�ed, however, theradii of the sub-potentials should be adjusted accordingly.The potential �eld shown in Figure 3(b) is thus expressed as a weighted linear combination of the centralpotential �eld and the four sub-potential �elds, i.e.,	 = 	P0 + (p2� 1)(	P1 +	P2 +	P3 +	P4): (3)With the above potential �eld, the primary stable positions of the squares surrounding square P0 are Q0,Q2, Q4 and Q6 as shown in Figure 4. Once these primary stable positions are occupied by square cells, thenQ1, Q3, Q5 and Q7 also become stable positions.4.3 Force-balancing con�guration of square cellsGiven the proximity-based intercell force, we apply physically-based relaxation to �nd a close packing con-�guration of square cells. This is also a con�guration that yields a static force balance.Due to the nonlinearity of the force and complex geometric constraints on square locations, the forcebalance equation becomes highly nonlinear, and thus it is di�cult to solve the equation directly by a multi-dimensional root-�nding technique such as the Newton-Raphson method.Our alternative approach is to assume a point mass m at the center of each cell and the e�ect of viscousdamping c, and to solve the following equation of motion1 by using a standard numerical integration schemesuch as the fourth-order Runge-Kutta method.m�xi(t) + c _xi(t) = fi(t); i = 1; : : : ; n: (4)In solving Equation (4) numerically, we adaptively adjust the number of square cells packed in thedomain. This is important because we do not know beforehand an appropriate number of squares that isnecessary and su�cient to �ll the region. We generate an initial con�guration by using octree subdivision,and although this process gives a reasonably good guess of the number of squares it is still not optimal. Wetherefore implemented a procedure to check a local population density and to add more squares in sparseareas and delete squares in over-packed areas.1The �rst order equation can also be used [2]. In either case, the essential point is that after a certain number of iterationsthe system reaches a virtual equilibrium, where both the velocity term _x and the acceleration term �x approach zero, leaving astatic force balance.



(a) triangular (b) mesh (c) quad meshmesh directionalityFigure 5: Converting a triangular mesh into a quad-dominant meshNote that the dynamic simulation and the adaptive node population control described above make e�cientadaptive remeshing possible because we do not need to rebuild a mesh from scratch when the domaingeometry, node spacing, and/or mesh directionality is slightly modi�ed.5 Mesh Topology GenerationOnce a force-balancing con�guration of squares is obtained, the squares' centers must be connected toform a complete quadrilateral mesh. In connecting nodes, Delaunay triangulation is �rst applied to createa triangular mesh, and the triangular mesh is then converted into a quad-dominant mesh by selectivelymerging two adjacent triangular elements into a quadrilateral element in such a way that the resultant meshaligns along the speci�ed mesh directionality (see Figure 5). In the �nal step the quad-dominant mesh isconverted into an all-quad mesh by applying two mesh conversion templates: (1) splitting a quad elementinto four quad elements, and (2) splitting a triangular element into three quad elements.In converting a triangular mesh to a quad-dominant mesh we use the following three steps so that theresultant mesh aligns along the speci�ed mesh directions. This procedure is based on the practice of removingthe shared edge between two adjoining triangles in order to form a quadrilateral element.1. For the ith non-boundary edge of a triangular element, calculate a score �i that measures how wellthe resultant quadrilateral element aligns along the speci�ed mesh directions if the edge is removed toform a quadrilateral.2. Make a priority queue of all the non-boundary edges by sorting the scores assigned to the edges.3. Delete edges one by one from the top of the priority queue|one edge deletion creates one quadrilateralelement.The quality score �i of a possible quadrilateral element is calculated by comparing the directions of thefour side edges of the resultant quadrilateral element with speci�ed mesh direction vectors at the centers ofthe four edges. For the jth side edge of the quadrilateral element, we take the absolute value of the innerproduct �ij of: (1) the unit vector uij of the side edge; and (2) the mesh direction vector vij at the centerof the edge or the unit vector orthogonal to the mesh direction. �ij is thus expressed�ij = ( juij � vij j ; juij � vij j � 1p2p1� (uij � vij)2; juij � vij j < 1p2 (5)where j = 1; 2; 3; 4, the subscript i represents the index of a quadrilateral element, and the subscript j theindex of the side edge of the quadrilateral element. Note that the the value of �ij is bounded between 1p2and 1.



Using the � de�ned above we can calculate the score �i as follows, and it measures how well the ithquadrilateral element aligns along the given mesh direction vector v(x)�i = 14 4Xj=1 �ij (6)The value of �i is bounded between 1p2 and 1, and as �i approaches 1 the ith quadrilateral element alignsmore accurately along the mesh direction vector �eld.6 Results and DiscussionsThe proposed quadrilateral meshing algorithm has been implemented in C and C++ on Unix workstations(IBM RS6000 and SGI O2) and Windows PCs.In this section we measure the quality of generated quadrilateral meshes using two types of mesh irregu-larity measures, topological irregularity and geometric irregularity.For topological irregularity, we use the following measure [24]:"t = 1n nXi=0 j�i �Dj ; (7)where �i represents the degree, or the number of neighboring nodes, and n represents the total number ofnodes in the mesh. D = 4 if the ith node is an internal node; D = 3 if the ith node is a boundary node. Asthe mesh becomes topologically similar to a structured grid this topological irregularity approaches 0, butvanishes only when the mesh is perfectly structured, a rare situation. Otherwise, it has a positive value thatmeasures how much the mesh topologically di�ers from a perfectly regular structured grid.For geometric irregularity we de�ne the measure, "g, that is the ratio of the radius of the minimuminscribed circle 2 to the radius of the maximum circumcircle 3. Geometric irregularity "g is thus calculatedas "g = 1m mXi=0 gi; (8)where gi = � 1p2 � riRi�, m is the number of quadrilaterals, ri the minimum inscribed circle radius of the ithquadrilateral, and Ri the maximum circumcircle radius of the ith quadrilateral. Since the ratio ri=Ri takesits maximum value 1p2 for a perfect square element, an ideal element, the smaller the value of "g, the moregeometrically regular the quadrilateral mesh.Five meshing results are shown in Figures 6, 7, 8, 9, and 10, and some statistics are shown in Table 1 andFigure 11 for the �rst four meshes. Table 1 summarizes the mesh statistics including: (1) the numbers ofmesh nodes and elements; (2) CPU times for the initial meshing and CPU times for 100 iterations of dynamicsimulation; and (3) mesh irregularity measure. All the CPU times are measured on a SGI O2 workstationwith a R5000/180MHz CPU.In generating Mesh 1 and Mesh 2 shown in Figures 6 and 7 respectively the vector �elds that representdesired mesh directions are automatically generated from the boundary geometry. The �nal quadrilateralmeshes are thus aligned along the boundary directions. The node spacing functions are uniform so that thedomain is packed with squares of a uniform size, yielding uniform quadrilateral meshes.In Mesh 3 shown in Figure 8 a non-uniform node spacing function is speci�ed to generate a gradedquadrilateral mesh. Note that the sizes of the packed square cells in Figure 8(c) are adjusted based on thenode spacing function shown in Figure 8(b), yielding the well-shaped, graded quadrilateral mesh shown inFigure 8(f).Mesh 4 and Mesh 5 shown in Figures 9 and 10 respectively are meshes of the same geometric domain. Thetwo meshes are created, however, using di�erent mesh direction vector �elds. In Mesh 4 the mesh directionsare speci�ed so that they align along the domain boundary, and in Mesh 5 the mesh directions are uniform.Note that both meshes are well aligned along the speci�ed mesh directions.2The minimum inscribed circle is the smallest circle tangent to at least three edges of a quadrilateral element.3The maximum circumcircle is the largest circle that goes through at least three vertices of a quadrilateral element.



Table 1: Mesh statistics.Mesh Number of Number of CPU time CPU time Mesh irregularityelements in nodes, quad, and tri initial mesh 100 iterations� after convergenceall-quad mesh in quad-dominant meshMesh 1 743 222, 167, 25 0.787 sec. 4.366 sec. "t = 0:18468 "g = 0:09933Mesh 2 1748 488, 401, 48 1.259 sec. 11.631 sec. "t = 0:12705 "g = 0:08428Mesh 3 617 166, 134, 27 0.660 sec. 2.480 sec. "t = 0:19880 "g = 0:08841Mesh 4 804 239, 180, 28 0.794 sec. 4.432 sec. "t = 0:13389 "g = 0:09867* Approximately 50 to 100 iterations are su�cient to generate a reasonably good mesh.7 ConclusionWe have presented a new physically-based method for well-shaped, graded quadrilateral meshing of a 2Dregion. Our central idea was to pack squares closely in a domain to mimic a pattern of Voronoi polygonscorresponding to a well-shaped, graded quadrilateral mesh. To obtain a close packing of squares, we proposeda physically-based approach using a proximity-based potential �eld.The most powerful feature of this new approach is that we can specify arbitrary mesh directionality as avector �eld de�ned over a domain as well as arbitrary node spacing as a scalar �eld. The mesh directionalitycan be either: (1) manually speci�ed by the user; (2) automatically generated from domain boundarydirections; or (3) automatically generated from a previous analysis result.One advantage of our physically-based packing of square cells is that the quadrilateral elements generatedare so well-shaped that no further smoothing or topological cleanup [26, 11] is necessary. Most previousapproaches require smoothing or topological cleanup to improve the mesh quality, and these operationsoften destroy the node spacing or mesh directionality in the original mesh.Another advantage of using dynamic simulation is that it makes adaptive remeshing e�cient. Adaptiveremeshing is necessary in some FEM analyses in which the domain boundary, node spacing, and/or meshdirectionality change over time. Fluid dynamics simulations with moving boundaries and large deformationstructural analyses fall into this category. In these analyses it is possible that a mesh becomes too distortedover time to yield a valid computational result, and the mesh has to be updated. Our method can handle thisremeshing e�ciently because it updates the mesh easily by running a few iterations of dynamic simulationwithout constructing the new mesh from scratch.A potential limitation of the proposed method is its relatively expensive computational cost compared tosome of the purely geometric approaches. The method, therefore, can best be utilized in applications thatbene�t from regular element shapes, well-controlled element sizes, and well-controlled mesh directionality.Such applications include FEM analysis of thermal/
uid dynamics simulation, automobile crash simulation,and sheet metal forming simulation.Finally, like the original bubble mesh method for triangular and tetrahedral meshing, the proposedmethod can be naturally extended to quadrilateral meshing of a parametric surface and hexahedral meshingof a solid by packing cubical cells instead of square cells.References[1] T.D. Blacker and M.B. Stephenson. Paving: A new approach to automated quadrilateral mesh genera-tion. Intl. J. Numer. Meth. Eng., 32:811{847, 1991.[2] Frank J. Bossen and Paul S. Heckbert. A pliant method for anisotropic mesh generation. In Proc. of5th Intl. Meshing Roundtable, pages 63{74, 1996.[3] J.C. Cavendish. Automatic triangulation of arbitrary planar domains for the �nite element method.Intl. J. Numer. Meth. Eng., 8:679{696, 1974.
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(a) mesh directionality (b) packed square cells
(c) triangular mesh (d) quad-dominant mesh (e) all-quad meshFigure 6: Mesh 1: uniform size, mesh directionality aligned along boundary



(a) mesh directionality (b) packed square cells
(c) triangular mesh (d) quad-dominant mesh (e) all-quad meshFigure 7: Mesh 2: uniform size, mesh directionality aligned along boundary

(a) mesh directionality (b) node spacing (c) packed square cells
(d) triangular mesh (e) quad-dominant mesh (f) all-quad meshFigure 8: Mesh 3: graded size, uniform mesh directionality



(a) mesh directionality (b) packed square cells
(c) triangular mesh (d) quad-dominant mesh (e) all-quad meshFigure 9: Mesh 4: uniform size, mesh directionality aligned along boundary

(a) mesh directionality (b) packed square cells
(c) triangular mesh (d) quad-dominant mesh (e) all-quad meshFigure 10: Mesh 5: uniform size, uniform mesh directionality



�i gi(a) Mesh 1 irregularity
�i gi(b) Mesh 2 irregularity
�i gi(c) Mesh 3 irregularity
�i gi(d) Mesh 4 irregularityFigure 11: Topological irregularity and geometric irregularity


