CS--1994--22

Efficient Parallel Algorithms
for Closest Point Problems

Peter Su

Dapartment of Mathematics
and Computer Science

Dartmouth College

Hanover New Hampshire

and

Department of Computer Science

Duke University

Durham, North Carolina 27708-0129

June 1994

Efficient Parallel Algorithms for Closest Point Problems

A Thesis

Submitted to the Faculty

in partia fulfillment of the requirements for the
degree of
Doctor of Philosophy
by
Peter Su
Dartmouth College
Hanover, New Hampshire

June, 1994

Examining Committee:

(chairman) Scot Drysdae

John Reif

Tom Cormen

David Kotz

Dean of Graduate Studies

Efficient Parallel Algorithms for Closest Point Problems

by Peter Su, Ph.D.
Thesis Advisor: Scot Drysdale

Department of Mathematics
and Computer Science
Dartmouth College

ABSTRACT OF THE THESIS

This dissertation develops and studies fast algorithms for solving closest point problems.
Algorithms for such problems have applications in many areas including statistical classification,
crystallography, data compression, and finite element analysis. In addition to a comprehensive
empirical study of known sequential methods, | introduce new parallel algorithmsfor these problems
that are both efficient and practical. | present asimpleand flexible programming model for designing
and analyzing paralld agorithms. Also, | describe fast parallel algorithms for nearest-neighbor
searching and constructing Voronoi diagrams. Finally, | demonstrate that my algorithms actually
obtain good performance on awide variety of machine architectures.

Thekey agorithmicideasthat | examine are exploiting spatia locality, and random sampling.
Spatial decomposition provides allows many concurrent threads to work independently of one
another in local areas of a shared data structure. Random sampling provides a simple way to
adaptively decompose irregular problems, and to balance workload among many threads. Used
together, these techniques result in effective algorithmsfor a wide range of geometric problems.

The key experimental ideas used in my thesis are simulation and animation. | use algorithm
animation to validate algorithms and gain intuition about their behavior. | mode the expected
performance of agorithms using simulation experiments, and some knowledge as to how much
critical primitive operations will cost on a given machine. In addition, | do this without the burden
of esoteric computational models that attempt to cover every possible variable in the design of
a computer system. An iterative process of design, validation, and simulation delays the actua
implementation until as many details as possible are accounted for. Then, further experiments are
used to tune implementationsfor better performance.

Part of thiswork was at atttt the Department of Computer Science, Duke University, Durham,
NC 27708-0129 and was supported by ARPA/ISTO Grant N00014-91-3-1985, Subcontract KI-92-
01-0182 of ARPA/ISTO prime Contract NO0014-92-C-0182. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the officia
policies, either expressed or implied of the Advanced Research Pojects Agency, NSF, ONR or the
U.S. government.

Acknowledgements

I have noticed in my years of reading other peopl€e’s dissertations that the best ones also seem to
have the most interesting and entertaining acknowledgements. | can only hope that the quality of
mineis close to many othersthat | have read and learned so much from.

To begin with, my family, especialy my father, aways let me pursue ideas and activities that
interested me. They bought me the magazines and a tel escope that introduced me to science. What
they taught me gave me the ambition to continue my education into graduate school and the tools
to succeed here.

I have the distinct pleasure to be able to thank three entirely separate groups of people for
my eventual success as a graduate student. First, at Dartmouth, Scot Drysdale was my advisor,
and taught me everything | know about Voronoi diagrams. His eye for detail, and interest in real
answers made thework more comprehensivethan it would have been. Finally, hisknack for finding
clear, simple explanations for complicated algorithms improved the presentation of almost every
section of thethesis.

My fellow students at Dartmouth, al of whom graduated before me, included Barry Shaudt,
Deb Bannerjee, John Vanmeter, Joe and Alisa Destefano, Jerry Quinn and of course, Larry Raab.
Thanks guys, for the parties, office sharing, rooms at the “inn”, help with Bent's problem sets,
heated and generally worthless political discussions, and for putting up with my abuse when you
asked me UNIX questions. And speaking of UNIX, Wayne Cripps, under great duress, somehow
always kept the rubber bands and glue that was room 5 together and running.

Next, at Duke University, John Reif provided more advising, an endless pool of agorithmic
ideas, and the monetary and machine support that | needed to finish my projects. Without John's
interest in combining theoretical and experimental ideas in computational geometry, my work on
paralle algorithms never would have materialized. In addition, all the folks at the North Carolina
Supercomputer Center, and especially Greg Byrd, must be thanked for keeping f1yer and hornet
running and putting up with my constant stream of novice questions.

The whole aternative happy hour crowd quickly made me part of the Duke community, after
relieving their initial suspicion that | might be a “theory weenie.” Vick Khera provided numerous
UNIX toys that were fun to play with, and sometimes helped me finish. Owen Astrachan wasted
hours debating various religiousissues, especially programming languages. Steve Tate put up with
my constant badgering of theoreticians and my clueless theory questions. Mike Landis, Deganit
Armon, Eric Anderson, and Chris Connelly provided friendship and great conversation.

Thirdly, oldfriendsat CM U got me started on al of thiswhen | was an undergrad, and gave me
aplace to finish the final stretch of thesiswriting. Thanks to David Garlan and Rob Chandhok for
all their past and future help, and thanks to Guy Blelloch, Sid Chatterjee and the whole SCANDAL
group for being interested in me and for their great library of Cray magic.

Many net.hackersprovided the programmingtool sthat | used every day to get thisdone. Where
would the world be without emacs, ange-ftp-mode, mh, vm, gnus, groff, IATEX, ghostview,

gcc, perl, tesh and al therest.

Lastly, and mostimportantly, | havetothank Karen for thelast six years of love, understanding
and never-ending support. It's all over now kiddo, you might never have to hear about Delaunay
triangulations again.

Table of Contents

Abstract i
Acknowledgements L L iv
Tableof Contents L. vi
Listof Tables e iX
Listof Figures e X
1 Introduction e e 1
11 Preiminaries e 2
111 Workload 3

112, ModelS. e e 4

113, Machines e e 6

1.1.4. Other Notationand Terminology 6

12. RelaedWork e 6
121 Theory o e e 6

122, PractiCe e e e e e 9

1.3. Contributions 9
14. OutlineoftheThesis. 11

2. Practical Sequential Voronoi Algorithms 12
21. Divideand-Conquer e 12
22. SweeplineAlgorithms 18
2.3. Incremental Algorithms 20
24. A Faster Incrementa Construction Algorithmo, 24
25 Incremental Search L. 27
251. SiteSearch 28

252, DISCUSSION L e 30

26. Empiric Results 31
2.6.1. Performance of thelncremental Algorithm 31

2.6.2. Thelncremental AlgorithmwithaQuad-Tree 33

2.6.3. Thelncremental Search Algorithm 34

2.7. Fortune'sAlgorithm 36
28. TheBottomLine. e 39
29. NonuniformPointSets. o 40
2.10. Notesand DisCUSSION oo i i e e e 44
2.10.1. Other Algorithms 47

211, Principles L e e 47

Vi

. Moddelsand Machines. e 49

3.1. Popular ProgrammingModels 50
3.2. WhatiswrongwithPRAM 51
33. OurMode e e 52
34. OtherModels e 53
3.5. MachineDescriptions 54
351 TheCray Y-MP e 55
352, TheKSR-1. e 56

36. Benchmarking 57
36.1. TheCray e 57
36.2. TheKSR-1. e 58

7. SUMMANY L ot e e e e e e e e 61
. Concurrent Local Search 62
41. TheProblem e 62
42. TheAlgorithm 62
4.3. All Nearest NeighborsontheCray 63
44, Measurements L e e e e e e e e 69
45. Extensionsand Applications 71
46. DISCUSSION L e e e e e 72
47. ImplementationfortheKSR-1o 73
48 SUMMAY o ot e e s e e e e e e e e e e e 78
. Parallel Delaunay Triangulation Algorithms 79
5.1. Pardle Divideand Conquer 79
5.2. Optima Expected TimeAlgorithms, 80
5.3. Randomized Algorithms 82
54. Preliminaries: The General Framework 83
5.5. Randomized Divideand Conquer 84
5.6. A MorePractica Randomized Parallel Algorithm.. 87
5.7. Analysis L e 91
58. EXperiments 92
509 Summary L e e 97
. Practical Parallel Algorithmsfor Delaunay Triangulations 99
6.1. Randomized Incremental Construction. 99
6.2. Concurrent Incremental Construction 101
6.3. Simulations e 105
6.4. Thelmplementation 108
6.5. Concurrent Incremental Search Lo L 117
6.6. MoreExperiments 117
6.7. SUMMArY L e e e e 122
. Summary and FutureWork Lo 126
7.1, Algorithms. L e 126
7.2. Modelsand Experimental Analysiso 127

Vii

7.3. Implementationsand Benchmarks L. 128

74, FutureWork L L e 128
741, Algorithms.o 128

74.2. Programming Parallel Algorithms. 129

74.3. Smulationand Performance Analysis.. 130
References L e 132

viii

2.1
3.1
3.2
41.

List of Tables

Nonuniformdistributions. oL o 42
Costsfor vector operations on one processor of theCray Y-MP 57
Cost for elementwise additionontheKSR-1. 59
Comparison of synthetic benchmark valuesto actual runtime. 75

2.1
2.2
23.
24.
2.5.
2.6.
2.7.
28.
29

2.10.
211,
212.
2.13.
214,
2.15.
2.16.
217.
2.18.
2.19.
2.20.
221
2.22.
2.23.
2.24.
2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.

3.1
3.2
3.3.
34.
3.5.
3.6.

List of Figures

Thequad-edgedatastructure. 13
The quad-edge representation of asimplesubdivision. 14
The merge procedure in Guibas and Stolfi’s divide and conquer algorithm. 15
Therisingbubble. L 16
Themergeloop. 17
Codefor processing eventsin Fortune'salgorithm 18
Invalidatingcircleevents. 19
Fortune'salgorithm. 21
Pseudo-Codefor theincrementa agorithm. 22
Theincremental algorithm. 23
Theincremental algorithm with spiral search for point location. 25
Spiral search for anear neighbor. oL 26
AlgorithmIS. 27
Codefor SiteSearch. L 29
Example bounding boxes that the site search algorithm examines. 29
Sitesearchin AlgorithmIS o o 30
Comparison of pointlocationcosts. 32
Circletestsper sitefor two algorithms. 33
Performance of the quad-treedgorithm. 34
Performance of AlgorithmIS oo 35
Thecost of Fortune'sadgorithm. 36
Circleeventscluster near thesweepline. 37
Thecost of Fortune'sdgorithmwithaheap. 38
Delaunay edgesimply empty regionsof theplane. 39
Comparisonof runtimes. 41
Theincremental algorithm on non-uniforminputs, n is10K. 43
Fortune's algorithm on non-uniforminputs, » is10K. 43
Dwyer’sagorithm on non-uniforminputs, n is10K. 44
Algorithm ISisvery sensitivetobad inputs. 45
Algorithm ISthe“cluster” and “corners’ distributions. 45
Runtimeson non-uniforminputs. 46
Schematic diagram of theCray Y-MP. 55
Schematicdiagramof theKSR-1, 56
Performance of elementwisevector additionontheKSR-1. 58
Performance of paralld prefix sumontheKSR-1. 59
Performance of unstructured permuteonthe KSR-1. 60
Performance of reverseontheKSR-1. 61

41. Padld looptobucketpoints.
4.2. Thebucketdatastructure.
43. Handlingwritecollisions.
44. Spiral searchtofindanearneighbor. L.
45. Theouter loop of the spiral search algorithm.
4.6. Thesecond outer loop of the spiral search dgorithm.
4.7. Theinner loop of the spiral search algorithm.
4.8. Distance computationsper sitefor each algorithm..
49. Runtimeof thespiral search dgorithm.
410. RuntimeontheCray e
411. Cray vectorized runtimeonclusters L.
4.12. Threads code for bucketingpoints.
413. Innerloop of thespiral search.
4.14. Performance of the syntheticbenchmark.
4.15. Performance of the concurrent local search algorithmontheKSR-1.
4.16. Speedup of the paralle spiral search dgorithm.
4.17. The parallel agorithm compared to a Sparcstation.
5.1. Objects, regionsand theconflict relation.
5.2. Thedivide stepin Ghouse and Goodrich’'sagorithm.
5.3. Theroutinefind-circles. i i i i e e e
5.4. Thetriangle ABC falsacircletest, so p goesto A'ssubproblem..
5.5. TheVoronoi region of apoint r, and the“flower” of circles.
5.6. Load balancing resultsfor 32 processors.
5.7. Load balancing for 128 processors.
5.8. Bucket expansion with bad distributionsfor 32 processors.
5.9. Totd subproblemsizefor AlgorithmRDDT.
5.10. Tota subproblem size by distributionfor 32 processors.
6.1. Theconcurrent incremental algorithm.
6.2. Load balancing in the concurrent incremental algorithm.
6.3. Concurrency Profiles for various machineand problemsizes.
6.4. Circletestsper sitefor AlgorithmCRIC.,
6.5. Edgetestsper sitefor AlgorithmCRIC.
6.6. InterchangingloopstouseGSS.o
6.7. Theeffect of large batch sizesfor 16 and 32 processors.
6.8. Circletestsper sitefor AlgorithmCRIC.,
6.9. Edgetestsper sitefor AlgorithmCRIC.
6.10. Speedup of Algorithm CRICvs. OneKSRnode.
6.11. Algorithm CRIC vs. aSparc2. i
6.12. Codefor aconcurrent edge dictionary.
6.13. Codefor theconcurrent edgequeue.,
6.14. Distance calculations per site for the concurrent incremental search algorithm. .

6.15. Buckets examined per site for the concurrent incremental search algorithm.
6.16. Speedup of Algorithm CISrelativetooneKSRnode.
6.17. Speedup of Algorithm CIS relative to the SparcStation2.
6.18. Algorithm CISvs. aSparc2.

Xi

6.19. Speedup of Algorithm CIS relative to Algorithm CRIC on 32 procs.

Xii

Chapter 1
I ntroduction

In creating, the only hard thing
isto begin; A grass-blade’'sno
easier to make than an oak.
—James Russell Lowell

This thesis develops paralldl algorithms for closest point problems in computational geometry.
Specifically, we will concentrate on the all-nearest-nei ghbors problem and constructing the Voronoi
diagram. These problems are easy to state:

All-nearest-neighbors. Given a set S of » pointsin space, and a set query points ¢, for each
p € @, findthepoints € S — {p} that isclosest to p.

Voronoi diagram. Let S beaset of n points (or sites). in space. For each s € S define V() to be
acollection of pointssuch that for all z € V(s)andy € 5 — {s}, dist(z,s) < dist(z,y).
The Voronoi diagram of S isthe collection {V(s) | s € S}.

The straight-line dual of the Voronoi diagram is called the Delaunay triangulation. The following
picture shows the Voronoi diagram and the Delaunay triangulation of 16 pointsin the plane:

In d dimensions, our algorithms will assume that no set of more than d + 1 sites are co-spherical.
In this case, the Delaunay triangulation partitions the convex hull of S into simplices, and the
circumsphere of each simplex contains no site. For example, in the planar case, we assume that
no four sites are co-circular, so the convex hull of the point set is divided into triangles, and each
triangle has an empty circumcircle.

This dissertation will present four case studies that study the performance of sequential and
paralle agorithmsfor the planar version these problems. These case studieswill provide an exper-
imental comparison of known sequentia algorithms, and will also present new parallel algorithms
for both problems.

Algorithmsfor closest point problems make up alarge part of the literature in computati onal
geometry. Preparata and Shamos [PS85] provide an excellent overview of this field in ther
textbook. Theoretical research in thisarea has produced many agorithmsthat are not only optimal
in atheoretical sense but also efficient in practice.

These problems have also interested many outside the field of theoretical computer science.
Voronoi diagrams have been used in many applications such as statistical classification, crystallog-
raphy, data compression, and finite element analysis. Nearest neighbor search appears as a problem
in database systems, clustering algorithms, image processing, and combinatoria optimization. Au-
renhammer [Aur91] and Okabe, et a [OBS92] survey agorithms and applications related to these
problems.

Paralel computational geometry is the branch of computational geometry that is concerned
with developing geometric algorithms that are suitable for computers with multiple processors.
Since parallel computers can, in theory, alow users to solve large problems much more quickly
than conventional machines, parallel algorithmsfor geometric problems are of interest as potential
applications get larger. Over the last decade or so, dozens of parallel agorithmsfor various kinds
of machines have been proposed, but very few have been successfully implemented. Moreover,
few implementations have delivered reasonable performance. Thisis primarily due to the use of
unrealistic computational models and high constant factors hidden by asymptotic analysis [Nat90].

This relative lack of concern for practical issues in paralel agorithms has opened a gap
between researchers in theoretical computer science and practicing programmers. Theoretical
computer scientists tend to argue that incorporating architecture specific parameters into their
modelswill make a general theory difficult to obtain. Practitionersin paralel computing argue that
the computational models(i.e. PRAM) used in theoretical computer science are unrealistic and thus
irrelevant.

The thesis motivating this dissertation is that neither of these two views is correct. An
understanding of both theoretica insights and machine details is necessary to develop efficient
and practical parallel algorithms for important problems. This dissertation will show how to
use the tools of theory (analysis of agorithms and probability theory) and systems (compilers,
programming languages, operating systems and architecture) to design paralle agorithms for
closest point problems on avariety of architectures.

1.1 Prdiminaries

The goal of this dissertation isto present efficient algorithmsfor finding all-nearest-neighbors and
constructing Voronoi diagrams on conventional and paralldl architectures. By efficient, we do not
mean asymptotically efficient in some abstract model of parallel computation, nor do we mean
efficient in terms the rate at which the algorithms perform floating point operations, or simply the
speedup achieved by the parallel algorithmswhen using multipleprocessors. Idedly, the algorithms
should achieve runtimesthat are competitive with known practical solutionsto these problems, and
at the same time make effective use of multiple processors when they are available.

In order to achieve this goal, we will use a broad range of tools from the areas of agorithm
design, sequential and parallel programming methodol ogy, performance analysis and experimental

computer science. Some of the specific techniquesthat will show upinthe course of thisdissertation
include:

¢ The study of algorithms with efficient expected runtimes when the input to the program is
assumed to come from some known probability distribution.

e Theuse of randomization in sequential and parallel algorithms design.

e The use of high level programming models and data structures to abstract agorithms away
from machine architectures.

¢ The combination of high level programming models with explicit cost models to keep ago-
rithm designsredlistic.

¢ The use of simulation and animation of sequential and parallel algorithmsto systematically
analyze an implementation’s behavior before time-consuming programming takes place on a
large-scale machine.

Chapter 2 discusses these principles in more detail in the context of sequential algorithms, while
Chapters 5 and 6 apply the techniquesin the context of parallel agorithms design.

The key idea that this dissertation tries to emphasize is the use of a systematic methodol ogy
to study paralel algorithms from both a theoretical and experimental viewpoint. Both Bentley
[Ben91] and M cGeoch [McG86] have presented similar methodol ogiesfor the experimental study
of sequential agorithms. Thisthesiswill present case studiesthat combine careful experimentswith
new or known theoretical results into a coherent understanding of the performance of proximity
algorithms on sequential, vector, and parallel architectures.

The experimental framework consists of three parts: workloads, models, and machines.

1.1.1 Workload

Workload is aterm used in experimental computer science to describe a suite of programs, rea or
synthetic, that are used to test the behavior of existing systems and guide the design new ones.

In the context of algorithms analysis, we will use the term to refer our model of the expected
input to our algorithms. We will use the following terminology to describe the inputs to our
algorithms, and the results that the a gorithms produce:

¢ A siteisapointintheplane. Generdly, wewill usethe terms point and siteinterchangeably.

e Asintheabove definitions, S isaset of n sites, and () isaset of m sites. For the all-nearest-
neighbors problem, we will also assume () and 5" are the same set, though thisis not the case
in general.

e For a set of sites 5, Vor(5) will denote the Voronoi diagram of .5, DT(.S') will denote the
Delaunay triangulation of 5. For each site s € 5, V(s) will denote the Voronoi region of s
and DN(s) will denote the set of sitesin S that are connected to s in DT(.5).

Many of our algorithms are designed to be efficient when the sites are independently chosen
from a probability distribution. For example, most of the experiments in the thesis were done
with the sites being generated from a uniform distribution in the unit square: = = U(0, 1), and
y = U(0,1). We will use the generic term “uniform inputs” to describe this class of input sets.

Such inputsinclude the uniform distribution in the unit square and circle, and distributions whose
values are bounded above and below by constants over their entire domain.

When we say that an algorithms runsin expected time 7'(n), we mean one of two things. If
the algorithm is deterministic (e.g. it makes no random choices), 7'(n) isthe average runtime over
some distribution of inputs, with each input equally likely.

On the other hand, we may allow the algorithm to make random choices. In thiscase T'(n)
isthe average runtime over some distribution of sequences of random choices, with each sequence
equaly likely.

The sequential quicksort algorithm provides a good example of each of these terminologies.
In its origina form, the algorithm has an expected runtime of O(nlogn) as long as we assume
every input permutation is equally likely. If we modify the algorithm to choose partition e ements
at random, then the agorithm will run in O(nlogn) expected time for any input distribution, as
long as every sequence of splitter choicesisequally likely.

We will say that a randomized algorithm runs in time 7'(n) with high probability if the
probability that the algorithm fails to run within the time bound is less than 1/2* for some & > 1.

This thesis will concentrate primarily on agorithms that are provably efficient on uniform
inputs. Thisis because these inputs are usually an accurate model of data sets occurring in actual
applications. In addition, we will aso conduct tests to study the robustness of the algorithms on
non-uniform inputs. These distributionsare outlined in Chapter 2.

1.1.2 Modds

One of the main difficulties facing the designer of parale agorithmsis choosing an appropriate
model of computation. On the one hand, the model must be abstract enough to alow algorithm
designers to analyze and reason about algorithmsin a straightforward, machine independent way.
On the other hand, it must be realistic enough to accurately model the performance of the target
machines. Because current parallel architectures still vary so much from machine to machine, this
task is even more difficult.

The RAM modd isthe standard model of complexity for sequential algorithms. It assumes a
machinewith acentral processor and an infinite random-access memory. In asinglemachinecycle,
the RAM machine can fetch aword, perform an operation in the processor and write the result back
to memory. The operations that are allowed vary from machine to machine, but we will assume
that real arithmetic, bit-wise operations and the floor function are all constant time. For practical
problem sizes (n < 2%?), most machines provide this functionality.

People who design sequential algorithms have long used the RAM model as a basis for their
analysis. Whilethe model ignores many rel evant machine detail s (size of memory, paging, number
of registers, etc.), asymptotic analysis of RAM algorithms has largely been representative of real
performance. Asymptotics has been abused from timeto time, but for the most part careful analysis
has yielded good answers.

The natural extension of the RAM model to parallel computingisjust to replicate many RAM
processors in a single machine where all processors share a common memory. The result of this
replication is the PRAM model. The PRAM machine is made up of n processors that share a
central memory. In each cycle, each processor isallowed to perform the samefunctionsas anormal
RAM processor. Different PRAM machinesallow adifferent amount of concurrent memory access.
EREW machine alow no concurrent access, CREW machines allow concurrent reads and CRCW
machinesallow concurrent writesaswell. Inaddition, variousversionsof the CRCW model specify

different ways to resolve multiplewrites to the same memory location. For example, the arbitrary
CRCW model picksan arbitrary processor asthe “winner” in such cases, whilethe priority CRCW
model picksthe winner according to a pre-assigned set of priorities.

The efficiency of PRAM agorithms is measured using two metrics. The first is ¢(n), the
number of parallel steps needed to solve the problem at hand. The second is p(n), the number of
processorsneeded to achievetheparallel runtime. Thetotal work done by thealgorithmist(n)-p(n).
A PRAM algorithm is work efficient if ¢(n) - p(n) = T(n) where T'(n) is the runtime of the best
possible or best known sequential agorithm. A PRAM algorithm is optimal if #(n) = log® n for
some positiveinteger & (polylog(n) time) and it iswork efficient.

NC or “Nick's Class’ is the class of problems that have solutions running in polylog(n)
time on a polynomial number of processors. In theoretical computer science, these problems are
considered to have efficient parallel solutions. Thus, algorithms that run in polylog(n) time and
only do polylog(n) extrawork are thought of as efficient.

The PRAM model has many of the same weaknesses as the RAM model, since it ignores
parameters such as machine size, and memory bandwidth, that are crucia to the performance of an
algorithm. But, algorithms designed in the PRAM model have not been as successful in practice as
those designed for a RAM machine. In fact, most programmers of parallel machines simply write
off PRAM agorithms as nothing more than theoretical curiosities.

The problem with the PRAM modél really isn’'t in the moddl itself. In fact, the PRAM model
isremarkably similar to the data parallel programming models[SH86] that have recently comeinto
wide use. Data parallel models are based on primitive operations that operate on large, aggregate
data structures such as vectors and arrays. Examples of these primitives include elementwise
arithmetic, permutation routing, and paralldl prefix sums (also called scans). In histhesis, Blelloch
[Ble€90] showed that most PRAM algorithms can betranslated into such amodel. Morerecent work
has shown that Blelloch’s set of vector primitives can be efficiently implemented on awide variety
of machines[CBZ90, CBF91]. Thus, it isapparent that the PRAM model can be used asabasisfor
designing parallel agorithmsthat are efficient in practice.

The real problem with PRAM algorithms has to do with why they are developed and how
they are analyzed. For the most part, the goal behind a PRAM algorithm is not to provide a
practical method for solving a problem. PRAM agorithms are more likely to be vehicles for
studying questions about complexity theory. As aresult, asymptotic analysis is often abused, and
an unrealistic importanceis placed on abtaining polylogarithmic runtimes. In practice, asymptotic
analysis hides important details, and working hard to achieve polylog(n) time encourages the use
of overly esoteric and expensive algorithms and data structures where simpler methods would
be sufficient for practica problems. Kruska, Rudolph and Snir [KRS90] have aso criticized
traditional notions of efficiency in paralel algorithms, and propose a more realistic approach to
parallel complexity theory.

Inthisthesis, wewill use both PRAM and dataparallel model sto express our algorithms. But,
since we are concerned with practical computational methods, we augment the model swith explicit
costsfor each primitive operation. Algorithmsare then analyzed in terms of these costs, and can be
easily reanalyzed for different machines. Such explicit cost modelsallow agorithmsto be designed
at ahigh level whileretaining some contact with realistic machine constraints. In addition, we will
be most interested in the performance of agorithmswhere the size of the problem, »n, islarge, but
the size of the machine, p, isfixed. Thus, the question of interest is how to take advantage of the
machine's parallelism, not how to exploit all of the inherent parallelism in a particular agorithm.

1.1.3 Machines

No practical study of algorithms would be complete without machines to run programs on. In this
thesis, we will usethree principal machinesin our experiments. a Sparcstation 2, aCray-YMP, and
aKSR-1.

The baseline machine will be SparcStation 2 workstation with a40MHz clock rate and 64MB
of memory. Most of the simulation work and preliminary program devel opment for this thesiswas
done on this machine. In addition, it provides the main cost/performance comparison point for the
paralld agorithm implementationsthat we will study.

The Cray Y-MP represents the “traditional” large scale parallel architecture. It uses a combi-
nation of large, heavily pipelined CPUs and a large, high bandwidth memory to provide effective
support for program written in a vector-based data paralldl style.

The KSR-1 represents anewer styleof parallel architecture. It supports many more, much less
powerful CPUs and a relatively low bandwidth distributed memory system. The memory system
is enhanced through the use of local caches. The caches are kept globally coherent through the use
of extra hardware and a ring-based communications network. Thus, the KSR-1 provides a shared
memory programming model on top of a message passing architecture.

Chapter 3 will cover the machines, and machine modelsin more detail.

1.1.4 Other Notation and Ter minology
Below isalist of notation and terminology that we will use throughout the rest of this dissertation:

¢ Wewill use“log” to mean the natural logarithm, and “lg” to mean the base 2 logarithm. We
will never use“In.” Wewill use H,, to denote the »™" harmonic number: H,, = S°* ; 1/i.

¢ A thread isaprogram counter and a runtime environment within some address space. Tradi-
tional operating systems provide a process abstraction that is usualy made up of an address
space, various operating system data structures and one thread. Operating systemsfor parallel
machines often allow processes to hold many threads of control within one address space.
This alows applications to exploit paralelism at a fine grain, since threads are cheap to
create while processes are more expensive. Thisnotion is also similar to the idea of virtua
processors or VPs, that some SIMD machines use to multiplex physical hardware. We will
use both terms synonymously.

1.2 Reated Work

In this section, we will survey the literature on sequential and parallel algorithms for closest point
problems. The section is divided into two parts, one devoted to theoretical results, and one to
practical implementations.

121 Theory

Researchers in computational geometry have been very successful in designing agorithms for
closest point problemsthat are el egant, theoretically efficient and practical. Bentley, Weide and Yao
[BWY 80] describe*“cell” algorithmsfor nearest-neighbor search and Voronoi diagram construction
that use buckets as their main data structure and run in expected time O(rn) when the input points
are chosen from the uniform distributionin the unit square. These algorithmsuse atechnique called
“gpiral search” which they show to be both simple and efficient.

Clarkson’s thesis[Cla84] presents results on closest point problemsin higher dimensions. He
devel oped algorithmsfor variouskindsof nearest-neighbor searching and for constructing minimum
spanning trees. While hisalgorithmshave not been tested in apractical situation, they arerelatively
simple, and use generalizations of the quad-tree to subdivide space and make searching efficient.
Bentley’s k-d tree data structure can a so be use to solve the all-nearest-neighbors and other closest
point problemsin higher dimensions[Ben80]. Bentley usesthisdatastructurein the planeto answer
fixed-radius nearest-neighbor queriesin his traveling salesman programs [Ben89].

Constructing planar Voronoi diagrams has also received alarge amount of attention. Guibas
and Stolfi [GS85] present a unified framework and ideal data structure for computing and represent-
ing the diagram and its dua. Their agorithms then construct Delaunay triangulations rather than
Voronoi diagrams. We also will use this approach because the resulting algorithms are simpler and
more elegant.

Guibas and Stolfi show how to implement two algorithms for constructing the Delaunay
triangulation. Thefirst is a divide and conquer algorithm, and the second constructs the diagram
incrementally. Each of these algorithms had previously been presented in the literature [GS77,
LS80, SH75], but Guibas and Stolfi’s implementationsare simpler and more elegant than the earlier
algorithms. These agorithmsrun in O(n logn) and O(n?) worst-case time respectively. Fortune
[For87] examines how to construct an optima sweepline algorithm for constructing the Voronoi
diagram. The agorithm uses a transformation of the plane to allow a straightforward sweepline
algorithm to correctly compute either the Voronoi diagram or the Delaunay triangulation of the
input.

Many proposed algorithms have good expected-case runtimes. These algorithms come in
two flavors. First, there are agorithmswhose expected runtime depends on the input distribution.
These agorithms tend to use some sort of bucketing scheme to take advantage of smooth input
distributions. Bentley, Weide and Yao's cell agorithms fall into this class [BWY80]. Maus
[Mau84] presents a simple algorithm for constructing the Delaunay triangulation that is similar to
gift-wrapping algorithmsfor convex hulls[PS85]. The algorithm repeated discovers new Delaunay
triangles using a search process that is similar to spiral search. The agorithm uses bucketing to
speed up its inner loop and runs in expected time O(n). Dwyer’s thesis [Dwy88] shows that a
generalization of thisalgorithm to higher dimensionsaso runsin linear expected time on uniform
inputs. Dwyer [Dwy87] also shows that a modified version of the divide and conquer runs in
O(nloglogn) expected time. Finaly, Ohya, Murota and Iri [OIM84] describe an incremental
algorithm that uses a combination of bucketing and quad-trees to achieve linear expected time.

A second class of fast expected time a gorithms uses randomization to achieve good expected
performance on any input. Clarkson and Shor [CS89] describe an incremental algorithm that inserts
the points in a random order and runsin O(nlogn) expected time. Knuth, Guibas and Sharir
[GKS92] give arefined analysis of a modified randomized incremental agorithm, and Sharir and
Yaniv [SY91] refine the analysis further and discuss an implementation of this algorithm. These
algorithm use a persistent tree structure to perform point location in the current diagram. Devillers,
Meiser and Teillaud [DMT90] use similar data structures in their dynamic algorithms. Finaly,
Clarkson, Mehlhorn and Seidel [CM S92] show how to extend Clarkson’s original resultsto develop
dynamic algorithmsfor higher-dimensional convex hulls, that can be used to construct the Voronoi
diagram.

Many of these studies have produced algorithms that are both theoreticaly efficient and
practical. Chapter 2 will describe theincremental, divide and conquer and sweepline algorithmsin

more detail and present detailed a performance analysis of their implementations. This discussion
is important because good parallel agorithms are often based on ideas derived from good serial
algorithms. Therefore, a thorough understanding of known conventiona algorithms is needed
before beginning to design parallel methods.

Parallel computational geometry has lagged behind its sequential counterpart in the design of
practical agorithms. However, alarge amount of theoretical work has been done over the last ten
years or so. Most of this work has been in the form of agorithms for one of the PRAM models
[KR90]. Recdl that PRAM machines come in severa flavors depending on how they control
concurrent access to memory locations. In parallel computational geometry, the CREW PRAM,
which alows concurrent reads but not concurrent writes is the most popular. However, many
algorithms a so use the CRCW PRAM, which allows both concurrent reads and writes.

Aggarwal, et d. [ACG™88] summarize much of this work. In particular, they describe a
paralel algorithm for constructing planar Voronoi diagrams that runs in O(log?n) parale time
on O(n) CREW processors. The agorithm is a parallelization of the standard divide and conquer
algorithm, and the main problem is executing the merge step in paralel. Goodrich, Cole, and
O'Dunlaing [CGO90] present an even more complicated scheme that achieves O(log?) time on
O(n/ logn) processors. Inorder to achieve these time bounds, each of these algorithmsuse el egant,
but very complex data structures. This makes it unlikely that the algorithms could be efficiently
implemented on current machines.

Severa agorithmsin the literature achieve optimal expected run times. Venmuri, Varadarajan
and Mayya [VVM92] present an O(logn) expected time, O(n) processor divide and conquer
algorithm. It uses a combination of bucketing and paralel dividing chain construction to achieve
itsruntime. The CRCW algorithm of Levcopoulos [LKL88] usesa hierarchical bucketing scheme,
and runsin O(logn) expected time on O(n/ logn) processors. This algorithmis a parall€elization
of Bentley Weide and Yao's scheme. Mackenzie and Stout [M S90] present another version of this
agorithm that runsin O(loglogn) expected time on O(n/loglogn) processors. These methods
are mainly of theoretical interest because the constantsinside the big-O’s are large.

Many recent algorithms achieve optimal performance with high probability by using some
kind of randomized divide and conquer. Reif and Sen [RS92] show how to use randomized
divide and conquer to construct the convex hull of a set of points in three dimensions. This
results in an algorithm for constructing the Voronoi diagram that runsin O(logn) time on O(n)
CRCW pracessors with high probability. While the published agorithm is extremely complex, a
simplified version for constructing the Voronoi diagram seems practical. Chapter 6 will discuss
thisalgorithm in more detail. Goodrich and Ghouse [GG91] a so use random sampling to construct
three-dimensional convex hulls. Their algorithm is a parallel version of the convex hull algorithm
of Edelsbrunner and Shi [ES91]. Goodrich and Ghouse use some additional probabilistic machinery
to improve the confidence bounds on their run time. They aso used the Reif/Sen algorithm as a
subroutine, and so it is also unlikely that their method is practica as published.

Finally, many agorithms have a so been proposed for two-dimensiona mesh-connected com-
puters. Dehne [Deh89] presents a simpleiterative a gorithm to construct the Voronoi diagram on a
raster screen. Lu[Lu86] describesadivideand conquer agorithmthat runsin O(y/nlogn) timeon
ann processor mesh. Jeong and Lee [JL90] improvethisto O (/) timeonan y/n X \/n processor
mesh.

1.2.2 Practice

Researchers in scientific computation have done the most practical work in implementing parallel
algorithms. Most of this work discusses parallel algorithms for various numerical problems such
as solving linear systems. Hundreds of papers document the performance of these codes, and
the dominant style of presentation is to compare different methods in benchmarks using various
metrics such as speedup, or MFLOPS. Fox's book [FJL *88] describes work done by the scientific
computing group at Caltech, and gives the flavor of thiskind of research.

There has been comparatively little work on implementations of combinatorial or geometric
algorithms. Sorting has received most of the attention in this area. Fox [FIL*88] describes
hypercube implementations of quicksort, shellsort, and bitonic sort. He also compares them to
a hypercube version of sample sort. Blelloch, et a. [BLM*91] describe sorting algorithms for
the Connection Machine, and surveys most of the known theoretical and practical parale sorting
algorithms. The paper also analyzes CM-2 implementations of bitonic sort, radix sort and sample
sort. One feature of the paper is a carefully constructed analytical model that accurately predicts
the performance of the sorting algorithms over alarge range of input sizes. Thisstyle of analysisis
also used by Blelloch and Zagha [ZB91] in their paper on vectorized radix sort, and by Hightower,
Prins, and Reif [PHR92] in their paper on sample sort for mesh-connected machines.

In paralel computational geometry, Blelloch’'s thesis [BIe90] describes agorithmsfor planar-
convex hulls, building k-d trees, finding the closest pair, and other simple geometric problems.
However, he does not give a detailed performance analysis of these algorithms. Cohen, Miller,
Sarraf, and Stout [CM SS92] report on hypercube algorithms for various problems. In addition,
some practical work has been done on algorithms for constructing three dimensional Delaunay
triangulations for use as finite element meshes. Merriam [Mer92] and Teng, et a. [TSBP93]
describe agorithms for the Intel machines and the Connection Machine respectively. Most of the
other implementation work comes from application areas such as image processing and computer
graphics, and it is beyond the scope of thisthesisto survey that literature here.

In thisdissertation, we use implementationsin two ways. First, they will demonstrate that the
proposed algorithms actually achieve good performance on areal machine. These results will be
presented in a standard benchmark style. In addition, implementations, or simulationsof them, can
be used to gain a more detailed understanding of the algorithms themselves. McGeoch's thesis on
experimental agorithms analysis [McG86] and recent work by Bentley on the traveling salesman
problem [Ben89] presents a framework for experimental analysis of algorithms. In thisthesis, we
will apply these methodsto the design and analysis of parallel agorithms. Chapter 2 presentsthese
ideas in more detail.

1.3 Contributions

This dissertation will describe several case studies in the design, analysis and implementation of
parallel agorithmsfor computational geometry. The case studies will concentrate on closest point
problems, but | will try to outline general principals that are applicable to any problem. Thiswork
makes the following contributions:

Methodology. | will describe and apply a systematic methodology for the implementation and
experimental analysis of algorithms, both sequentia and paralel. The method utilizes high
level modelsfor designing and analyzing parallel algorithmsthat are similar PRAM [KR90]
and to the Blelloch’s vector models [BI€90]. These models are based on primitive opera-
tions, such as routing, element-wise arithmetic, and parallel prefix sums, that have efficient

implementations on current paralel architectures. In order to keep my analysis redistic,
| augment the models in two ways. First, the models are parameterized by the cost of the
primitiveson thetarget machines. Second, the modelsthemselves may be modified to include
higher level operations, so long as these primitives are chosen carefully, and their cost in an
implementation are not excessive. Finally, the methodology depends on a pragmatic mix of
mathematical and experimenta analysis. Mathematical analysis provides a high level view
of performance, while experimental analysis effectively guides the design process towards
the bottlenecksin an implementation.

Algorithms. The case studies will describe the design and analysis of several agorithms for the
all-nearest-neighbors problem and for constructing Voronoi diagramsin two dimensions. The
case studies will provide a practical guideto efficient sequential and parallel agorithms for
Voronoi diagram construction. In addition, they will illustrate how parameterized models
and careful experimentation can accurately predict the performance of parallel programsin a
machine-independent manner. Finally, theparallel algorithmsare novel resultsby themselves.
Not only are they efficient in realistic models of computation, but they also exhibit good
performance when carefully implemented on real parallel machines. This combination of
theoretical analysis, pragmatic machine models and careful programming is the main focus
of the dissertation.

Benchmarks. Since the algorithms have al been implemented, they can be used as additional
benchmarks to study the performance characteristics of parallel architectures. Algorithms
for closest point problems have a more dynamic and irregular flavor than the benchmark
programs normally used to analyze machine performance. In addition, the algorithms are
more sophisticated than someirregular benchmarks that are already in use [Cha9l].

The dissertation does not address any of the following concerns:

Full applications. The algorithms that | study fall into the class of “kernel” programs. Thus,
my results will only reflect the performance of a small percentage of any large application.
However, experience from numerical computing suggests that having high performance
libraries of kernel agorithmsavailableisvery vauable [LHKK79] .

Parallel 1/0. The algorithms in this dissertation do not attempt to take advantage of disk arrays
or other parallel 1/0 devices. | assume that the algorithms operate on data sets that have
already been loaded into main memory and results are stored in main memory. Optimizing
the algorithms to deal with /O issues is beyond the scope of this work. Aggarwal and
Vitter [ACG™88] and Vitter, Shriver and Nodine [V S92, NV91] have obtained some basic
theoretical resultsin thisarea. Womble, et. a. [WGWR93] and Cormen’s thesis [Cor92]
examine systemsissues, including the implementation of 1/O efficient agorithms and virtual
memory for dataparallel computation.

Compilers. Inthiswork, | use compilersto generate efficient machine code from arelatively high
level description of my agorithms. The use of restructuring compilers and parallelizing
compilersis the subject of much current research. Wolfe [Wol89] gives a good overview of
basic methods and provides more detailed references. This dissertation does not address the
effect of more sophisticated compilers on agorithm devel opment.

10

Degeneracy and roundoff error. The design of robust geometric algorithms has been the subject
of much theoretical research [DS90, For89, For92, Mil88, Yap90]. While handling these
details is important, a general discussion of these issues is beyond the scope of this thesis.
My algorithms assume non-degenerate input and are for the most part naive about numerical
issues.

Generalized abstract models. Finally, thiswork does not address the extension of standard the-
oretical models to deal with asynchrony, memory latency, or hierarchica memory systems
[ACF90, ACS89, ACS90, CZ89, CKP*92, Gib89, HR91]. In this thesis, we will be con-
cerned with these issues only when they become real bottlenecks in the performance of our
algorithms. Incorporating low level machine parameters such as network bandwidth, cache
size, and the cost of synchronization into the anaysis of every parallel agorithm isno more
appropriate than incorporating parameters such as processor speed, the number of available
registers, cache size, or bus bandwidthinto the analysis of sequentia algorithms. All of these
parameters are potentially important, but not in every situation.

1.4 Outlineof the Thesis

First, Chapter 2 compares the performance of a large number of known sequential algorithms for
constructing the Delaunay triangulation. In addition, it discusses a new incremental agorithm for
constructing planar Delaunay triangulations. Thisalgorithm uses both randomization and bucketing
to achieve speed while retaining simplicity. After a discussion of parallel programming modelsin
Chapter 3, Chapter 4 investigates the application of bucketing techniques to paralel algorithms.
Theresult of thisinvestigationisahigh performance parallel algorithm for the al-nearest-neighbors
problem. In chapters 5 and 6, we discuss how these idess fit together into fast parallel algorithms
for constructing the Delaunay triangulation. Finally, Chapter 7 concludes the thesis and outlines
areas of future work.

11

Chapter 2
Practical Sequential Voronoi Algorithms

Every man isthe center of a
circle, whose fatal
circumference he cannot pass.
—John James Ingalls

Sequentia algorithmsfor constructing theVVoronoi diagram comeinthreebasic flavors: divide-
and-conquer [Dwy87, GS85], sweepline [For87], and incremental [CS89, GS77, Maud4, OIM84].

Thischapter presentsan experimental comparison of thesealgorithms. Inaddition, it describes
anew incremental algorithm that is simpleto understand and implement, but still competitive with
the other, more sophisticated methods on a wide range of problems. The agorithm uses a combi-
nation of dynamic bucketing and randomization to achieve both simplicity and good performance.

The experimentsin this chapter also illustrate basic principlesin the design and experimental
analysis of algorithms. They provide a detailed characterization of the behavior of each algo-
rithm over a wide class of problem instances. We achieve this through a combination of high
level primitives (abstraction), explicit cost models, agorithm animation and careful design and
experimentation. In later chapters, we will apply these methodsto the study of pardlel algorithms.

2.1 Divide-and-Conquer

Divide-and-conquer algorithms work by dividing the origina input set into smaller subsets and
solving the sub-problemsrecursively. Then, answersfor the sub-problems must be merged together
to form the final answer for the entire problem. Guibas and Stolfi [GS85] present a conceptually
simple method for implementing this idea, and an elegant data structure for representing both the
Delaunay triangulation and the Voronoi diagram at the sasmetime. The “quad-edge” data structure
represents a subdivision of the plane in terms of the edges of the subdivision. Each edge is a
collection of pointersto neighboring edgesin the subdivision or itsdual.

InFigure2.1, thesolid edgesare from the subdivision, whilethe dotted edges are from the dual .
Each edge e hasan origin, e.0rg, adestination, e .Dest, and aleft and right face. Theedge e . Sym
isthe same as e but directed the opposite way. The edge e.Rot isthe edge dual to e and directed
fromright toleft. Theedgese.Onext and e . Lnext are the next edges counterclockwise around the
same origin and left face respectively. Similarly, e.Oprev and e.Lprev are the edges clockwise
around e.org and the right face of e. Finally, e.Dnext, e.Dprev, e.Rnext and e.Rprev are
defined analogously for the destination of e and theright face of e. Guibasand Stolfi show that each
of these edges is computable from a constant number references to e. Sym and e .Rot. The proof of
this, and the other algebraic properties of these abstractions is beyond the scope of this chapter.

Edges are represented using arecord of four pointersand four datafields. Thisdatarepresents
the edges e, e.Rot, e.Sym and e .Rot . Sym, and the pointers represent the Onext edge of each of

12

e.Lnext e.Dnext e.Dprev e.Rprev

e.Rﬁt.S)/m

e.0Onext e.Rnext elprev e.0Oprev
Figure 2.1: The quad-edge data structure.

these edges. In general, if e isan edge record, then e[4] represents the edge e. Rot*. Asan example,
Figure 2.2 shows atriangle and its quad-edge representation.

Faces and verticesinthe subdivisionare represented implicitly by circular linked listsof edges.
In the picture, bold lines connect nodesin avertex ring while thin lines connect nodesin afacering.
To add and delete edges from the subdivision, we use an operator called splice(a,b) , whichis
similar to linked list insertion. A call to splice(a,b) has the effect of splicing the ring of the
edge b together with thering of the edge a. If a and b are part of the samering, then splice splits
that ring into two pieces. Using splice, the connect(e,f) routine connects two edges e and £
together so that they share a common left face. Guibas and Stolfi give a more detailed description
of how thisworks, and also discussthe topol ogical and algebrai c foundations of thisrepresentation
in great detail. To understand the agorithmsin this chapter, it should be sufficient just to keep the
above picture in mind when reading the pseudo-code.

Guibas and Stolfi’s algorithm uses two additional geometric primitives. First, it uses a
two-dimensional orientation test, CCW(a,b,c) that returns whether the points a, b and ¢ form a
counter-clockwise turn. The second is in-circle(a,b,c,d), which determines whether d lies
within the circle formed by a, b and ¢, assuming that CCW(a,b,c) istrue. These primitives are
defined in terms of two and three dimensiona determinants. Fortune [For89, For92] shows how to
compute these accurately with finite precision.

With these primitivesin place, Guibas and Stolfi’s al gorithm proceeds using a standard divide-
and-conquer scheme. The points are sorted by z-coordinate, and split until three or fewer points
remain in each sub-problem. Then, the sub-problems are merged together using the routine shown
in Figure 2.3

The Merge procedure must accomplish two tasks. First, it must delete any edges in L and
R that are not valid. Second, it must create a set of the valid Delaunay edges, called cross-edges,
connecting to R. The process beginsat the base of theconvex hull of LU R. TheMerge procedure
thenwalksupward along avertical linebetween I and R, finding cross-edges asit goes. In thecode,
the variable b1 keeps track of the current cross-edge. The next cross-edge will either connect the
left end-point of bl to some pointin R that isabovebl, or it will connect the right end-point of bl
to some point in I,. Conceptualy, the agorithm finds this new cross-edge by expanding the empty
circle incident on bl into the half-plane above b1. The portion of this“bubble’ that lies below bl
stays empty, since it must shrink as the circle expands into the other half-plane. The portion of
the bubble above bl will eventually encounter a new site, either in L or in E. The endpoints of
bl and the new site will then define a new Delaunay triangle, since the circle growing from bl is
empty, and this triangle will contain the next cross-edge. The algorithm then repeats the process
inductively from the new cross-edge. This whole process has the effect of iteratively weaving the

13

B

Figure 2.2: The quad-edge representation of a simple subdivision. Each block of four on the left
represents one edge on the right. For example, the pointer e [0] to g[2] indicates that the edge
counterclockwise from e around a isthe edge from a to ¢ which isthe symmetric copy of g. Thus,
thevertex a isrepresented implicitly by thering from e [0] to g[2]

14

Merge(L, R)
{

Find the lower common tangent between R and L;

/* bl is the ‘base edge’ */
bl := lower tangent from R to L
while not (found upper tangent) {
lcand := bl.Sym.Onext; lvalid := CCW(lcand.Dest, bl.dest, bl.org);
if (lvalid) { /* remove bad edges from L */
while
(in-circle(lcand.dest,lcand.Onext.dest, lcand.org, bl.org)
t := lcand.Onext; Delete lcand ; lcand := t;
}
}
rcand := bl.0OPrev; rvalid := CCW(rcand.Dest, bl.dest, bl.org);
if (rvalid) { /* Remove bad edges from R */

while
(in-circle(rcand.Dest,rcand.Oprev.Dest, rcand.org, bl.dest)) {
t := rcand.Oprev; Delete rcand ; rcand := t;
}
}
if ((!'lvalid) && (!'rvalid)) { /* found upper tangent! */
return;
}

/* Now connect the new cross-edge. */
if (!1lvalid || (rvalid
&& in-circle(lcand.Dest, lcand.org, rcand.Org, rcand.Dest)))
bl := comnect(rcand, bl.Sym);
} else {
bl := connect(bl.Sym, lcand.Sym); bl := bl.Sym;
}

Figure 2.3: The merge procedure in Guibas and Stolfi’s divide and conquer agorithm.

15

Figure 2.4: Therising bubble.

circular bubble up between L and R, finding cross-edges each time the bubble encounters a site
(see Figure 2.4).

In the code, the two while loops perform the task of finding the next cross-edge. The first
while loop examines edges incident on the left end-point of b1 in a counterclockwise fashion. The
loop uses in-circle to find and delete edges that are invalidated by bl.org. The second while
loop performs the symmetric operation on the right endpoint of b1. The two variables 1valid and
rvalid keep track of whether the rising bubble will in fact hit some edgein L or R respectively.
After the two loops are finished, there are two cases, either both 1cand and rcand hold a valid
candidate edge to which the algorithm can connect the new cross-edge, or there is only one edge
available. Inthefirst case, thefina circle test determines whether the new cross-edge should be
connected to the right or left endpoint of b1, otherwise, no such test is needed. The process then
continues until it reaches the upper convex hull edgeof L U R.

Figure 2.5 shows the operation of the Merge loop, starting from the lower common tangent
of theleft and right diagrams. In the frames, bold circles show successful in-circle tests, dotted
edges are being tested for validity. The current the value of b1, which isthe most recent cross-edge
to be computed will be called the “base edge”, and is shown in bold. Cross-hairs mark candidate
points for connecting the new cross-edge.

Reading the frames | eft to right and top to bottom, the first frame showsthat the merge process
has proceeded to the bold edge. The next five frames show the action of the two while loops. No
edges in the left diagram are deleted, while one in the right diagram is. The eighth frame shows
the circle test that determines which way to connect the new cross-edge. Since the circle incident
on the left edge is empty, the cross edge is connected from the right endpoint of the base to the left
subproblem. Thisnew edge is shownin bold in the last frame, and will become the new base edge
in the next iteration of Merge.

Guibas and Stolfi provide a proof that this scheme only deletes invalid edges and only adds
valid ones, so the final diagram is the Delaunay triangulation of the whole set. They also show
that the merge step takes O(n) steps in the worst case, so the whole algorithm runsin O(n logn)
worst-case time. In comparison-based models of computation, thisis the optimal runtime for any
algorithm that constructs the Voronoi diagram because the problem can be reduced to sorting.

16

Do_Event(e) {

if e is a site {

Find the site T such that the circle inscribed through
e and T and tangent to the sweepline is empty.

Add the edge (e,T) to the frontier;
Update the event queue with any new circle events;
Delete invalid circle events from the event queue;

} else {
Let (a,b,c) be the sites lying on the circle;
Remove the edges (a,b) and (b,c) from the frontier;
Add the edge (a,c) to the frontier;
Update the event queue as above;

Figure 2.6: Code for processing events in Fortune's algorithm

However, if our computational model includes aunit-timefloor function, then better algorithmsare
possiblefor some special cases.

Dwyer [Dwy87] showed that a simple modification to this agorithm runsin O(rn loglogn)
expected time on uniformly distributed points. Dwyer’s algorithm splits the point set into vertical
strips of width \/n/logn, constructs the DT of each strip by merging along horizontal lines and
then merges the strips together along vertical lines. His experiments indicate that in practice this
algorithm runsin linear expected time. Another version of this algorithm, due to Katgjainen and
Koppinen [KK87] merges square buckets together in a “quad-tree” order. They show that this
algorithm runs in linear expected time for uniform points. In fact, their experiments show that the
performance of thisalgorithmis nearly identical to Dwyer’s.

2.2 Sweepline Algorithms

Fortune [For87] discovered another optima scheme for constructing the Delaunay triangulation
using a sweepline agorithm. The algorithm keeps track of two sets of state. Thefirst isalist of
edges called the frontier of the diagram. These edges are a subset of the Delaunay diagram, and
form atour around the outside of the incomplete triangulation. The algorithm also keeps track of
aqueue of events containing site events and circle events. Site events happen when the sweepline
reaches asite, and circle events happen when it reaches the top of acircle formed by three adjacent
vertices on the frontier. In the discussion below, we will say that a circle event associated with the
triple(a, b, c)isincident on thefrontier edges(«, b) and (b, ¢). Eventsare ordered in they direction,
so the next event at any time is event in the queue with minimum y coordinate. The algorithm
sweeps aline up in the y direction, processing each event that it encounters (see Figure 2.6).

Conceptually, Fortune's agorithm constructs valid Delaunay edges, one at a time, in an
upward sweep over the point set. At each site event, the agorithm searches for a valid Delaunay
edge between the new site, s, and the points on the frontier. 1t does this by finding the site ¢ on the
frontier such that the circle inscribed through s and ¢ and tangent to the sweepline is empty. This
can be accomplished using abinary search over the edgesin thefrontier. The edges (s, ¢) and (¢, s)
are guaranteed to be Delaunay edges, so they are added to the frontier.

18

@ (b)

Figure 2.7: In (a) a new site (d) creates a new frontier edge (the bold edge) and a new circle event
(the bold circle), invaidating an existing circle event (the light circle). In this case a new circle
incident on (b, d) might also be created, but is not shown to make the picture more clear. In (b),
acircle event (bold circle) creates a new edge (bold line) and invalidates an existing circle event
(light circle). Inthissituation, anew circle event incident on («, b) and (b, d) would al so be created.

When a new edge is added to the frontier, it may generate new circle events. Circle eventsare
added to the event queue when anew frontier edge makes an externally convex angle with either of
its neighboring edges, that is, whenever the edge could be one edge in a Delaunay triangle that will
be completed later on. The priority of the new event is defined to be the y-coordinate of the top of
thecircle.

In addition, adding a new edge to the frontier may invalidate an existing circle event. Suppose
that three sites, a, b, and ¢ form two edges (a, b) and (b, ¢) that are currently on the frontier and
have acircle event C' associated with them. That is, the two edges form an externally convex angle
and thus could be two edgesin a Delaunay triangle. If anew site d is swept and is connected to b,
the event C' becomesinvalid, and is replaced by a circle event associated with with the edges («, b)
and (d, b) (see Figure 2.7a).

When the sweepline reaches a circle event, it will have reached the y-coordinate of the top
a circle through three sites, a, b and ¢, where (a, b) and (b, ¢) are adjacent edges on the frontier
and form an externally convex angle. The circle is guaranteed to be empty, since any site in the
circle would have been encountered by the sweepline at someearlier time and invalidated the event
[For87]. To process the event, the algorithm removes («, b) and (b, ¢) from the frontier (but not
from the diagram!), and replaces them with the edge (¢, ¢). If either (a,b) or (b, ¢) were associated
with another circle event, it isinvalidated and replaced with acircleincident on (¢, ¢). If the edge
(a, c) forms an externally convex angle with either of its neighbors, anew circle event is generated
and added to the event queue (see Figure 2.7b).

In his paper, Fortune shows that this scheme only adds valid Delaunay edges to the diagram,
since the edges added when processing site events are valid, and circle events that are reached by
the sweepline represent empty circles. Using standard tree-based data structures for the priority
queue and the frontier, each new event can be processed in O(logn) time, so the whole agorithm
uses O(n logn) timein the worst case.

In Fortune’'simplementation, thefrontier isasimplelinked list of half-edges, and point |ocation
is performed using a bucketing scheme. The z-coordinate of a point to be located is used as a hash

19

valueto get closeto the correct frontier edge, and then the algorithm walksto theleft or right until it
reaches the correct edge. Thisedgeis placed in the bucket that the point landed in, so future points
that are nearby can be located quickly. This method works well aslong as the query points and the
edges are well distributed in the buckets. A bucketing schemeis also used to represent the priority
gueue. Members of the queue are bucketed according to their priorities, so finding the minimum
involves searching for the first non-empty bucket and pulling out the minimum element. Again,
thisworks well as long asthe prioritiesare well distributed.

Figure 2.8 shows the operation of the algorithm on a small point set. In the pictures, the
sweeplineis shown as a dotted horizontal line. Sites are large dots, and circle events shown as “+”
signs marking the top of the corresponding circle.

Reading the frames from | eft to right and top to bottom, the first few frames show how acircle
event is processed. In the first frame, the sweepline has reached the top of the bold circle. The
algorithm first removes this event from the priority queue. Then, it removes from the frontier the
two edges incident on the empty circle (frames 3 and 4). Frame 5 shows the algorithm completing
the new triangle. The bold circle shown in frame 6 becomes invalid at this point because it was
incident on one of the edges just removed from the frontier (the rightmost one). Frame 7 showsits
replacement. In frame 9, the sweepline reaches a new site. Frames 10 to 12 show the search for
the correct frontier site, and frame 13 shows the new frontier edge. Finaly, in frames 14 to 16, the
algorithm adds a new circle event incident on the new frontier edge, and this event becomes the
next onein line to be processed.

2.3 Incremental Algorithms

The third, and perhaps simplest class of agorithms for constructing the Delaunay triangulation
is incremental algorithms. We will study two styles of incremental agorithms: incrementa con-
struction and incremental search. Incremental construction algorithms add sites to the diagram
one by one and update the diagram after each siteis added. Guibas and Stolfi [GS85] present a
basic incremental construction algorithm at the end of their paper. The agorithm consists of two
main subroutines. Locate locates a new site in the current diagram by finding the triangle that the
point liesin, and Insert insertsanew siteinto the diagram by calling Locate and then iteratively
updating the diagram until all edgesinvalidated by the new site have been removed (see Figure 2.9).

The Locate routine works by starting at a random edge in the current diagram and walking
along alinein the direction of the new site until the right triangle is found. The algorithm is made
simpler by assuming that the points are enclosed within large triangle. The Insert routine works
by caling Locate and connecting the new point into the diagram with one edge to each vertex
of the triangle found by Locate. Then, Insert updates the diagram by finding invalid triangles
around the outside of the polygon containing the new site. These triangles are found using the
in-circle test. Let ABC be such atriangle with the point A opposite the new site p. The edge
flipping procedure replaces the edge BC' with an edge from A to p, creating two new triangles ApC'
and ABp. The loop then adds the edges AC' and A B to a queue of edges to be checked. It keeps
track of this queue implicitly through links in the quad-edge data structure. When the loop comes
back to the original starting edge, this queueisempty and the routine stops. Guibas and Stolfi show
that when the loop terminates, all of the edgesin the diagram are guaranteed to be valid.

Figure 2.10 shows the operation of the Insert routine. In the first frame, we are inserting
the site p marked by the “+” symbol. The bold edges show the path that Locate takes through the
diagram to find the new site. The second frames shows the three new edges that connect p into the

20

Figure 2.8: Fortune's agorithm.

21

Locate(start, p)

{
e := start;
while(true) {
if (p == e.Dest || p == e.0rg) return e;
if (right_of(p,e.Org, e.Dest)) e := e.Sym;
else {
tl := e.Onext;
if (CCW(p,t1.0rg,t1.Dest)) e := t1;
else {
tl := e.Dprev;
if (CCW(p,t1.0rg, ti1.Dest)) e := t1;
else { return e; } + } }
¥
Insert(p)
{

e := Locate(last,p);
if (p == e.0Org || p == e.Dest) return;
if (is_on(p,e.Org, e.Dest)) { t = e.Oprev; delete(e); e = t;
base = make_edge(e.Org, p); first = e.0rg; splice(base,e);
do { /#* Connect new point */

t = base.Sym;

base = connect(e, t);

e = base.Oprev;
} while (e.Dest != first);
e = base.Oprev;
while(true) { /* Flip invalid edges until done */

t = e.Oprev;

if (not CCW(t.Dest, e.0Org, e.Dest) &&

in-circle(e.Org,t.Dest,e.Dest, p)) {
swapedge(e); e = e.Oprev;
} else if (e.Org == first) { last = e; return; }
else { e = e.Onext.Lprev; } }

Figure 2.9: Pseudo-Code for theincrementa algorithm.

22

Figure 2.10: The incremental algorithm.

diagram. Then, westart totest thevalidity of the edges surrounding p. The dotted edgesarethe ones
being tested. The first two circles are empty and drawn with thin lines. The next circle contains p
and isdrawn in bold. The following frame shows the flipped edge as dotted and the corresponding
new circle, which is now empty. The algorithm now moves on to the edges neighboring the edge
that it just flipped. The next two frames show another edge flip. The next three edges are dl valid.
In the last frame, the algorithm has reached the starting edge, so the insertion is complete.

Theworst caseruntimeof thisalgorithmisO(n?) sinceit ispossibleto construct apoint set and
insertion order where inserting the k%% point into the diagram causes O(k) updates. However, if the
pointsareinserted inarandom order, Clarkson and Shor’sanalysis[CS89] showsthat onecan design
an agorithm with an expected runtime of O(n logn) operations. In addition, the performance of
the agorithm is independent of the distribution of the input, and only depends on random choices
made by the algorithm.

The algorithm works by maintai ning the current diagram a ong with an auxiliary datastructure
called aconflict graph. The conflict graphisabipartite graph with edges connecting sitesto triangles
in the current diagram. If an edge (s,) exists, it means that the site s lies within the circumcircle
of thetrianglet. When anew site s is added to the diagram, the algorithm deletes all the triangles
that s conflictswith, adds new trianglesin their place, and updates the conflict graph. The standard
incremental algorithm could be modified to do this by adding code to update the conflict graph after
each edge flip. Clarkson and Shor use random sampling results to show that the total expected
runtime of the algorithmis O(n logn) steps.

Guibas, Knuth, and Sharir [GKS92] propose a similar algorithm that does not use a conflict

23

graph, and provideasimpler anaysisof itsruntime. In particular, they show when we use arandom
insertion order, the expected number of edge flipsthat the standard incremental agorithm performs
islinear. The bottleneck in the algorithm then becomes the Locate routine. Guibas, Knuth, and
Sharir propose atree-based data structure where interna nodes are triangles that have been deleted
or subdivided at some point in the construction, and the current triangulationis stored at the leaves.
Whenever atriangleisdeleted, it marksitself as such and then creates two pointers to the triangles
that replaced it in the diagram. We can then modify Locate to search thistree, rather than doing the
standard edge walk. It isthen not hard to show that the expected cost of Locate will be O(n logn)
time. Sharir and Yaniv [SY 91] prove a bound of about 12nH,, + O(n).

Modifying the existing incremental algorithm to maintain this point location structure is not
difficult. The easiest way to do thiswould beto keep a separate tree structure with links back to the
current quad-edge representation of the Delaunay triangulation. However, the resulting algorithm
is somewhat unsatisfactory, sinceit uses O(n logn) expected time on point location when actually
maintaining the Delaunay triangulation only costs O(n) expected time.

We can remedy this situation if we assume that the input consists of points from some
probability distribution. For example, if the distribution is the uniform distribution over the unit
square, many known algorithmsrunin linear expected time[BWY 80, KK87, Mau84, OIM84]. The
motivation for studying this case comes from the fact that many applications involve data that is
fairly uniform. Inthe next section, wewill see how to modify the randomized incremental algorithm
torunin linear expected time on such data.

24 A Faster Incremental Construction Algorithm

The godl isto speed up point location in the randomized incrementa algorithm when the input is
uniformly distributed. We concentrate on point location because under the assumption of arandom
insertion order, thisis the dominant cost of the incremental algorithm. We use a simple bucketing
algorithm similar to the one that Bentley, Wiede and Yao used for finding the nearest neighbor of a
guery point [BWY80]. Theideais that point location in the triangulation is equivalent to nearest
neighbor searching. Since the bucketing algorithm finds the nearest neighbor of a point in constant
expected time for certain distributions of points, we can reduce the total expected cost of the point
location steps from O(n logn) timeto O(n) time while maintaining the relative simplicity of the
incremental agorithm.

The bucketing scheme places the sites into a uniform grid as it adds them to the diagram. If
two or more pointsfall in the same bucket, the last one inserted is kept and the others are discarded.
To find a near neighbor, the point location agorithm first finds the bucket that the query point lies
in and searches in an outward spiral for a non-empty bucket. It then uses any edge incident on the
point in this bucket as a starting edge in the normal point location routine. If the spira search fails
to find apoint after a certain number of layers, the point location routine continues from an arbitrary
edge in the current triangulation.

The bucketing scheme uses a dynamic hash table to deal with the fact that sites are processed
in an on-linefashion. The scheme also does not bother to store all the pointsthat fall in a particular
bucket, it just storesthelast point seen. Thisisbecausethe bucket structure does not haveto provide
the insertion algorithm with the true nearest neighbor of a query, it only hasto find a point that is
likely to be closethe the query. Therefore, it makes sense not to use the extra space on information
that we do not need. Let ¢ > 0 be some small constant that we can choose |ater. The point location
maintains the bucket table so that on average, ¢ sitesfall into each bucket. It does this on-line by

24

Build_DT()

{
grid_size := 4;
maxl := 1;
N := 0;

for each site S {
insert S into the diagram;
bucket S in the current grid;
if (++N > 4*c*grid_size) {
make a new grid of size 4*grid_size;
re-bucket all points;
grid_size *= 4;

maxl++;
}

}
}
Spiral(p)
{

bucket := compute_bucket(p);

layer := 0;

while (layer < maxl) {
for each bucket in layer {
if P is a point in this bucket return P.edge;
X
layer++;
3
return NULL;
X
New_Locate(p)
{
edge := Spiral(p);
if (edge == NULL) {
edge = some arbitrary edge;
3
Locate(edge, p);

Figure 2.11: Theincrementa agorithm with spiral search for point location.

25

~ —

Figure 2.12: Spiral search for a near neighbor.

expanding the size of the bucket grid periodically (see Figure 2.11).

Now, we modify Locate to first search the bucket structure for a near neighbor, and then
use some edge incident on that neighbor as a starting edge in a standard edge walk. The search
procedure starts in the bucket that the new siteliesin and searches out in a spira pattern until has
searched more than max1 layers (see Figure 2.12). If it still hasn’'t found a non-empty bucket at this
point, it gives up and Locate proceeds from an arbitrary edge. Assuming that each point P keeps
track of an incident edge in P . edge, the modified point location routineis shown in Figure 2.11.

The bucketing procedure makes sure that the expected number of points per bucket is always
at least ¢ and at most 4¢. The variable max1 makes sure that the routine never looks at more than
log, n layers of buckets. Thus, it isnot hard to show that the expected cost of one point location is
constant when the pointsare uniformly distributed. The probability that apoint fallsinto aparticular
bucket is¢ = ¢/n. The probability that a particular bucket isempty isthen

(1—q)" = (1—c/n)" <=

The cost of the point location agorithm for a given query point is proportional to the number of
buckets examined inthe spiral search and the number of edges examinedin thelocate step following
the spiral search. There are two cases to consider. First, the spiral search may succeed before the
cutoff point, after examining : bucketsin thefirst log, n layers. Referring to the picture, theanaysis
of Bentley, Weide and Yao saysthat the expected number of pointsinthedashed circleisbounded by
8¢(11i + 7). The expected number of edges inthe areaisbounded by six timesthe expected number
of points. Thus, the expected number of edges that |ocate examinesis less than 48¢(11i + 7). The
total cost of the procedure in this case isthen bounded by

0(1) Y e=Yo(i) = 0(1).

i<4log?n

If the spiral search fails, then the cost of thelocate procedure isno morethan O(n) operations. But,
since the algorithm must look at O(Iog2 n) buckets before the spiral search fails, the probability of
this happening is bounded by e—clog’n — O(1/n), so the expected cost isalso O(1) operations.
The cost of maintainingthe bucketsisO(n) if thefloor functionisassumed to be constant time.
Since we insert the points in a random order, the analysis of Guibas, Knuth and Sharir [GKS92]
shows that expected number of edge flips that the algorithm doesis O(n). Thus, the total expected
run timeof thisalgorithmisO(n) timewhen the pointsare uniformly distributed in the unit square.
Thetwo important principlesat work herearethat “bottomup” search from the bucket structure
to the current triangul ation takes advantage of the local nature of nearest neighbor search, and that

26

// Q is a dictionary of (facet, half-space) pairs.
Construct_DT:
Find an initial cell C.
For each facet F of C, let H(F) be the half-space defined by F that
does not include the interior of C. Insert (F, H(F)) into Q.
// Now iteratively advance the front until it is empty.
While Q is not empty
let (F,H) be some element of Q.
// Site-search
search H for the site X that will complete F’s unknown cell.
let C be the new cell.
delete (F,H) from Q.
For each vertex V in F
let newF be the facet defined by (F-{V}) and X
let newH be the half-space defined by newF not containing V.
// Facet search
if (newF,newH) is not finished
insert (newF,newH) in Q
else
mark (newF,newH) as finished

Figure 2.13: Algorithm IS.

the cost of adapting the bucket grid as more points are added can be amortized over the whole
construction process. The resulting algorithm is only slightly more complicated than the original
incremental agorithm, but as we will see, in most practical situations, it is nearly asfast as all of
the methods that we have seen so far.

2.5 Incremental Search

Another class of incremental agorithms construct the Delaunay triangulation by incrementally
discovering valid Delaunay triangles, one at a time. Although we are only dealing with two
dimensional problems, it will be convenient to use a generic terminology for any dimension.
Following Dwyer [Dwy91], in d dimensions, our agorithmswill assume that no set of more than
d + 1 sites are co-spherical. In this case, the Delaunay triangulation partitions the convex hull of
S into simplices that we will call cells, and the circumsphere of each cell contains no site. The
d-dimensional simpliceswill be called facets. In the plane, cells are triangles, facets are edges, the
circumcircle of each triangle is empty, and no four sites are co-circular.

Figure 2.13 shows pseudo-code for the incremental search algorithm, which we will call
Algorithm IS. The a gorithm constructs one simplex of the diagram and then proceedsto extend this
to the whole diagram by adding new cells adjacent to known facets one at atime. This algorithm
works by keeping a queue of facets and half-spaces. Each facet joins two cells, so we call afacet
finished if both of these cells have been discovered by the algorithm. The agorithm storesthe facets
that it has found in a dictionary along with aflag indicating whether it is finished. Each time anew
cell is discovered, the unfinished facets that belong to the cell are placed on a queue. The queue
represents a front which advances over the point set as new cells are discovered.

Intheplane, facets are edgesand cellsaretriangles. Thus, thea gorithm startswith onetriangle

27

and incrementally finds new triangles. The advancing front is just a queue of unfinished edges. In
three dimensions, the algorithm is basically the same, except that it manipulates tetrahedron and
faces.

The performance of this algorithm is determined by the time needed for facet search and the
time needed for site search. If the facet dictionary is stored as a hash table, then the expected cost
of maintaining the dictionary is O(n) time. The data structure that is critical to the performance
of the algorithm is the one that supports site searches. The next section will describe a reasonable
solution to this problem in the case where the site are uniformly distributed in the unit square. In
order to generalize the algorithm for other classes of inputs, and to higher dimensional problems,
all we need to do isreplace the Site-Search routine with something more appropriate.

25.1 SiteSearch

Dwyer’s agorithm uses a relatively sophisticated algorithm to implement site searching. First,
the sites are placed in a bucket grid covering the unit square. The search begins with the bucket
containing themidpoint of («, b). Aseach bucket is searched, its neighborsare placed into apriority
gueue that controls the order in which buckets are examined. Buckets are ordered in the queue
according a measure of their distance from theinitia bucket. Buckets are only placed in the queue
if they intersect the half-plane to the right of («, b) and if they intersect the unit circle. When the
correct siteisfound, it will be closer to the edge («, b) than any of the other buckets in the queue,
so the queue will empty out and the algorithm terminates. Dwyer’s analysis shows that the total
number of buckets that his algorithm will consider is O(n).

Our site search algorithm is a variant on “spiral search” [BWY80]. A new siteis found by
searching outward from an unfinished edge in a spiral pattern. We will assume that the the sitesin
S are chosen from the uniform distribution in the unit square, and, like Dwyer, we will use a bucket
grid over the unit square to help speed up the search process. With n points, the data structureis a
uniform grid of \/n/c x \/n/c buckets, for some constant ¢ > 1. Generally, we choose ¢ to tune
the performance of a particular implementation. To simplify our analysis, we assumethat ¢ = 1.

Figure 2.14 showsahighlevel description of the site search routine. Theroutinefirst computes
the mid-point of the edge («, &) and beginslooking for the new sitein the bucket B that the midpoint
falsin. The agorithm checks each sitein B and picksthe one forming the smallest circle, C', with
(a, b). Theagorithm then expands the range of the search to include the boxes surrounding B. This
expansion continuesuntil the either range of boxes searched by the al gorithm containsthe bounding
box of the current “best” circle, or until it contains the intersection of the half-plane to the right of
(a, b) and the unit square. Inwill have either found the correct siteto connect to (a, b), or will have
shown that the edge («a, b) is on the boundary of the convex hull of S. Figure 2.14 summarizes the
details of the algorithm.

Our site search routine differs from Dwyer’s in several ways. The main difference is the lack
of a priority queue to control the action of the search routine. Dwyer’s algorithm is careful not to
inspect any buckets that are either to the left of (a, b) or outside of the unit circle. In this case, he
can prove that his algorithm only does O(n) work.

Site-search is somewhat sloppier about looking at extra buckets. The algorithm examines
at least every bucket in the intersection between the unit square and the bounding box of the fina
circlediscovered. It ispossiblethat it will search alarger area than thisif some intermediate circle
is much larger than the final one. For site searches near the center of the unit square, the search
area expands uniformly in al directions. For site searches near the edge of the unit square, the

28

// Search half-space to the right of (a,b) for new site.

// circle(C,r2) == circle centered at C with radius sqrt(r2);

// C.r2 == radius square of circle C;

// dist2(C, p) == square distance from center of C to p;
// right-of(a,b,P) == P is to the right of the segment (a,b);
// new-circle(a,b,P) == circle through a,b and P

// Box(B, L, R, U, D) == box centered at B and extending

// L layers to the left, R layers to the right, etc
//
Site-search (a,b)
queue = empty;
m = midpoint of (a,b);
B = bucket(m);
r2 = squared distance from m to (a,b)
C circle(m, r2);
H half-plane to the right of a,b;
plane-box = intersection between H and the unit square;
thesite = nil;
search B;
searchbox = Box(B,1,1,1,1);
while (not dome)
foreach unseen bucket in searchbox
if bucket intersects H
foreach point p in bucket
if (right-of(a,b,p) && dist2(C,p) < C.r2)
C = new-circle(a,b,p);
thesite = p;
if thesite == nil
done = searchbox is contained in plane-box;
else
done = bounding box of C is contained in searchbox;
if not done
expand searchbox

Figure 2.14: Codefor Site Search.

@ (b)

Figure 2.15: Example bounding boxes that the site search algorithm examines.

29

[
.0. : .0.. (:
® []	

:...... .o ...o:...... .1:
: .".‘g..‘ ¢ ::‘g..‘ ¢ ::
| PR L Ve % | PR L Ve % |
| 0.. .0 . | 0.. .0 . |
| ...0.. | ...0.. :
: PP ° : oo ® ° :
| | |
e e LR R e EE e .

® o ® o
))
% L
® L4 .

I | I
I | I
I I I
I | I
I | I
I I I
I | I
| ™Y | |
| i PY | * |
: e® o ° .. % N : e® o ° .. % R :
e o o e ° L e o ° L

: . "‘g L ® : . S L ® :
| PR L Ve % | PR L Ve % |
I LI . . | LI . . I
: % *.% o ° S @& : % . o ° Y :
| . | . |
I o o ey I ® ® eee I
: oo ® o. : oo ® o. :

I I
:_ _______________________ T J

Figure 2.16: Site search in Algorithm IS

algorithm does not needlessly expand the seach area in a non-profitable direction (see Figure 2.15).
The advantage of our schemeisthat it iswell tuned to the case when sites are distributed in the unit
square and it avoids the extra overhead of managing a priority queue, especialy avoiding duplicate
insertions.

Figure 2.16 illustrates the operation of Site-search. In the top left frame, the site search
algorithm isinitialized to find the unknown site of the bold edge. This site lies above and to the
left of the edge. The top right frame shows the first candidate site and the resulting circle circle
found by Site-search. Thebox intheframeisthe area searched so far. In the bottom left frame,
Site-search expandsthe search area, and finds a second candidate site and circle. The box shows
that the algorithm has now searched an area large enough to prove that the second circle is empty.
Therefore, two new edges, shown in bold in the bottom right frame, are added to the queue. The
operation of this algorithm is actually reminiscent of Fortune's algorithm, athough the two use
totally different methodsto control the evolution of the expanding front.

2.5.2 Discussion

Severa algorithms in the literature, including ones due to Dwyer [Dwy91], Maus [Mau84], and
Tanemura et. al. [TOOB83] are based on the basic idea behind Algorithm IS. However, they al

30

differ in the details, and only Dwyer’s agorithm has been formally anayzed. Dwyer’s anaysis
assumed that the input was uniformly distributed in the unit d-ball, and extending this analysis to
the unit cube appears to be non-trivial. However, in the plane, the difference is not great, and the
experiments in the next section will show that the empirical runtime of the algorithm appears to be
O(n).

2.6 Empirical Results

In order to evauate the effectiveness of the algorithms described above, we will study C imple-
mentations of each algorithm. Rex Dwyer provided code for hisdivide and conquer a gorithm, and
Steve Fortune provided code for his sweeplinealgorithm. | implemented theincremental search and
construction algorithms myself. None of the implementations are tuned in any machine dependent
way, and all were compiled using the GNU C compiler and timed using the standard UNIX™ timers.
The other performance data presented in this section was gathered by instrumenting the programs
to count certain abstract costs. A good understanding of each algorithm, and profiling information
from test runs determined what was important to monitor. Each agorithm was tested for set sizes
of between 1024 and 131072 sites. Ten trials with sites uniformly distributed in the unit square
were run for each size, and the graphs either show the median of all the sample runsor a*box plot”
summary of al ten samples at each size. In the box plots, a dot indicates the median value of the
trials and vertical lines connect the 25 to the minimum and the 75" percentile to the maximum.

Finally, the programs include code to generate simple animations of their operation. This
code outputs simple graphics commands that can be interpreted either by an interactive tool for X
windows or a Perl program that generates input for various typesetting systems. These “movies’
were very helpful in gaining intuition about every detail of the operation of the various algorithms,
and al so made debugging much easier. The moviesin thischapter were all generated automatically
by the animation scripts.

26.1 Performance of the Incremental Algorithm

The performance of the incremental agorithm is determined by the cost of point location and the
number of circle tests the algorithm performs. While the standard incremental algorithm spends
amost al of its time doing point location, the bucket-based point location routine effectively
removesthisbottleneck. Figure 2.17 comparesthe performance of thetwo agorithmson uniformly
distributed sites.

Theplotsshow that the standard incremental a gorithm usesan average of O(/n) comparisons
per point location step. Simple regression anaysis indicates that the number of comparisons per
point grows as 0.86n-4°. Therefore, | have plotted the curve .86,/ inwith the data. The curveisa
closefit to the experimental data.

Adding the point location heuristic improves the performance of the incrementa agorithm
substantialy. It is apparent that the number of comparisons per site is bounded by a constant near
12. Almost al of these comparisons are tests done during second phase of the algorithm, after the
spiral search. These tests take much longer than the simple comparisons needed in spiral search.
Therefore, although the spiral search accounts for about 10% of the total number of comparisons,
its contribution to the runtime of the point location algorithm is much less significant.

The cost of point location depends on whether log, » is even or odd. Thisiseasy to explain
when we remember that the algorithm re-buckets the sites at each power of four. Because of this, at
each power of four, the average search time dips, since one extra re-bucket step reduces the average

31

(a) Without Buckets (b) With Buckets

‘ - 12
‘ | ! 118
Comps s . I Lo L 116 Comps
Per Site 2 Per Site
‘ - 11.4
- 11.2

T T T T T T T T T T T T T T T T T
28 29 210 211 212 213 214 215 216 210 211 212 213 214 215 216 217
Number of Sites Number of Sites

17 - .
16

15 4
Comps 14 (c) SiteLocation vs.
Per Site Bucket Density

13 1

12
11 4

T T T T T T T T
1 2 3 45 6 7 8
Bucket density

Figure 2.17: Comparison of point location costs.

32

Qe o R e R o Ve g
% ? Incremental
8.5
8
Circle Tests
Per Site 7.5 -
... 14
7 t ? ' a Dwyer
|
6.5 - 7

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 2.18: Circle tests per site for two agorithms.

bucket density in the later phases of the construction process. Asthe input size moves towards the
next power of four, the bucket density increases steadily. Thus, the cost of point |ocation see-saws
up and down.

The number of comparisons needed for point location also depends on the average density of
the sites in the bucket grid. If the density of pointsin buckets is too high, then the point location
routine will waste time examining useless edges. On the other hand, if it istoo low, the algorithm
will waste time examining empty buckets. Figure 2.17c shows the dependence of the density on
the cost of point location. The graph shows the average cost of point location over ten trials with
n = 8192 and ¢ ranging from 0.25 to 8. Based on this data, | used ¢ = 2 for my timing runs.
Although the graph shows a large variation in the number comparisons needed per site, the actual
effect on the runtime of the algorithm was less than 10%.

The runtime of the incremental algorithm now depends on how many circle testsit performs.
Since the algorithm inserts the points in a random order, the analysis of Guibas, Knuth and Sharir
[GK S92] showsthat thetotal number of circletestsisasymptotically O (). Sharir and Yaniv [SY 91]
tightened this bound to about 9n. Figure 2.18 shows that thisanaysisis remarkably accurate.

Also shown on the plot is the cost of Dwyer’s divide and conquer algorithm. Since this
algorithm is also based primarily on circle testing, it makes sense to compare them in this way.
The plot showsthat Dwyer’s a gorithm performs about 25% fewer circle tests than theincremental
algorithm. Profiling both programs shows that circle testing makes up roughly haf the runtime of
each, so Dwyer’s agorithm should run roughly 10 to 15 percent faster than mine.

2.6.2 Thelncremental Algorithm with a Quad-Tree

Ohya, Iri and Murota [OIM84] describe a modification to the incrementa agorithm that buckets
the points like my algorithm does but then inserts the points using a breadth-first traversal of a
guad-tree. In their paper, the authors claim that their algorithm runsin expected linear time on sites
that are uniformly distributed, and they provide experimental evidence for thisfact. In order to
show that my agorithm was competitivewith, or better than other similar methods, | implemented

33

Site Location

Edge Flipping

12.5 -
Comps
Per 12
Site o

1154 1

- 9.8
- 9.6
- 9.4
- 9.2
-9

- 8.8

Circle Tests
Per
Site

- 8.6

T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites

Figure 2.19: Performance of the quad-tree algorithm.

thisalgorithm and compared its performance with mine.

Like before, a profile of thisprogram showed that the algorithm spends most of itstime either
testing circles or locating points. Therefore, further experiments monitored these two operations
in more detail. These results show that the quad-tree algorithm performs amost identically to my
algorithm. Likemy algorithm, its performance depends on the parameter ¢, and in these tests, ¢ was
set to two just like before, asthis provided the best overall performance. AsFigure 2.19 shows, the
guad-tree a gorithm performs about 10% more work than the bucket-based incremental agorithm.
For the uniform case, we can conclude that our agorithm performs slightly better than this more
complicated aternative.

2.6.3 Thelncremental Search Algorithm

The determining factor in the runtime of Algorithm IS is the cost of Site-search. Thiscan be
factored into the number of distance cal culations performed, and the number of buckets examined.
By examined we mean that a bucket is at least tested against an edge to see if the algorithm should
search its contents for anew site.

Figure 2.20 summarizesthe behavior of these parametersin our tests. Figures 2.20aand 2.20b
show the performance of the algorithm for sites chosen from both the uniform distribution in the
unit square, while 2.20c and 2.20d show the show the performance of the algorithm for sites chosen
from the uniform distributionin the unit circle. Thereason for looking at both distributionsin detail
is that the behavior of Algorithm IS is heavily influenced by the nature of the convex hull of the
input. In the square distribution, the expected number of convex hull edgesis O(logn) [San76].
The graph showsthat the number of distance calculations per site stays constant over our test range,
while the number of buckets examined actually decreases. This reflects the fact the number of
edges on or near the convex hull of such point setsis relatively small, and that the agorithm only
examines alarge number of useless buckets on site searches near the convex hull.

However, it is apparent that thisisn't the case when the sites are distributed in the unit circle,
where the expected size of the convex hull is O(n/3) [San76]. Here, there are alarger number of
edges on or near the convex hull, and thisisreflected by the fact that the number of bucketsthat the

Calcs
Per Site

Calcs
Per Site

(a) Distance Calculations

19.8
19.6
194
19.2

19 -
18.8
18.6
18.4
18.2

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(c) Distance Calculations: Unit Circle

22.5

22

21.5

21 - ‘ .

2054 -

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Boxes
Per Site

Boxes
Per Site

(b) Boxes Examined

23.5 1

23 1

22.5

22

21.5

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(d) Boxes Examined: Unit Circle

45

40

30

25

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 2.20: Performance of Algorithm 1S

35

(8) Sweepline Maintenance (b) Priority Queue Maintenance

12 4 -2
11.8 - ‘ |

116 - o e
11.4 ‘ . tolor 1
Comps 11.2 | .

14 | |
10.8 -

106 -
104 - ‘
102 -

y=99+.25/z - 26

Comps

Site Site

T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites

Figure 2.21: Cost of Fortune's algorithm. The two main factors determining the performance of
the algorithm are the work needed to maintain the heap and sweepline data structures.

algorithm examines increases dramatically when compared to the earlier case. This sensitivity to
the distribution of theinput isamajor weakness of the algorithm, and indicates that amore adaptive
data structure is needed to support the Site-search routine.

Pre-computing the convex hull of the point set and searching from hull edgesinward may help
to minimizethe effect of thisproblem. But, the bucket-based data structurewill still be sensitiveto
clustering in the point set, and a non-uniform distribution of triangle sizes or shapes. The best way
to fix these problemsiis to replace the buckets with a nearest-neighbor search structure that is less
sensitiveto the distribution of sites, and can perform non-local searches more efficiently. Bentley’s
adaptive k-d tree [Ben90] isa good example of such adata structure.

2.7 Fortune€sAlgorithm

The runtime of Fortune's algorithm is proportional to the cost of searching and updating the data
structures representing the event queue and the state of the sweepline. Fortune’s implementation
uses hash tables for this purpose. We would expect that these data structures would perform well
on uniform inputs. In fact, for small input sets, the algorithm seemsto runin linear time.

Figure 2.21 shows the performance of the sweepline and priority queue data structures in
Fortune's implementation. With sites that are uniformly distributed in the = direction, the bucket
structure representing the frontier performs exactly as we would expect. Figure 2.21aindicates that
the search procedure performs around 12 comparisons per point, on average.

The main bottleneck in Fortune's algorithm ends up being the maintenance of the priority
gueue. The priority queueis represented using auniform array of bucketsin the y direction. Events
are hashed according to their y-coordinate and placed in the appropriate bucket. In addition, it is
important to realize that only circle events are explicitly placed in the event queue. The O(n) site
events are stored implicitly by initially sorting the sites.

The problem here is that while the sites are uniformly distributed, the resulting priorities are
not. Circle events tend to cluster close to the current position of the sweepline. This clustering
increases the cost of inserting or deleting events into Fortune's bucket structure. Each operation

36

+
TR T .YV b Eo

avay \/
NAQE

SN LN
FSIFS

|

I LK SEAA AN
B A Y
I "

|

X
PN AN
ISZ SR\ I ';1

Figure 2.22: Circle events cluster close to the sweepline in Fortune's algorithm. Thefirst frameis
early on one run in the algorithm, the second frame is later in the same run. Note how the “ cloud”
of circle events (+ signs) moves with the sweepline.

requiresalinear time search through thelist of eventsin aparticular bucket. With large buckets, this
becomes expensive. Regression analysis shows that the number of comparisons per point grows as
9.95 + .25,/n (see Figure 2.21b).

Watching animations of large runs of Fortune's algorithm provides a heuristic explanation for
this behavior. Since the sites are uniformly distributed, new site events tend to occur close to the
frontier. If the new site causes a circle event to be added to the priority queue, chances are that the
circle will not be large, and thus the y-coordinate of the top of the circle, which is the priority of
the new event, will be close to the current position of the sweepline. If the circleislarge, so the
priority of the resulting event is far above the sweepline, it is likely that the event isinvalid since
largecircles are likely to contain sites. Eventually some site or circle event will invalidatethe large
circle and replace it with asmaller onethat lies closer to the sweepline. The result isthe clustering
that is clearly observable in the animations (Figure 2.22).

Given the behavior of the bucket data structure, it is natural to speculate as to whether a
different data structure would provide better performance for larger problems. To investigate this
possibility, | re-implemented Fortune's algorithm using an array-based heap to represent the priority
queue. This guarantees that each operation on the priority queue costs O(logn) time in the worst
case, and using the array representation minimizesadditional overhead.

To test the effectiveness of the new implementation, | performed amore extensive experiment.
Each agorithm was tested on uniform inputs with sizes ranging from 1,000 to 10,000 sites. Figure
2.23a shows the performance of the heap data structure in the experiment. The line 2Ign + 11
shows that the number of comparisons used to maintain the heap is growing logarithmically in =,
rather than as /n. The plot also shows a more detailed profile of these comparisons. This profile
indicatesthat most of the work is performed by the extract-min routine. By comparison, insert
and delete arerelatively cheap. Thisbehavior isexactly oppositeto the bucket structure.

In actual use, the heap does not significantly improve the runtime of the algorithm. Figure
2.23b compares the runtime of the two agorithms over the same range of inputs. In this graph,
each data pointistheratio of the runtime of the bucketing algorithm to the runtime of the heap-base
agorithm. The graph showsfive trials for input sizes of between 21° and 217 sites at evenly spaced

37

(a) Cost of Heap (b) Comparison of Heap to Buckets

404 y=19IgN +11, - 115
8
o - 1.1
35 - Lo
. 88 .0 - 1.05
30 - ° . 8
Comps T -1 _
° o o: ° aeg .
Pe 25 Extract Min s e o7 o e §e L 0.95 Tlm_ew Buckets/
: ot e 8 e Timew. Heap
Site 20 4 . © . e g - 0.9
LT - 0.85
15 -
89900 008 8°00000 900006000 ° - 0.8
109 ... Pdee oo n L 0.75
Insert
T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites

Figure 2.23: Cost of Fortune's algorithm using a heap. Part (a) shows a breakdown of the cost of
using a heap to represent the event queue. Part (b) plotstheratio of the runtime of the old algorithm
to the new.

intervals.

The timingswere taken using the same machine and configuration asin the next section. The
plot shows that the algorithms are pretty much identical in performance until 216 points, when the
heap version starts to dominate. At 217 points, the heap version is roughly 10% better. The main
reason that the improvement is not greater is that maintaining the heap seems to incur more data
movement overhead than maintaining the bucket structure. The bucket structure appears to use the
workstation’s cache more effectively, and stays competitive, even though it is doing much more
“work”.

An interesting feature of the graph in Figure 2.23ais the fact that the number of comparisons
periodically jumpsto anew level, staysrelatively constant, then jumpsagain. Thisisdueto the fact
that the heap is represented using an implicit binary tree. Thus, the number of comparisons jumps
periodically when the size of the heap is near powers of two. On the graph, these jumps occur
at powers of four, rather than two because the average size of the heap over one run of Fortune's
agorithmis O(y/n) rather than O(n). To provethis, we start with the following definition.

Definition 2.1. Let S beaset of n sites, and suppose that the sweepline in Fortune's algorithm is
at height y. For each site s whose y-coordinate, Y (s) islessthan y, we say that s is unfinished if
the algorithm has not yet computed al the edges in the final Delaunay triangul ation incident on s.

If asiteisincident on acircle in the event queue, it must either be unfinished or on the convex
hull of S. For sitesuniformly distributed in the unit square, the expected size of the convex hull is
O(logn) [Dwy88], so to bound the expected size of the priority queue, we only need to estimate
the number of unfinished sites. The following lemmais aspecia case of aresult dueto Katgjainen
and Koppenin. The proof is repeated here in a slightly simpler form for the sake of completeness
[KK87].

Lemma2.1. Assumethat S consistsof n pointschosen from the uniform distribution in the unit
square. If s isasite whose distance from the sweeplineist, then the probability that s isunfinished

38

One of these sectorsis empty

Figure 2.24: Delaunay edges imply empty regions of the plane.

isat most
16(1 — 71?/32)" "1,

Proof. Let U F denote the condition that the site s is unfinished. Then there exists a point
¢ above the sweepline such that (s, ¢) isin the final Delaunay triangulation. Consider acircle C'
centered at s with radiust/\/i. Divide C' into 16 sectors, each with an internal angle of /8. Now
consider asquare with sidet/+/2 with itsdiagonal along (s, ¢). Let m be the other endpoint of this
diagonal. Dwyer [Dwy87] proved that there exists a site free circle that contains one of the two
triangles incident on (s, m) (See Figure 2.24). This circle also contains one of the 16 sectors. The
area of each of the sectorsis w¢?/32. Thus, there exists aregion with area 7¢2/32 that is site free.

So we have
16

PrlUF] <= (1-mt?/32)" 1,
=1
which is bounded by 16(7¢2/32)"1. O
Using this result, we can estimate the expected number of unfinished sites, given that the
sweepline has reached height y.

Theorem 2.2. Given the same assumptions as above, the expected number of unfinished sitesis
O(V/n).

Proof. Katgjainen and Koppenin use Lemma 2.1 to show that the expected number of un-
finished sites in a rectangle of height 4 and width w is bounded by 103(h 4+ w)/n [KK87].
Thus, if the sweepline has reached height y, the number of unfinished sites will be bounded by
103(y 4+ 1)y/n <= 206y/n = O(y/n). Of course, this constant is much higher than the constant
that we actually seein practice. 0

Since each unfinished site can contribute to at most two circle events, the expected number of
circleeventsisalso O(y/n).

2.8 TheBottom Line

The point of al of thisis, of course to develop an agorithm that has the fastest overal runtime. In
the following benchmarks, each algorithm was run on ten sets of sites generated at random from
the uniform distributionin the unit square. Each trial used the same random number generator, and
the same initial seed so all of the times are for identical point sets. Run times were measured on a

39

Sparcstation 2 using the getrusage () mechanism in UNIX. The graphs show user time, not real
time, and all of the inputs sets fit in main memory, and and were generated in main memory so
I/0 and paging would not affect the results. Finaly, the graph for Fortune's algorithm shows the
version using a heap rather than buckets, sincethis a gorithm was better on thelarger problems, and
not much worse on smaller ones.

Figure 2.25 shows the results of the timing experiments. The graph shows that Dwyer’s
algorithm givesthebest performance overall. Fortune'salgorithm and theincrementa agorithmare
about the same, but for large problems the incremental algorithm does better. Fortune's algorithm
does the worst on the largest problems due to the overhead in its priority queue data structure.
Algorithm IS is not competitive with any of the other three because the simple bucket-based data
structure that it uses for site searching is not efficient enough.

Dwyer’s algorithm is faster because it does almost 1/3 fewer circle tests than the incremental
algorithm. Profiling information shows that each algorithm spends about half of its total timein
circle testing, so this accounts for the fact that Dwyer’s program is about ten to fifteen percent
faster than theincremental. However, athough theincremental algorithmismarginally slower than
Dwyer’s, it is much simpler to code. In addition, the “on-line” nature of the incremental agorithm
isuseful in some applications.

Thequad-tree order incremental agorithm isslower than my a gorithm and Dwyer’sa gorithm,
but is somewhat faster than the others. Recall that this algorithm performs roughly 10% more edge
tests in point location and 5-10% more circle tests than the randomized incrementa algorithm.
These factors account for the its consistently slower runtimes.

Finally, the incremental search algorithm is clearly slower than all the other algorithms. It is
clear that the constant factors in the runtime of Site-search are somewhat higher than those of
the other algorithms. The main problemis that the bucket grid data structureis most efficient when
searching small ranges. This makes it idea for the role it played in the randomized incremental
algorithm because there, only local information was needed. In Algorithm IS, the data structureis
called upon to search larger areas of the unit square, and its performance degrades.

2.9 Nonuniform Point Sets

Each of the algorithmsthat we have studied uses a uniform distribution of pointsto itsadvantagein
adlightly different way. Theincremental algorithm usesthe fact that nearest neighbor search isfast
on uniform point sets to speed up point location. Dwyer’s algorithm uses the fact that Delaunay
only sites near the merge boundary tend to be effected by a merge step. Fortune's implementation
uses bucketing to search the sweepline. Algorithm 1S depends on a uniform bucket grid to support
site searching.

From the analysis and experimental experience we gained previously, we would expect that
sinceit can do no more than O(n logn) operations, Dwyer’s a gorithm would be the least sensitive
to pathological input. Next in line would be the incremental agorithm, which would perform
0 (n3/ 2) operations on average if the distribution of the sitestotally defeated the bucketing strategy.

We have aready seen that Fortune’'s implementation is not efficient for large problems even
when the input is uniform. If the input set were extremely irregular, so that most of the priorities
fell into just a few buckets, we would expect the performance of the implementation to be even
worse than the incremental algorithm.

Finally, we would expect that Algorithm IS would be the most sensitive to bad inputs, since
its performance is the most closely coupled to the distribution of the sitesin the bucket grid.

40

Dwyer’s Algorithm

Incrementa Algorithm

270 - 270 -
Time 250 1 Time 250 1 ST
Per 230 - Per 230 - by :
. ' . . | H
Site 210 | I ! o Site 210 | : :
o
190 i | 190
T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites
Fortune Quad-tree
. 310 -
270 - | ¢ 290 - \ L
. s 7 [A
Time 207 | o Time 207 - f '
Per 2304 coT Per 2901
i ° ite 230 -
Site 210 | Site
210 -
190 190 -
T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites
Algorithm IS
395 -
390 1 Cor b
Time 385 - e
Per 380 - !
Site 375 -
3704 -~
365 -

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 2.25: Comparison of the expected runtimesof different algorithmson sites chosen at random
from a uniform distribution in the unit square. Times are in microseconds.

41

Name Description

unif uniform in the unit square.

ball uniform in aunit circle.

corners | U(0,.01) at each corner of the unit square.

diam t="U(0,1),z = ¢+ U(0,.01) — .005,y =t + U(0O,.01) — .005
cross | N/2pointsat (U(0,1),.54 U(—0.005,.005)); N/2 &t

(.54 U(-0.005,.005), U(0,1)).

norm | both dimensionschosen from N (0, .01).

clus N(0,.01) at 10 pointsin the unit square.

arc inacircular arc of width .01

Table 2.1: Nonuniform distributions.

In order to see how each algorithm adapts to itsinput, we will study further tests using inputs
from very nonuniformdistributions. In Table 2.1 the notation N (s) refersto thenormal distribution
with mean 0 and standard deviation s, and U («, b) isthe uniform distribution over theinterva [, b].

The graphs show each algorithm running on five different inputs of 10K sites from each
distribution. The uniform distribution serves as a benchmark. Figure 2.26 shows the effect of
these point distributions on the incremental algorithm. As expected, point distributionswith heavy
clustering, such as corners and normal, stress the point location data structures in each agorithm,
increasing point location costs by up to afactor of ten. These represent worst case inputsfor these
data structures. However, the comparison tests in the point location routine are substantially faster
than circle tests, so even in the worst cases here, the whole runtime didn’t increase by more than a
factor of two. Using sampling to build a more adaptive data structure for nearest-neighbor search
[Ben90, Wei 78] should reduce these problems substantially. The distribution of the input has little
effect on the number of circle teststhat each algorithm performs. The performance of the quad-tree
algorithm is dightly more erratic than the bucket-based incremental algorithm, but the effect is
relatively minor.

Figure 2.27 summarizes the performance of Fortune's agorithm in this experiment. The
first graph shows that the bucket-based implementation of the event queue is very sensitive to site
distributionsthat cause the distribution of prioritiesto become extremely nonuniform. In the cross
distribution, thishappens near theliney = 0.5. At thispoint, all of thecircle eventsassociated with
with n/2 sites near the line cluster in the few buckets near this position. The corners distribution
causes a similar problem, but to alesser degree. Here, al of the events associated with the O(\/n)
circlesin the event queuetend to stay clustered in one bucket at y = 0 and another at y = 1. In both
of these cases, the non-uniform distribution of sitesin the z-direction al so slows down site searches
on the frontier, but this effect isless pronouced than the bad behavior of the event queue.

The second graph showsthat the performance of the heap is much less erratic than the buckets.
Thesmall jumpsthat do appear are dueto thefact that the event queue does becomelarger or smaller
than its expected size on some distributions. However, since the cost of the heap islogarithmicin
the size of the queue, this does not cause a large degradation in performance.

Figure 2.28 shows the performance of Dwyer’s algorithm in the experiment. Dwyer’s algo-
rithm is slowed down by distributionsthat cause the algorithm to create many invalid edges in the
subproblems, and then delete them later in the merge steps. Thiseffect is particularly pronounced

42

Site Location Edge Flipping
110 -
X Qtree X
100 - - 10
904 Qtree
80 - + Buckets .
Comps 70 - ¥ £ K - g5 Cirde
Tests
Per 60 -
Ste 50 ¥ x X g
2 X I I TR L B S
T X X Buckets
30 - X 85
20 + o+ e
104 * ¥
T T T T T T T T T T T T T T T T
unif ball corn diam cros nrm clus arc unif ball corn diam cros nrm clus arc
Figure 2.26: The incremental algorithm on non-uniform inputs, » is 10K.
(a) Fortune: Buckets (b) Fortune: Heap
250 * - 45
*

Comps 2001 3 t - 40 Comps
Per + + + + + Per
Site 1501 % - 35 Site

(buckets) 100 4 30 (heap)
50 + - 25
+
+ o+ . +
T T T T T T T T T T T T T T T T
unif ball corn.diamcrossnorm clus arc uni bal corn diamcrossnorm clus arc

Figure 2.27: Fortune's algorithm on non-uniform inputs, » is 10K.

43

Dwyer’s Algorithm

14 *

13 4
12

Circle Tests 11 -
Per
Site 104

9+ +

+H

8

7 + + +

T
unif bal corner diam cross norm clus arc

Figure 2.28: Dwyer’s agorithm on non-uniform inputs, » is 10K.

run with the cross distribution because the group of sites near the line z = 0.5 is very tall and
skinny, creating aworst case for the merge routine.

Figure 2.29 shows how the bad inputs affect Algorithm IS. These figures leave out the two
worst inputsfor thisalgorithm: cornersand normal, because the algorithmwoul d have taken severa
hours to finish the benchmark. The O(n?) behavior of the algorithm on these inputs is shown in
Figure 2.30.

Algorithm ISiseasily the most sensitiveto the distribution of itsinput. Thisisnot surprising,
sinceit dependson essentially the sameroutinethat theincremental algorithm usesfor point location,
and we have aready seen that the point location subroutine performed badly on bad inputs. This
did not handicap to the incremental algorithm to a large degree because the point location routine
is not the magjor bottleneck in that algorithm. However, the performance of Site-search largely
determines the runtime of Algorithm IS.

Finally, to understand how the abstract measures actually effect performance, Figure 2.31
shows the average runtime of the five trials with each agorithm except Algorithm IS. Since none
of the runtimesin the graph are much greater than Algorithm IS's performance even in the uniform
case, | didn't fee that including it in this graph would add any useful information. The graph
reflects the fact that the primitives that each algorithm uses incur a wide range of actua runtime
costs. Looping through buckets is faster than restructuring trees, and CCW tests are cheaper than
in-circle tests. Thus, even though the abstract costs of some of these algorithm vary widely over
the different inputs, the actual runtimes do not.

2.10 Notesand Discussion

Theexperimentsin thischapter |ed to several important observationsabout the performance of serial
algorithms for constructing planar Delaunay triangulations. These observations are summarized
below:

Distance Computation

Boxes Examined

900 -
800 -
700
600 -
500 -] ¥
400 -

Calcs.

Site

200 -

100
+

+Hi-+

|

4 *

+

| 140
| 120
- 100
|80
. 60
40
20

unif ball corn diam cros nrm clus arc

T T T T T T T T
unif ball corn diam cros nrm clus arc

Figure 2.29: AlgorithmISisvery sensitiveto bad inputs.

The worst case for Algorithm 1S

E
20
Run 15+
Time
(secs) 10 i
clus
¥
5 , " ¥
* corners
21l T++tt ¥
T T T
0 500 1000 1500 2000

Number of Sites

Figure 2.30: Algorithm IS the“cluster” and “corners’ distributions.

45

Boxes
Per
Site

Runtime Comparison

600 -
550 - quad Qued
500 - inc
450
J4SECS forb .
Per 400 ihc
Site 250 forb
= quad
forh quad quad
300 - s _
. - _ inc :
250 U2 ?gﬁﬁ forh inc ;'Qrc
forb for f8rb ferp FFB @i\B
200 aw W dw aw
dw dw

T
unif ball corn diam cros nrm clus arc

Figure2.31: Runtimeson non-uniforminputs, » is10K. inc and quad aretheincremental algorithms,
dw is Dwyer’s algorithm, forb and forh isFortune’s algorithm with buckets and a heap respectively.

¢ A simple enhancement of the incrementa agorithm results in a an on-line algorithm that
is competitive with known algorithms for constructing planar Delaunay triangulations. The
agorithm has an optimal expected runtime of O(n) time, is simple to implement, and its
runtime constants are small. In particular, the algorithm is ssmpler and faster than previous
improvementsto the incremental agorithm.

¢ Although the performance of the new incremental agorithm is dependent on the distribution
of the sites, only extremely nonuniform point sets degraded performance to a significant
degree.

¢ Algorithmsbased onincremental search appear to be somewhat slower than the other methods
that we have examined. Improved data structures for site searching may help matters here.
Such data structures would definitely help to decrease the sensitivity of this algorithm to
non-uniform inputs.

¢ On sets of » uniformly distributed sites, the frontier in Fortune's algorithm has an expected
sizeof O(y/n) edges. The expected size of the event queuein thealgorithmisaso O(/n).

¢ On uniformly distributed sites, circle events in Fortune's algorithm cluster near, and move
with, the sweepline. This causes a hashing-based priority queue implementation to perform
badly on large inputs. It is possible that a better hash function would alleviate this problem,
though it isn’'t clear exactly how to implement the idea.

¢ Using a heap to represent the event queue in Fortune's agorithm improves its performance
on large problems by a small anount. Most of the cost in maintaining a heap in Fortune's

46

algorithmisincurred by extract-min. Reducing thisoverhead would make the heap-based
algorithm much more efficient than the bucket-based one, but it is not clear how to achieve
this.

¢ Dwyer'salgorithmisthe strongest overall for thisrange of problems. It is consistently faster
than the incremental (and all other) algorithms, but is also arguably harder to program. In
addition, incrementa algorithm is more “onling”’, and can be extended to handle dynamic
problems efficiently.

210.1 Other Algorithms

While the experiments in this chapter cover the most of the available algorithms for this problem,
they were not quite comprehensive. | did not consider the divide and conquer algorithm discussed
by Guibas and Stolfi because Dwyer’s agorithm always at least as fast. | aso did not implement
theincremental agorithm of Guibas, Knuth and Sharir [GKS92], because it islikely that their point
location scheme is slower than mine on the inputs that we considered. Finally, the convex hull
algorithm developed by Barber [Bar93] was not available soon enough for meto do afull anaysis
of it for this chapter. However, the algorithm appearsto be practical, efficient and robust and should
be the subject of future studies.

211 Principles

The design and implementation of the incremental algorithm illustrates severa principlesin ago-
rithm design that are of general interest.

Bottom Up Search. The point location algorithm speeds up near neighbor searches in the current
Delaunay triangulation by augmenting the data structure with an array of buckets.

Dynamic Hashing. The bucket array used for point location dynamically adjusts to the size of
the problem. The amortized cost of these adjustmentsis linear in the size of the final diagram.

Randomization and ProbabilisticAnalysis. Theincremental algorithm takesadvantage of recent
resultsin the analysis of randomized incremental agorithmsto be more resilient against poor point
distributions. The performance of the incremental algorithm on these distributions is further
experimental verification of the utility the randomized incremental framework.

Adaptive Data Structures. Randomizing the input order to the incremental agorithm makes
the update procedure adapt gracefully to non-uniform inputs. No pathological input can make the
insertion procedure perform many more edge edge flips than average. The performance of the
incremental algorithm could be improved by also making the point location routine more adaptive
to highly clustered point sets. Using recent variants on Bentley’s &-d tree data structure [Ben90]
might be an effective way to do this.

The experiments and other studies in this chapter also make use of many tools from the
experimental analysis of algorithms. Much of this work is heavily influenced by the writings of
Bentley [Ben82, Ben89], and the Ph.D. dissertation of McGeoch [McG86]. Later on in thisthesis,
we will make new use of these ideasin the context of paralle agorithmsdesign.

Abstraction. Algorithmsshould be analyzed in terms of reasonably high level abstract operations
as opposed to low level machine operations. Maintaining abstraction makes it easier to obtain
results that are independent of a particular machine or implementation and thus provides better
insight into the basic behavior of an algorithm.

47

Explicit cost models. We cannot maintain abstraction at an unreasonable cost. Therefore, we
must choose our primitives carefully and we must be reasonably sure that they are efficient on
the target machines. The algorithms in this chapter all depended on arithmetic primitives such as
in-circle which are easily implemented on most seria machines. In the chapters on paralléel
algorithms, we will see how low level cost models can model the performance of simpleagorithms
very accurately, and how higher level cost modelsmakethe analysisof more complicated agorithms
managesble.

Pragmatic Algorithms Design. The worst case asymptotic complexity of an agorithm should
not the be only measure of agorithmic efficiency. This is especially true for paralel algorithms,
where constant factors play an even larger role. The studies in this chapter have concentrated on
analyzing or measuring the expected complexity of the algorithm under various input models (i.e.
uniformly distributed sites, random insertion orders). Good primitives and cost models can let the
algorithms designer know which parts of an algorithm are the critical bottlenecks and to anayze
and possibly optimize those parts appropriately.

Algorithm Animation. Animations of algorithmsare avaluable tool for gaining intuition about
their behavior. The “movies’ in this chapter illustrate the basic ideas behind each algorithm. In
addition, the pictures of the frontier in Fortune's algorithm motivated the analysis of the size of the
event queue.

Simulation Experiments. This chapter has shown how careful experiments, data analysis, and
visualization can lead to important observations about the performance of agorithms. McGeoch
outlined many of these techniquesin her thesiSfMcG86]. In this chapter, the simulations took the
form of instrumented programs that implemented the algorithms under study. This provided away
to precisely characterize the performance of the agorithmsfor specific types of inputsand problem
sizes. Later on, we will use similar techniquesto study implementationsof paralel algorithms.

In her thesis, McGeoch points out that the simulation program need not implement the algo-
rithm under study, as long as it can measure the abstract cost of the algorithm. Such “simulation
shortcuts” will also be useful in our study of parallel algorithms. In particular, using seria sim-
ulations of parallel agorithms allows the algorithm designer to evaluate multiple design choices
without the cost of developing full parallel implementations on many target machines.

48

Chapter 3
M odels and M achines

By copying, ancient models
should be perpetuated.
—Hseth Ho

Shining and free; blue-massing
clouds; the keen and
unpassioned beauty of a great
machine;

—Rupert Brooke

This chapter presents the machines and models that we will use to design, implement and
evaluate paralel algorithms. Section 3.1 discusses parallel programming models that are currently
popular. Section 3.2 discusses the weaknesses of the PRAM mode while section 3.3 outlines our
programming model. The descriptions of these models will be informa and operational. More
formal and abstract discussions of models and semantics for paralel computation are outside the
scope of thisthesis.

This chapter presents implementations for two rather different machines. The Cray Y-MP, a
vector multiprocessor, and the KSR-1, adistributed shared memory multiprocessor. These machines
represent the two major design pointsin high performance computer architecture today. The Cray
is a more conventional machine with a relatively small number of large, highly pipelined CPUs
connected to a high-bandwidth centralized memory. The KSR-1 has a relatively large number
of smaller CPUs and a distributed memory system. Section 3.5 will give an overview of each
architecture and its programming systems.

We use multiple architectures to illustrate two conflicting points about programming paralel
algorithms. First, we would like to show that good paralel agorithms are, to a certain extent,
independent of the machine one which they are implemented. The analysis and implementation
of a simple algorithm for nearest neighbor search in the next chapter will illustrate how explicit
cost models can accurately predict the performance of algorithms across multiple architectures and
programming systems.

However, carefully matching an agorithm to an architecture can make programming and
studying the algorithm more straightforward than if machines are chosen blindly. For example, in
Chapter 6, thealgorithmsthat wewill study for constructing the Delaunay triangul ation are complex
enough that high level mechanisms for concurrency control and shared data management are of
great utility. Using these mechanisms, the implementation of the algorithms is straightforward

49

enough that we can concentrate more on algorithmic questions, rather than arcane programming
tricks. Therefore, for these algorithmsit makes sense to do our initial studieson the KSR-1, which
provides such mechanisms, rather than the Cray, where for a variety of reasons multiprocessor
programming is more difficult.

3.1 Popular Programming Models

One of the main difficulties facing the designer of parallel agorithmsis the wide variety of pro-
gramming modelsthat exist for parallel architectures. Thisisin contrast to conventional agorithms
design, where the RAM model isgenerally used by everyone, and where most people think that the
model is areasonable approximation of reality. The RAM model succeeds because it modelsthose
aspects of an algorithm which usually dominate its performance.

Recall that in the RAM model, a processor is connected to an infinite memory. In each time
step, the processor fetches datafrom the memory, executes an instruction, and writes aresult back to
the memory. Thisisclearly asimplification of reality, since it ignores register usage, cache misses,
virtual memory, multiprogrammed operating systems and a host of other systemsissues. Yet, for
the most part, efficient RAM algorithms! have proven to be efficient on actual machines.

In theoretical computer science, the model of choice for studying parallel algorithms has
become the PRAM, which is a natural extension of the RAM model. In the PRAM modd, we
replicate the single RAM processor P times, and postulate that al P processors share the same
infinite memory. In unit time, each processor can execute one step of a RAM program, and in the
strongest version of the model, the memory system resolves concurrent reads and writes in some
pre-defined way.

Practitioners in paralel computing have long ridiculed the PRAM model as unredlistic and
PRAM machines as unbuildable. However, this point of view is somewhat misguided. First
of al, building a shared memory abstraction on top of a distributed memory system has been a
fertile areafor research in architecture, operating systemsand language design. Many research and
commercial systemscurrently support ashared memory programming model [AJF91, CF89, EK 89,
GW88, LLGG90, LLJ"92, KSR91, WL 92

In addition, data parallel [SH86] programming models, which are very similar to PRAM,
have recently become popular. These models use a singlethread of control combined with parallel
primitives that specify operations over large aggregate data structures such as vectors.> These
primitives fall into three classes: elementwise arithmetic, permutation of vectors (routing) and
computing parallel prefix operations (scans). In histhesis[Ble90], Blelloch argues that an abstract
model based on these vector primitivesresultsin simpler algorithmswhich are easier to analyze and
more efficient than PRAM algorithmsfor many kinds of problems. Blelloch and his students have
shown that algorithms using these primitives can be efficiently implemented on SIMD and vector
architectures [CBZ90]. In addition, Chatterjee has shown that with suitable compilers, programs
based on these primitives can be efficiently translated to run on shared memory MIMD machines
[Chag1].

Similar work has also been donefor |anguagesthat don’t explicitly usevector models. Projects
like Fortran-D [HKT91], Dino [RSW90], Kali [KMR90], Crystal [CCL88], Proteus [MNP*91],

That is, RAM algorithms that are both asymptotically efficient and simple enough to have low constant factors.
Examplesinclude quicksort, the Delaunay triangulation algorithms in the previous chapter, and so on.

2Sometimes people call this asingle program multiple data, or SPMD programming model.

50

and MIMD C* [QHJ88], are al concerned with compiling data parallel programs. The Fortran D
document gives a good summary of many research compiler systems. These compilerstake shared
memory programs, possibly with annotations, and generate code for a variety of machines (SIMD,
MIMD, shared memory, distributed memory, and so on). Thus, in both theory and practice, the
most popular programming model for parallel agorithmsis basically PRAM.

3.2 What iswrong with PRAM

If PRAM is so similar to the popular parale programming models, why are PRAM results and
PRAM agorithms generally only of theoretical value? The answer liesin what PRAM algorithms
seek to achieve and how PRAM algorithms are anadlyzed. Designers of PRAM algorithms are
often interested in the mathematical question of determining the asymptotic complexity of a given
problem, as opposed to finding practical solutionsfor these problems on existing machines. Since
these designers aren’t interested in practical solutions to problems, it isn’t surprising that their
analysis does not address questionsthat are relevant to the performance of real machines. Thislack
of interest manifestsitself in two ways:

¢ Too much importanceis placed on N C'. In particular, algorithmswhich have “fast” runtimes
but use, for example, O(n?) processors are simply of no use. Many theoretical algorithms
attempt to use too much concurrency on the assumption that areal machinewould simply run
the algorithm more slowly by simulating many threads on each real processor. The problem
with this approach is the simulation of multiple threads does not come for free, and these
added costs can dominate the runtime of the algorithm.

¢ Complicated datastructures or scheduling techniquesare used to reduce theparallel “runtime”
of basic algorithms. This resultsin complicated algorithms for simple things such as scans,
histogramming, sorting, load balancing and so on. One canonical example of thisis Cole's
pipelined, parallel mergesort [ACG89]. Whileitisatour-de-force of elegant algorithm design
and analysis, and contains many beautiful ideas, the agorithm is so complicated and uses so
much global data movement that it simply can’t compete against simpler algorithms such as
radix sort [Ble89, Nat90].

This problem with asymptoticsis not restricted to PRAM analysis. Many theoretical a gorithmsfor
mesh machines, hypercubes, other network-based models, and even the RAM model are equally
unredlistic. Thisdoesn’'t mean that theideas in these agorithms are useless. On the contrary, when
examined more pragmatically, papers on theoretical algorithmsare often hiding simple, elegant and
highly practical ideas beneath all of their asymptotics.

The user of aparalel machineisinterested in the practical question of how to solveaproblem
faster by exploiting the concurrency available in the machine, for problem sizes that are relatively
small by asymptotic standards (i.e. N < 2%2). The situation is much the same in sequential
algorithms design, where real world algorithms must deal with machine constraintsthat don’t exist
inthe RAM model. Careful analysis, implementation, and experimentation are needed to obtain the
best performance. Until now, most researchers in theoretical computer science have been content
to study more abstract questions, so the PRAM model and many PRAM a gorithms have been seen
as more and more out of touch with redlity.

51

3.3 Our Modd

We will use a data parallel model to design new agorithms for the geometric problems outlined
in Chapter 1. The model mixes Blelloch’s vector model with the PRAM model, the abstract
machine being aPRAM augmented with special vector instructions. The vector instructionsspecify
aggregate operations like scans while conventional PRAM code is used for local computation. The
pseudocode is a mix of conventiona code, parallel loops and parallel primitives. Paralld loops
are marked with foreach. When appropriate, the code makes use of some of Blelloch’s vector
primitives. In particular, scan-plus stands for a prefix-sum computation, and pack moves the
flagged itemsin a source array into the front of adestination array and returns the number of items
in the destination array[Bl€90].

Formally, the model will assume that the processors in the machine synchronize after each
parallel loop or vector instruction. Informally, we know that while routing and scans may require
synchronization, local computation does not. Thus, we will assume that processors are loosely
coupled enough to execute independently of one another but tightly coupled enough to synchro-
nize fairly quickly. This assumption matches well with the characteristics of currently available
machines.

The complexity of an algorithm in this model is measured using two statistics. First, the step
complexity of the algorithm, denoted S(V) isthe number of parallel stepsthat the algorithm needs
to solve a problem of size N. Thework complexity, W (N') measures the total work performed by
an algorithm. We cal culate the work complexity by keeping track of the length of vector arguments
to each vector operation and the work done by active threads executing in each paralel loop. The
sum of these values over the history of aprogram’s execution is W (n).

Thegoal istodesign paralldl agorithmswith alow step complexity and with awork complexity
that is no more than the runtime of a good sequential algorithm. In some cases, we will concentrate
on worst-case time, but for the most part we will deal with expected-case runtimes. Since both of
the problems that we are interested in can be solved in linear expected-time, we would like to find
parallel algorithmsthat runin O(n/ P) timeon P processorsand do linear expected work. Chapters
4 and 6 will describe such agorithms.

In order to achievethe goal of good performance, the model assigns explicit coststo each class
of primitiveoperations. For example, at the machine level, we might use the following parameters:

A = Cost of local arithmetic.

R = Cost of routing.

S = Cost of scans

P = Number of CPUs available

These constants model the per-element time needed to perform vector operations on a particular
machine. We can measure these costs experimentally using any reasonable implementation of the
primitives on a given machine. Chapter 4 gives a concrete example of how to define and use these
low level models.

For more complicated algorithms, it may be appropriate to use a higher level cost model. For
example, the algorithms in the previous chapter were al analyzed with respect to calls to circle-
testing and point-location primitives. While these operations can be broken down into sequences
of low level cals, using a higher level abstraction makes the algorithm easier to analyze without
sacrificing accuracy, provided that we pick our primitives carefully. Chapter 6 uses this style of
analysisto design parallel agorithmsfor constructing the Delaunay triangulation.

52

Abstract cost model s keep the a gorithm designer aware of machine dependent issues without
forcing her to address them until the last stages of implementation. Then, algorithms can be tuned
and evaluated by substituting costsfrom areal machineintothe analysis, and transforming the code
as heeded to obtain better performance.

Recent work in parallel sorting has used this approach to develop high performance sorting
algorithmson several architectures: Blelloch, et a. on the Connection Machine CM-2 [BLM T 91],
Blelloch and Zagha on the Cray Y-MP[ZB91], and Hightower, Prins and Reif on the MasPar MP-1
[PHR92] all show that algorithms can be described at a high level while maintaining an accurate
estimate of their performance on real machines. In each of these papers, algorithms are analyzed
in terms of an abstract model that assigns explicit costs to primitive operations. In each paper,
straightforward analysis of the algorithmsresulted in performance modelsthat accurately predicted
the speed of the algorithms over practical problem sizes. The algorithmsin this thesis extend the
applicability of thesemethodsto parallel geometric algorithms, which have not been heavily studied
inapractical setting.

3.4 Other Models

The number of proposed programming models for paralel agorithmsis huge. This section will
briefly survey some recent attempts to define more realistic models for parallel computation, and
why we do not consider them in detail in this dissertation. This survey is not meant to be a
comprehensive look at all the available literature. Instead, it is only meant to illustrate the general
directions that researchers have taken in tackling this problem.

First, we do not consider network-based models suitable for the practical study of agorithms
because they are inherently machine dependent. There is also evidence that tuning algorithms
for specific network architectures does not necessarily result in better performance. For example,
neither of the two fastest sorting algorithmsin Blelloch et a.’s study uses the hypercube network
in the Connection Machine CM-2 in a direct way [BLM*91]. In addition, none of the new
commercial machines allow the programmer to directly control the routing of messagesthrough the
communications network. The structure of the communications network is largely hidden from the
programmer.

Extensions of the PRAM model make up most of therest of the literature in this area. Each
of these models extends the PRAM model to deal with a potential bottleneck in the performance of
paralle agorithms. Leiserson and Maggs consider limited network bandwidth [LM88]. Aggarwal,
Chandra and Snir study communication latency [AGSS89] and locality [ACS90] in PRAM compu-
tations. Alpern, Carter and Feig consider hierarchical memory systemsin uniprocessors [ACF90],
while Heywood does the same for multiprocessors [HR91]. Aggarwal and Vitter [ACG*88],
and later Vitter and Shriver and Nodine [V S92, NV91] studied the design of basic algorithmsin
two-level memory/disk hierarchies. Womble, et al. [WGWR93] discusses the implementation of
basic scientific librariesin memory/disk hierarchies and Cormen’s thesis[Cor92] presents strategies
for implementing virtual memory systems for data parallel computers. Cole and Zgjicek [CZ89]
consider the cost of synchronization in PRAM algorithms, as does Gibbons [Gib89)].

Finally, Valiant [Val90] and Culler, et a. [CKP*92] break away from the PRAM model and
propose programming models based on point-to-point communication primitives and their costs.
Vaiant’'s BSP model allows processors to execute asynchronously, and models communication
latency and limited bandwidth. Culler, et a.’s LogP is less abstract, and attempts to reflect current
trends in the technology used to construct parallel machines. The model is asynchronous, and

53

uses four parameters to model network latency (7.), communication overhead (o), communication
bandwidth (¢), and the size of the machine (P).

All of these models remove one or another of the PRAM model’s simplifying assumptions.
In theory, this should make the models more reflective of practical situations. However, anayzing
algorithmsin these model sis now much more complicated. Thisisreflected by thefact that only the
most basic primitives, such as summation, permutation, list ranking, FFTS, and matrix arithmetic
have been received much attention under these models. [AGSS89, ACF90, CGO90, CKP*+92,
Gib89, VS92]. In addition, there has been some study of graph algorithms [ACS90, CGO90] and
sorting [NV91, VS92].

For our purposes, this extra complexity is the main reason not to use any of these models
for our analysis. The agorithms that we will study are complicated, irregular, dynamic, and not
yet well understood. In addition, many of these models do not accurately reflect mechanisms
that are available to programmers of current paralledl machines. The asynchronous PRAM does
not make atomic operations such as fetch&add, compare&swap Or queue locks available, even
though every major commercia multiprocessor has such amechanism. LogP model s point-to-point
communication for remote data access, but does not consider the effects of caching and cache-
coherency protocols. The result is that in addition to making analysis difficult, these models are
more difficult to program than the machines they are meant to be abstractions for.

Thehigh level, data parallel model that we have chosen to use gives usthisfreedom to ignore
machine details when they are not important while still keeping us conscious of the machine-level
costs of the primitives used by an agorithm. If we then find that an algorithm’s performance is
severely hindered by a particular bottleneck, we can then turn to more detailed model sto study that
problem inisolation.

3.5 Machine Descriptions

The following sections present short descriptions of the machines used in studying the parald
algorithms in the thesis. After much study, two architectures were chosen, each representing a
maj or design point among current architectures. The Cray represents the more traditional, modestly
parallel, heavily pipelined architecture with alarge, centralized memory. The KSR-1 represents a
new breed of machines with much more available parallelism and a physically distributed memory
system.

The motivation for these choices wasto illustrate the utility of being able to design high level
algorithmsin amachine-independent way, and the practical issuesinvolved in trand ating those high
level agorithmsto efficient machine-dependent code.

We have purposely avoided machines that force programmers to use a message-passing pro-
gramming style. Thisis because al current message-passing systems make it difficult to define
and utilize large distributed data structures. No software or hardware mechanisms are available to
help the programmer manage data which might be shared by multiple processors. Machines with
a centralized memory don’t need such mechanisms while cache-coherent machines, such as the
KSR-1, provide them in hardware. In addition, since large cache-coherent systemsare built on top
of message-passing hardware, they can provide a higher level programming model at a reasonable
cost. Finally, if the programmer really wishes to construct message-passing programs, it ispossible
to use shared memory constructsto do so.

Memory

To Memory

Registers

Figure 3.1: Schematic diagram of the Cray Y-MP.

351 TheCray Y-MP

The Cray Y-MP is a vector multiprocessor. Each “head” of the Y-MP is alarge, pipelined CPU.
Each CPU can execute two kinds of instructions. Scalar instructions correspond to the instruction
set of aconventional architecture while vector instructions take maximum advantage of the CPU’s
pipelined functional units. There arefunctional unitsfor floating point operations, logical operations
and memory operations. The functiona units take input from, and write results to, one of eight
vector registers, each of which can hold 64 words of data. After afixed startup cost, the arithmetic
and logical functional unitsreturn one result per clock tick (see Figure 3.1).

The performance of the memory unit depends on the access pattern of a particul ar instruction.
The Cray memory system is divided into 256 banks. The banks are grouped in four sections each
containing eight subsystemsthat hold eight bankseach. Thus, each section hasatotal of 64 banks of
memory. The memory system isinterleaved so that consecutive words of memory livein different
banks. Aslong as an access pattern avoids even strides (and in particular, stridesthat are multiples
of 32), the memory system can deliver one word per clock tick after an initia startup time. In
addition, the memory unit supports genera routing using scatter/gather instructions. Again, these
instructionswill be efficient except when the access pattern causes bank conflicts.

Compilers for the Cray accept programs written in C or Fortran and, using compile-time
analysis or directives, they find loops whose iterations can be executed independently of one
another. Such loops are called vectorizable, and transforming a program into vectorizable form is
called vectorizing the program. Vectorizable loops can aso be partitioned across multiple CPUs on
the Y-MP. Cray provides automatic tools for achieving this. Aslong aswe are careful to write our
Cray codein acertain style, the Cray compilers can do areasonable job of obtaining good machine
performance.

We can vectorize each class of pardlel instructions in our model. We consider each vector
register element to be one “virtua” processor, or thread of control. In effect, virtual processor
provide a way to in principle translate any shared memory program into vector form. Of course,
such tranglations may not be efficient. A full Cray Y-MP has eight CPUs with vector registers that
are 64 elementslong. Thisgivesus 512 virtua processors to work with. The machine | used only
has four CPUs, for atotal of 256 virtual processors. Loca arithmetic instructions will vectorize

55

Loca Mem.

Data Cache

CPU

Figure 3.2: Schematic diagram of the KSR-1

trivially. We can handle routing using scatter/gather instructions. Finally, scans vectorize well if
we use the clever algorithm of Blelloch, Chatterjee and Zagha [Ble90, ZB91].

352 TheKSR-1

The KSR-1 is a distributed shared memory multiprocessor. While the physical memory of the
machine is distributed among the processors, the KSR-1 provides the programmer with a globally
shared virtual address space. It uses sophisticated cache coherency hardware to support this
programming model. When a thread generates a virtual address for data that does not currently
live in the processor on which the thread is executing, the KSR-1 memory system will fetch the
data transparently from a remote processor. If an algorithm has enough locality, the cost of these
fetches can be amortized over many local operations. If not, the performance of the a gorithm will
be limited by the speed of the memory system. Thus, it is critical to design agorithms that access
memory using localized, |ow-contention patternsto achieve good performance on thismachine (see
Figure 3.2).

Each node of the KSR-1 is a fairly conventional CPU along with 32MB of memory. The
processor is made of up several processing units, the CEU, which executes memory and control
instructions, an IPU for integer instructions, an FPU for floating point instructions, and connections
to the network. The KSR-1 network is a hierarchy of ring networks. Each ring has 32 nodes, and
the top level ring can have up to 34 sub-rings for a total of 1088 processors. The KSR-1 virtua
address space is broken up into 128 byte units units called “sub-pages.” We will use the term
“block” to mean sub-page. When a process generates a virtual address, the KSR-1 memory system
first searchesthe local CPU’s 256K data cache, then the CPU’s local memory for the correct block.
If the block is not available locally, the cache controller puts the request on the first level ring. If
some processor on thisring hasthe block, it isfetched and brought back to the requesting processor.
Otherwise, thenext level of thehierarchy issearched. The memory hardware also usesaninvalidate
protocol to keep cache blocks consistent, and provides atomic operations for locking and unlocking
blocks.

Both C and Fortran compilersare available for the KSR-1. Each comeswith aruntimelibrary

56

Vector T, ni/2
Operation (clocks/elem) | (elements)
Add 1.19 212
Multiply 123 189
Divide 3.87 67

Add scan 2.39 910
Random Permute | 1.89 115
Reverse Perm 1.63 225
Identity Perm 124 146

Table 3.1: Costsfor vector operations on one processor of the Cray Y-MP

that supports multiprocessing through multiple threads. These libraries provide for placement and
scheduling of threads along with mutual exclusion, condition variables, barriers, and so on. The
Fortran system aso has facilities for automatically paralelizing loops, but it isn’t flexible enough
to be useful for our algorithms. All of the implementations use the threads library directly, rather
than depending on a parallelizing compiler.

3.6 Benchmarking

This section presents simple benchmark results for the low level vector primitives. These results
will be used in the detailed analysis of the next chapter.

36.1 TheCray

Each of the low level primitivesin the model correspondsto asimpleloopin C. To benchmark the
primitives on the Cray, we will study the performance of such code after being processed by the
Cray vectorizing compiler. With appropriate directives, the compiler can vectorize al the primitives
except for scans. For these operations, we will make use of a set of library routines developed at
CMU by Blelloch and hisgroup [CBZ90]. Each of theloopswas tested on input vectors of between
100 and 100K elements. Timings were taken using the cpused() library function, which keeps
track of user timein clock ticks. The results reported are for one CPU of a Cray Y-MP. Table 3.1
shows the performance of these primitives. The parameter T is the asymptotic cost per vector
element, and ny, is vector length at which half the asymptotic performance is achieved.

Thevaluesfor T, and ny, are derived experimental ly from aleast squaresfit on the benchmark
data. T’ istheslopeof theling, and ny, isthe absolute vaue of the z-coordinate of the z-intercept
of theline. These are the standard benchmark metrics for vector computers.

The table shows representative values for each of the three classes of instructions in the
model. Division is much more expensive than other forms of arithmetic, so we will avoid it in
our algorithms. Also, the performance of the permute operation depends on the structure of the
permutation. The table shows the cost of the identity, reverse and random permutations. In our
algorithms, we will assume that most permutations are random, so the cost of routing will be about
1.8 clocks per element. For the algorithms that we will discuss, thisis a valid assumption, but it
may not be in general.

57

Elementwise Add

8 4

7 4

6

Time S

Per Element 4 -
(psecs) 3-

L hhhhl

2_
1 E t b E E b

1 |2|2 8 8 8 8 88888
ol b B bENNS 6 b adbhie 5 5H59mE

b bbbl

T T T T T T T T T T T
27 28 29 210 211 212 213 214 215 216 217
Number of Elements

Figure 3.3: Performance of elementwise vector addition on the KSR-1.

36.2 TheKSR-1

Totest theperformance of the primitivesonthe KSR-1, | implemented versionsof all of the primitive
operationsin C using the KSR threadslibrary. Most of the code was ported from the runtimelibrary
used in Chatterjee’'s VCODE compiler for the Encore Multimax [Cha91]. The code was compiled
without optimization because optimization introduced bugs into the parallel programs that were
difficult to track down. Turning optimization on would probably improve absolute performance
somewhat, but al of the relative speedups would remain the same.

Each primitive was tested for vector lengths between 100 and 100K, and with between 1 and
32 threads. Each test was run five times, collecting five sample values from each thread. The
results reported are then the mean from this sample set. We take this approach because the KSR
performance monitor registers are replicated on each processor, so themachinelacksacentra clock.
Therefore, it makes sense to collect one sample time per thread. Most of the graphs also show the
95% confidence interval, but in two, these are left out because they made the graphs unreadabl e.

Figure 3.3 shows the performance of elementwise addition on the KSR-1. The graph shows
the mean runtime over five samples for each thread. The number of threads in each experiment
is used as the plot symbol, and is shown along with the 95% confidence interval for the sample
set. The graph is cleanly split into two regions, depending on whether the vectors fit in the local
data cache of each processor. When the local cache overflows, the runtime for each test increases
dramatically. Table 3.2 showsthe time per element at 10,000 and 100,000 elements for each of the
curvesin Figure 3.3.

The table shows that the cache overflow effect becomes less pronounced as we increase the
number of processors participating in the computation. This makes sense, since more processors
have moretotal cache.

Figure 3.4 shows the performance of add-scan on the KSR-1. The plot is split into two
separate scales so that the relative performance on large vectors is easier to read. In addition,
there are no confidence intervalsin the left hand plot because they provided no useful information.
The cost of a scan is about twice the cost of e ementwise addition, which is consistent with our

58

Number of Threads | 10000 | 100000
1 143 7.57
2 0.79 3.77
4 0.42 1.88
8 0.22 0.94
16 011 0.47
32 0.06 0.23

Table 3.2: Cost for elementwise addition on the KSR-1.

Add Scan (small vectors) Add Scan (large vectors)
22 - - 2.8
20 - bl L) pan
18 | 2 T 2 ol - 2.4
16 L2
Time 14 16 Time
Per Element 12 - "~ —° Per Element
(usecs) 10 2 bbb P P R PPRRRRP 12 (usecs)
84 1
6 - 2 - 0.8
4 ; s 2y b e lalabaia bk bakhhbh 04
B o1 3 8 e
2 8 ﬁmllm 111 E% 8 8§ 888868
ﬁ’?% % 1 3535
T T T T m T T T T
27 28 29 210 211 212 213 214 215 216

Number of Elements

Number of Elements

59

Figure 3.4: Performance of parallel prefix sum on the KSR-1.

Unstructured Permute

5 -
A
N R R TY,
(usecs) 5Py, |4
2 R N B BEBEg,
2 bbby g et)
1- 32 2 32323%232 32 :2 ;2 ;z:e;z:;z 16 16 16 161616646

T T T T T T T T T T T
27 28 29 210 211 212 213 214 215 216 217
Number of Elements

Figure 3.5: Performance of unstructured permute on the KSR-1.

earlier resultson the Cray. The scan routine does not show the cache overflow effect becauseit only
involvestwo vectors, the source and the destination. The KSR-1 datacacheis 2-way set associative,
and avoids the interference effects that we saw in the simple arithmetic benchmark.

The scan routine is structured as two local vector sums with a global sum in between. In
the program, the global sum is performed sequentialy by a master thread, which incurs a large
amount of overhead with large numbers of threads. This overhead inhibits speedup somewhat with
32 threads, for example. Replacing the sequentia routine with a parallel tree-sum would allow the
scan algorithm to scale more gracefully [Cha9l].

Finally, we will examine the performance of permute. As on the Cray, the runtime of this
routine depends heavily on the structure of the permutation. We will test the reversal and random
permutations. The performance of the KSR on the identity permutation would be nearly the same
as in the addition benchmark, since that benchmark is memory bound. The reversal permutation
is representative of a relatively structured communication pattern, while the random permutation
places the highest stress on the KSR-1 memory system.

Figure 3.5 shows the cost of performing unstructured permutations on the KSR-1. To make
the graph more readable, the times for two threads were left off. The lack of locality in the
communication pattern inhibitsthe effectiveness of multiplethreads on thisbenchmark. With small
numbersof threads, the overhead of passing cache blocks between processors dominatestheruntime
of the program, and there islittle or no advantage gained. Larger numbers of threads eventually do
pay off, but efficiency stays|ow.

The performance of the KSR-1 on the reversal permutation is much better, because this
permutation has much more locality than the random one. Figure 3.6 shows that this operation is
only no more expensive than el ementwise addition or scans.

Using linear regression, we can estimate the asymptotic values of A, R and 5. Using the
data from the benchmark experiments, we obtain the following equations with P = 32 in units of
mi croseconds:

A = 1114 .24N
R = 3554 .53N

60

Vector Reversa

2.8 -

50

Time -0 1
Per Element -0 |1 1|ﬂ|1 |ﬁl
(nscs) Ta. Hwhhl bk hkb b PR
3 i L b
08 i ST i
0.4 - ﬁggeezm‘““ BB Mbkbde o op k4 kkBak
02- B G ospitum 5 g bl

T T T T T T T T T T T
27 28 29 210 211 212 213 214 215 216 217
Number of Elements

Figure 3.6: Performance of reverse on the KSR-1.

S = 1920+ .08 N

Therefore, we may use A =~ 8(N/P)us, S =~ 25(N/P)usand R ~ 16(N/P)us. These values
should be used with caution, as they are only valid for this specific configuration of machine and
relatively large problems. Thiswill be useful for our analysisin the next chapter, but these are not
useful asgeneral parametersfor accurately modellingall programs. In particular, on small problems
the startup costs and system overhead that each of these routines incurs will distort timing results
and produce inaccurate answers.

The performance of the KSR-1 on these benchmarks shows that the primitivesin our model
can be efficiently implemented on architectures that are very different from traditiona vector or
SIMD machines. However, the performance of the primitivesis less predictable than on the Cray.
Furthermore, since it is not natural to program the KSR-1 in terms of large memory-to-memory
vector operations, we will seethat relating the performance of these primitivesto real programson
the machine requires more care than on the Cray, where the vector style of programming fits the
machine very naturally.

3.7 Summary

This chapter presented a programming and complexity model for parallel agorithms. The model
isbased on a set of primitive operationsthat act on large, aggregate data structures such as vectors.
In addition, we discussed aternatives to this model and presented our rationae for choosing
data parallel models over the others that are available. Finally, the chapter closed by presenting
benchmarks results that show how the primitives in the model can be implemented on our target
machines. The next chapter will demonstrate that we can use the benchmark results like these to
analyze implementations of relatively simple agorithmsvery accurately.

61

Chapter 4
Concurrent Local Search

toy prablem: [Al] n. A
deliberately oversimplified case
of a challenging problem used to
investigate, prototype or test
algorithmsfor areal problem.
—The Jargon File

In Chapter 2, we saw how asimple bucket-based data structure could be used to speed up sequential
algorithms for constructing the Delaunay triangulation. Buckets capture the locality inherent in
the Delaunay triangulation construction problem, and provide a simpleway to exploit that locality
to obtain good performance. This chapter will show how to exploit locality in parallel agorithms
by using many concurrent threads all searching a local area of a shared data structure. We will
illustrate this technique, which we will call concurrent local search, by paralldizing the spira
search algorithm from Chapter 2 to solve the all-nearest-neighbors problem. The sections below
will describe the algorithm and show how it is implemented on each of the two target machines.
The analysis and implementation of this algorithm illustrate the usefulness of parameterized cost
modelsin developing simple a gorithms on multiple architectures.

41 TheProblem

Recall that we are given a set .S of » points. For each s € 5, wewishtofind thepoint pin .S — {s}
which is closest to s under the Euclidean metric. This corresponds to the original definition of
the problem, but with ¢ = 5. As before, the algorithms assume that the input is a set of points
uniformly distributed in the plane. However, we will discuss how to adapt the algorithmsto handle
non-uniform inputs.

4.2 TheAlgorithm

The agorithm is a parallelization of Bentley, Wiede and Yao's spiral search agorithm [BWY 80].
This algorithm starts by bucketing the pointsin ' into auniform grid of \/n/c by \/n/c cells. We
call the parameter ¢ the cell density. After the bucketing phase, the expected number of points that
fal intoacell will be c. Onecan use different cell densitiesto tunethe performance of the algorithm
in a particular environment, as we did in Chapter 2. To simplify the analysis in this chapter, we
assumethat ¢ = 1. To find the nearest neighbor of a query point ¢, the algorithm finds the bucket
that ¢ liesin and searches in an outward spiral for a non-empty bucket B. Then it searches al
bucketsthat intersect acircle whose radiusisthe distance between ¢ and somepointinp € B. Each
guery point is processed in thisway until all the queries have been answered.

62

Bentley, Wiede and Yao show that on inputsfrom alarge class of distributions, this agorithm
only searches a constant number of buckets per point, on average. Thus, the agorithm solvesthe
all-nearest-neighbors problem in O(n) expected time.

To solve this problem in parallel, we will parallelize the spiral search. That is, build the
bucket structure in paralel, and execute the search stepsin paralel. The locality inherent in the
spiral search alows the agorithm to exploit a high level of concurrency. Since each search task
examines only a small part of the shared data structure, many tasks can work in parallel without
fear of conflict.

The next section will describe a parallel/vector version of this agorithm. In addition, it will
provide arunning analysis of an implementation on the Cray Y-MP. Afterwards, we will see how
the same same algorithm, with minor modifications, a so exhibits good performance on the KSR-1.
Thiswill illustrate that although the original algorithm was designed with a shared-memory vector
machine in mind, it doesn’t depend on any of these features for good performance.

4.3 All Nearest Neighbors on the Cray

For the Cray agorithm, the runtimewill be expressed in terms of clock ticks per vector element per
CPU. For large vectors, we have that A =~ 1.2, R ~ 1.8 (for random permutations) and 5 ~ 2.4.
Sincethe Cray isavector machine, we add one more model parameter, I, = 64 to reflect the number
of elementsin each vector register. Thisisameasure of the amount of parallelism that each CPU
can emulate. At this time, the algorithm does not take advantage of multiple CPUs, so P = 1.
However, sincethe agorithmisamost fully vectorizable, itislikely that it could take advantage of
multiple CPUs using the automatic paralldlization facilities in the Cray compilers.

The first step is to vectorize the bucketing phase of the algorithm. Thisisn't too hard. We
first compute a histogram of the keys so we know how many list nodesto allocate, then we ship the
pointsto the correct places in the bucket structure (see Figure 4.1).

In the parallel procedure, the array 1ast keeps track of how many sites have falen into each
bucket. The scan operation computes the first element of nodes that falls into each bucket. The
second loop then fillsnodes with pointersto the sites that belong to each bucket. At the end of the
second loop, buckets will contain theindex of thefirst site in each bucket and 1ast will contain
the index of the last site in each bucket. So, the sites contained in some bucket & are stored in
nodes[buckets[b]] to nodes|last[b — 1]] (see Figure 4.2).

The main problem with implementing the code in Figure 4.1 is dealing with write collisions
on elements of thelast array. We can detect and such collisionsin the following manner. Initialy,
each virtual processor isholding avaueto writeinto the array dest.

First, each virtual processor first writes its processor number into an array caled test.
(Figure 4.3, part A). Every VP then examines test and compares the value there to its ID. Every
virtual processor that reads itsown ID back from test can safely writeinto dest (Figure 4.3, part
B). The routine then processes the remaining V Ps sequentially (Figure 4.3, part C).

The analysisthat followswill show that for uniformly distributed sites, the average number of
collisionswill be small, so the seria part of the bucketing loop will not become a bottleneck. First,
we can see that the cost of the codein Figure4.1is:

(S+T7A+5R+ (A+25+ R))n+ 2I¢.

There are four arithmetic operationsto compute the array indices, two to incremental the histogram
lastsand one morefor thewrite of i into each table entry. The routing operations comefrom thetwo

63

// sites[0..n-1] = array of sites
// nodes[0..n-1] = array of list nodes
// bindex[0..n-1] = bucket index
// buckets[0..n/c-1] = array of buckets
// last[0..n/c-1] = histogram
foreach i = 0 to n-1
begin
bindex[i] := index of sites[il;
last[bindex[i]]++
end
buckets := last := scan-plus(last)
// The following loop assumes that write
// collisions on the last array are taken
// care of so all processors get a correct index
// into nodes.
foreach i = 0 to n-1
begin
nodes[last[bindex[i]]++] := i
end

Figure4.1: A parald loop to bucket points. In thefirst loop, each point is hashed according to its
coordinates and the size of each bucket iscomputed. The scan-plus operation computesthe starting
position of each bucket in the nodes array. Then, the points are routed to their destinationsin the
second loop.

Buckets] Sites
-] __//];;;;;\\\////_\\\\
N o I I
Last [T

Figure 4.2: The bucket data structure.

fetches from bindex, two fetches from last, and one fetch from nodes. Theextra(2A + 5 + R)
counts the cycles needed to deal with possible collisions. This term accounts for the cost of the
pack and append operations. The append operation can be implemented as a scan plus a block
copy into a statically allocated array holding write-queue. Thisaccountsfor A + 5 cycles. The
other S + R accounts for the pack. Here we conservatively assume that we need to do one pack
and one append per iteration. Finally, T isthe average cost of the sequential code at the end of
the routine. For each collision we must do some arithmetic and one memory write which will take
roughly 30 cycles on the Cray, so the expression above becomes:

28n + 60C" cycles,

where C' is the total number of collisions. Aslong as C' is small compared to », this routine will
run in 28 cycles per site, on average.

Using the“birthday paradox,” we can see that the expected number of collisionsin each group
of L siteswill be L(L — 1)/2n [CLR90]. On average, the total number of collisionswill be

L(L-1)n
C= o I (L-1)/2
We concludethat aslong as 7. issmall compared to n, the bucketing routinewill perform well when
the sites are uniformly distributed.

Oncewehavebucketed the points, we can use Bentley, Weide and Yao’sspiral search technique
to do nearest neighbor searching (see Figure 4.4). For each query point, ¢, thespiral searchisdivided
into two phases. In thefirst phase, we find the bucket that the point liesin and search in an outward
spiral until we find a non-empty bucket. We then calcul ate the distance D between the query point
and some point in this bucket. In the second phase, we compute the nearest neighbor of the query
point by examining every point that lies within a bucket intersecting a circle of radius D centered
a ¢. For simplicity, the algorithm checks any bucket that intersects a square of side 2D centered at
g. Thus, the agorithm searches D layers of buckets centered at the bucket that ¢ falsin. If ¢ lies
in bucket (4, j), then the k*h layer of buckets away from ¢ is defined as all buckets (I, m) such that
gtheel =it kadj—k<m<j+kom=jtkandi—k<I<i+k.

The main obstacle to vectorizing this algorithm is that some searches may take much longer
than others, so we will have to be careful about load balancing to keep all the virtua processors
busy. A straightforward way to do thisis to create a virtual task for each query point. This task
isn’t really atask in the operating systems sense since it only keeps the state necessary to perform
spiral searching. To do the search, the a gorithm has each task do one search step, and then check to
seeif itisfinished. It then usesacall to pack to delete any finished tasks, and iterates this process
until al the tasks have finished. This scheme uses a small amount of overhead to ensure that no
search task does any extrawork. The parallel agorithm will do no more work than the original
sequentia algorithm, except for the overhead dueto pack. In our algorithms, the expected number
of iterations through this loop is constant, so the total overhead due to pack is aso O(N) work.
Therefore the total expected work done by the parallel agorithm algorithm will be O(N).

The load balancing scheme is complicated by the fact that the spiral search loop has a triply
nested structure. The outermost loop iterates over the layers of buckets that the spiral search is
examining. The second level loop iterates over buckets that lie in each layer, and the inner-most
loop iterates over points that lie within each bucket. It is the inner-most loop that does the actual
distance computations.

65

// dest[bindex[i]] := dest[bindex[i]]+1
// L virtual processors numbered from 0 to L-1

foreach i=0 to L-1 pnum[i] := i
offset := 0;
write-queue := [];
while (offset < n) do begin
// Part A

// each virtual processor writes an ID and reads it
// back to check for collisions
foreach i = 0 to L-1 begin

tindex[i] := bindex[i+offset]
dest[tindex[i]] := pnum[i]
test[i] := (dest[tindex[il] = pnum[i])
end
// Part B

// those who detect no collisions go ahead
foreach i = 0 to L-1 begin
if (test[i])
dest[tindex[i]] := dest[tindex[i]]+1
end

// Part C

// Put other indices onto a queue for
// sequential processing.

if some element of test is zero begin

num-zero := pack(tindex,tindex,not test);
append tindex to write-queue;
end

// Now do the next batch of L writes.
offset := offset + L
end

for i := 1 to length(write-queue) begin
dest[write-queue[i]] := dest[write-queuel[i]]+1
end

Figure 4.3: A three-phase loop to handle implement apermute operation that allows collisionsin
the destination vector. In the first loop, each processor writes a unique ID into the destination and
then looksto see if the write was successful. If it finds that no other processor has written into the
samelocation, writesitsresult valueinto that location. Inthiscase, it incrementsthedestination. In
the third loop, processorsthat did not find their ID in the destination must be handled sequentially,
since they have collided with some other processor.

66

~ —

Figure 4.4: Spiral search to find a near neighbor.

layer := 0
numtasks := N
while (numtasks > 0)
foreach i = 0 to numtasks-1 begin

tasknum[i] := i
<Prepare for this layer>
end

doOnelLayer(layer, numtasks, tasknum)
foreach i = 0 to numtasks-1 begin

done[i] := <Task is finished>
end
numtasks := pack(tasknum, tasknum, not done)

end

Figure 4.5: The outer loop of the spiral search agorithm.

The outer loop of each search walks over layers of buckets. After each layer, the algorithm
must delete tasks which have finished. It does thiswith a call to pack at the end of each iteration
(see Figure 4.3).

Each time the algorithm moves to a new layer, each task checksto seeif it isdoneand if not,
it pre-calculates some information for the bucket loop. The cost of these calculationsis about 13A.

Ingeneral, atask survivesto layer k only if thefirst point found by theinitial stage of the spiral
search agorithmwas morethan k — 1 layersaway from thequery point. Thismeansthat & — 1 layers
of buckets must be empty. Since the probability that a given bucket isempty is(1— ¢/n)™ < e™¢,
the probability that £ — 1 layers of buckets are empty is O(e"“z) [BWY80]. Thus, the algorithm
deletes at least one half of the current tasks each timeit movesto anew layer, so the total expected
time needed for thisbookkeeping is 2n(13A + 25 + 2R) or about 48 cycles per point.

The next loop level walks over the buckets within a layer (see Figure 4.6). Each time the
algorithm moves to anew bucket, each virtual processor updatesits bucket index, does a boundary
check, and then participatesin acall topack. Any task which haswalked through all of its buckets
will be deleted at this point. Thistakes 3(A + R) + 25 time. When ¢ = 1, the algorithm does
one distance calculation per bucket, so the expected loop overhead for walking over the bucketsis
nD(3A + 3R + 25) time, where D isthe average number of distance calculations that each point
performs. We will calculate avaluefor D below.

The inner loop of the algorithm does a distance cal culation between the query point and each

67

doOneLayer(layer, numtasks, tasknum)
for each bucket in this layer
foreach i = 0 to numtasks-1

temp[i] := tasknum[il

<do boundary check on next bucket>

done := <boundary check failed>

bindex[i] := bucket(tasknum[i])

done[i] := done or <bucket bindex[i] empty>
end
numtasks := pack(bindex, bindex, not done)

pack(temp, temp, not done)
doOneBucket (numtasks, temp, bindex)
end
end

Figure 4.6: The second outer loop of the spiral search algorithm.

doOneBucket (numtasks, tasknum, bindex)
bi :=0
while (numtasks > 0)
foreach i = 0 to numtasks-1
Check nodes[buckets[bindex[i]]]+bi]

done[i] := (bi > last[bindex[il]
pack(bindex, bindex, not done)
numtasks := pack(tasknum, tasknum, not done)
bi++

end

end

Figure 4.7: Theinner loop of the spiral search agorithm.

member of each bucket (Figure 4.7). Again, after each distance computation, the algorithm [ooks
for taskswhich have finished with their bucket, and packs them away.
Bentley, Weide and Yao show that we can express D as a sum:

D= Ze—dou),

where ¢ is the number of cells searched in the first stage. We would like a more exact estimate of
this number. Since the coefficients are exponentially decreasing, it suffices to consider just the first
few terms of this sum to work out an accurate approximation. If thefirst cell is not empty, then the
algorithm searches the first cell and the eight cells around it. If the first cell is empty, but one of
the next eight is not, then we must search the 25 cellsin thefirst two layers around the point. The
expected number of distance computationswill then be

D=9%(1-e)+ Y 25ce*+E
1<k<7

68

where _
E=Y"e0().
i>8
In order to show that F isnegligible, consider the integral

b b
/ e fde = e —xe x|, (*).
If weset « = 8, and consider (*) as afunction of b, we have that

J(b) =98 — (14 b) e,

which converges to 9e=8 ~ .003 as b — oc. We can therefore conclude that £ will be small
compared to the first few terms in the sum describing D. For ¢ = 1, this sum tells us that the
algorithm performs approximately 20 distance cal culations per site. For each distance calculation
wemust increment and check anindex, load theappropriatesite, perform aninner product cal cul ation
and update the running minimum. Thistakes

(2A+2R)+ 4R+ 3A+ (2A+ 3R) = 84 4 9R.
When we add in the overhead for load balancing, the total expected time works out to be:
20(25 + 11R + 8A)n.

On the Cray, thiswill be about 684 cycles per site, or 4.1us per site. Using thisvalue of D, we can
conclude that the outer loop of the algorithm uses about 252 cycles per point.

Putting everything together, we have that the whole algorithm will use about 985 cycles, or
about 6. per point, on average, to solve the all-nearest-neighbor problem.

4.4 Measurements

I have implemented the above algorithmin C, mixed with callsto Blelloch, Chatterjee, and Zagha's
[CBZ90] assembly language routines for pack and scan-plus. The code aso runs on my Sun
workstation, which proved to be an invaluable aid for modifying and debugging off-line from the
Cray.

In addition, | have implemented a C version of Bentley, Wiede and Yao's original algorithm.
By comparing the vector algorithm to the sequential, | obtain a more redlistic idea of how efficient
the vector agorithmis.

Since the algorithm spends most of its time doing distance computations, the first logical
parameter to check isthe number of distance calculations that each algorithm performs. Figure 4.8
shows the number of distance computations per point that each of the implementations performed
as afunction of the size of the problem. The graph shows a summary of several runs at each inputs
size. Thedotsin the graph represent the median values of thetrias, while the vertical lines connect
thefirst and third quartile values to the minimum and maximum val ues respectively.

Figure 4.8 shows that the average number of distance calculations performed per point is
bounded by a constant near 15. Thisis close to the value predicted by the analysis. The sequential
algorithm performed fewer cal culations because it never computes the distance between a point and
itself, while the vectorized algorithm avoids the extra conditional check at the expense of a few

69

Comps

Serial

Vectorized

15 -
145 -
14 -

Ste 1354
13 4

12.5 1

- 15
- 14.5
- 14
- 13.5
- 13
- 12.5

Time
Per Site
(p1secs)

210 211 212 213 214 215 216 217
Number of Sites

210 211 212 213 214 215 216 217
Number of Sites

Figure 4.8: Distance computations per site for each algorithm.

85
80
75
70
65
60
55
50

210

211

212

213

214

215

Number of Sites

216

217

218

Comps

Site

Figure 4.9: Time per point for the spiral search algorithm on a Sparcstation 2 (microseconds).

70

(a) Serid (b) Veectorized
I
3700 4 CY X L 1050
3650 - Cat ! | - 1000
3600 1
Clocks 3550 - | P ! "0 Clocks
P 3500 - 900 Per
Site ! | 850 Site
3450 1 !
3400 ~ A
3350 - - 750

T T T T T T T T T
210 211 212 213 214 215 216 217 218
Number of Sites

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 4.10: Time per point for the spira search algorithm on the Cray (6ns clocks).

extra computations. On the Cray, this is a good tradeoff since conditionals are expensive inside
vectorized loops.

Figure 4.9 shows the runtime of the scalar algorithm on a fast workstation. The timingswere
taken on a Sparcstation 2 with 64MB of memory, using "gcc -02". The graph shows that the run
time of thisalgorithm tops out at about 80u:s per point for the problem sizesthat | tested. Obtaining
agood asymptotic performance model for thiscode proved to be difficult due to cache effects. Note
that the runs on smaller problem sizes display alinear run time until the problem istoo big to make
effective use of the workstation’s cache. In fact, for large problem sizes, aregression model of the
runtime data indicates that the expected cost of the code is roughly proportional to 3.3logn + 40,
which is about 80us when 7 is 28, Figure 4.9 showsthat thisfit is accurate for large n, but less so
at small values of n.

Figure 4.10 showsthe performance of both the scalar and vector algorithmson the Cray Y-MP.
The code was compiled using the Cray standard C compiler using the highest available scalar and
vector optimization levels, but no multitasking. The Cray run timesare given in units of 6ns clock
cycles. Thus, Figure 4.10a showsthat the scalar code on the Cray uses about 3690 cycles, or 22.1us
per point.

Figure 4.10b shows the performance of the vectorized a gorithm on one processor of the Cray
Y-MP. Least squares regression indicates that the asymptotic run time of the algorithm is about 773
cycles per point, or 4.6us per point. Thisisabout 4.77 times faster than the scalar time on the Cray,
17.24 timesfaster than the run time on the workstation, and 600 times faster than the timeoriginally
reported by Bentley, Weide and Yao for this a gorithm when implemented on a PDP-10 [BWY 80].

45 Extensionsand Applications

Although the current algorithm performs well on uniformly distributed point sets, its performance
on non-uniform sets is suspect. Bentley, Weide and Yao show that their sequential implementation
still performs well even when the points are non-uniform. To check their results, and examine the
effect of non-uniformity on the vectorized a gorithm, | ran another set of trialswith clustered inputs.
The clusters were generated using the formulas z = p, + o, and y = p}, + o, Where o, and o, are

71

Comparisons Run Time

I

60 - | | - 2100

55 - - 2000

50 - .o | | L1900

Comps 45 | ‘ . - 1800 Clocks

Per 20 | . | 1700 Per
Site] | ° ‘ 1600 Site

B ! . ‘ - 1500

30 ‘ | | 1400

25 - 1300

T T T T T T T T T T T T T T
210 211 212 213 214 215 216 210 211 212 213 214 215 216
Number of Sites Number of Sites

Figure 4.11: Performance of the vectorized agorithm on clustered inputs.

normally distributed and p’, and p;, are chosen at random for i = 1,2, ---10. | set the scale on the
normal to .1 to model mild clustering.

Figure 4.11 showstheresultsof these experiments. These Figuresindicate that mild clustering
slowsthe agorithm down by afactor of two, which is consistent with the earlier results reported by
Bentley [BWY80]. More severe clustering would degrade performance even more, in a way that
would be similar to the behavior of the point |ocation algorithm in Chapter 2.

For point sets that are extremely non-uniform, we can add a pre-processing phase to the
algorithm that attempts to adapt the bucket grid to the distribution of the input. This phase would
useasmall sample of theinput to define anon-uniform bucket grid, and then woul d further subdivide
these buckets in a uniform way. If the sample is a good predictor for the real distribution of the
points, then the distribution of points within the new bucket structure will be smooth. Weide shows
how to use this technique in the context of conventiona algorithms [BWY 80] and many parallel
algorithms have used random sampling in asimilar way [BLM 91, GG91, RS92].

4.6 Discussion

The analysis of thisalgorithm is an accurate upper bound on the rea performance of the program.
The actua run time of the agorithm is about 20% better than the analysis predicted. We can trace
this discrepancy to two incorrect assumptionsin the analysis. First, we assumed that acall to pack
would cost one scan and one routing operation, or about 4 cycles per element. In fact, the assembly
language routine for pack overlaps the scan with the routing operation and only costs about 2.5
cycles per element. Second, my analysis predicts that the number of iterations through the inner
loop per point is about 20. The actual constant isonly about 17. If we re-calculate the cost of the
algorithm with these new values, we get about 741 cycles per point, which isalittle too fast. The
Cray C compiler didn't really vectorize al of the bucketing code. It could not fully vectorize the
last loop, even though it is clear the loop can be vectorized using the collision resolution technique
shown in Figure 4.3. This makes the bucketing routine run about a factor of two slower than the
analysis predicted, but it isasmall effect since thisroutineis not a large percentage of the total run
time.

72

These discrepancies illustrate the inherent difficulty of exactly modeling the behavior of the
complete Cray system from the compiler through the hardware. The result is that parts of the
resulting program are somewhat faster than my analysis predicted, while other parts are somewhat
slower.

The performance of the Cray implementation shows that the analysis was accurate. Thisis
satisfying because the only constantsin the analysis are dependent on the Cray architecture, so by
reassigning the costs of the primitives, we can easily redesign the agorithm for other machines.
Section 4.7 will discuss thisin more detail .

Thecritical assumptionthat isnecessary for the algorithmto perform well isthat the size of the
input is much larger than the amount of parallelism available in a given machine. Thisiscritical to
keeping all processors busy, and for guaranteeing good load balance. Because of this, the algorithm
needs large per-processor memoriesto hold problems big enough to be effective. Thisisnot realy
much of a problem, since the current generation of paralel architectures al have per-processor
memories that are large enough to handle big problems.

Finally, the performance of the algorithm compares well with the performance of the linear
time sequentia algorithm, but it could be better. The anaysis, and experimental data provided by
the Cray performance measurement tools show that the inner loop is memory bound, doing nine
indirect memory operations in order to perform eight arithmetic operations. Thus, the algorithm
uses too much memory bandwidth for each unit of “useful” work. The key to speeding up the
algorithm even moreisto, if possible, simplify the data structure so that it uses less indirection, or
to simplify the structure of the parallel 1oopsto remove as much overhead as possible.

4.7 Implementation for the KSR-1

The KSR implementation of this algorithm follows the same basic outline as the Cray, except that
it uses concurrent threads to perform the parallel work rather than vector pipelines. For example,
the bucketing stage of the algorithm constructs linked lists of pointsfor each bucket directly, using
a simple locking protocol, rather than the histogram and scan routine we used on the Cray (see
Figure 4.12). Each thread is given alocal pool of nodes to allocate list elements out of. The
private counter next_bucket keeps track of the next free node. The algorithm never frees nodes,
S0 a more sophisticated memory management routine is not needed here. Using private counters
also avoids the large amount of contention that a shared counter would incur.

The code in Figure 4.12 is in a somewhat different style than traditional data parallel code.
In particular, it uses an asynchronous programming style that is not generally associated with data
parallelism. All of our implementations on the KSR-1 will have this characteristic, but as we will
seg, it is perfectly possibleto analyze the algorithmsin the data parallel framework that we defined
in Chapter 3. A need for reasonabl e performance drives our choice of thisprogramming style. Since
global synchronization is an expensive operation for MIMD multiprocessor to perform, it would
not be reasonable to execute a more traditional, synchronous data parallel program directly on the
KSR-1. First, the program must be transformed to into larger, more asynchronous pieces. In the
future, thistransformation may be done automatically by acompiler (see, for example, Chatterjee’s
thesis [Cha91]), but at this time, no such compiler exists in a production environment. Thus, our
KSR programs may be thought of as what a sophisticated compiler might produce when asked to
translate data parallel programs into efficient code for a MIMD multiprocessor.

We will model the performance of this code using the benchmark numbersfor local arithmetic
and permutation routing from Chapter 3. To obtain a lock, a thread must fetch the cache block

73

% next_bucket is a shared global counter
private int next_bucket;

foreach point P {
idx = bucket index of P;

lock(&buckets[idx]);

head = buckets[idx];
new = next_bucket;
next_bucket++;
nodes[new] .next = head;
nodes[new] .p = 1i;
buckets [idx]

new;

unlock(&buckets[idx]);

Figure 4.12: Threads code for bucketing points.

containing the lock variable and obtain exclusive ownership of it. Since thisislikely to involve a
remote fetch, the cost of this operation is well-modeled using the permute benchmark. We will
call thiscost R. Therest of the loop performs simple arithmetic, and updates local data structures.
Thiscost iswell-modeled by the elementwise-add benchmark. We will call thiscost A. With P
processors, A = 8 microsecondsper point per processor, while R isapproximately 16 microseconds
per point per processor. The cost of the above loop will then be (R + 3A)(n/P), or about 40 us
per point per processor.

After bucketing the points, each thread executes the same algorithm as the seria spiral search
algorithm. Figure 4.13 describes the structure of the inner loop: The cost of each iteration in this
loop is bounded by 3R for the remote fetches of the bucket and point data, 8A for bucket index
and distance computations, and another 2A for the conditional update of the nearest neighbor array.
Thisisatotal of 128 us per iteration, or 2176 us per site. Thisisavery inaccurate upper bound on
therea performance of the algorithm. The problem is that the parameters R and A both implicitly
charge for memory operationsthat are not actually occurring in thisloop.

To remedy this, we first note that each distance calculation has the following structure:

load data for p

distance-calc(p,q) {
load data for q;
locally calculate dist(p,q);
conditionally update nearest-neighbor;

}

Now, we can easily write a small synthetic program (like the benchmarks from Chapter 3) to
simulate this behavior, and use its performance to analyze the inner loop of the spiral search
algorithm. Figure 4.14 shows the performance of the KSR on thisbenchmark. Asbefore, the mean
is plotted with the number of threads for that trial, and the vertica line indicates the confidence

74

// Let p be the query point.

// Let 1 be the number of layers that we need to search.
// Let x,y be the bucket that the query falls into.

// There are n#*n buckets.

minx = x - layer; if (minx < 0) minx = 0;
miny = y - layer; if (miny < 0) miny = O;
maxx = x + layer+1l; if (maxx > n) maxx = n;
maxy = y + layer+1l; if (maxy > n) maxy = n;

min = 1.0e99;
for(i=minx; i < maxx; i++) {
for(j=miny; j < maxy; j++) {
for each point q in bucket[x,y] {
d = dist(p,q);
if (d < min) { min = 4; NN[p] = q};
}
}
}

Figure 4.13: Inner loop of the spiral search.

Procs. | Benchmark | 17 - Benchmark Actua | % Error
4 3.197424 54.35 | 70.369640 22%
8 1.683282 28.56 | 36.354937 21%
16 0.931272 15.81 | 18.354905 6%
32 0.618577 10.50 | 11.544979 9%

Table 4.1: Comparison of synthetic benchmark valuesto actual runtime.

interval for the sample.

The performance of the synthetic program indicates that the cost of each distance calculation
isdominated by thetimeit takes to fetch information on q. Thisisn't surprising, sincethealgorithm
distributesthe point datain abasically random fashion. With the datafrom runswith 32 processors,
alinear regression model predictsthat the cost of the benchmark loop is 308 + .63n microseconds.
If thisisthetrue constant, cost of theinner [oop of the algorithmis approximately 20 us per distance
computation. Therefore, the cost of the inner loop is about 340 s per point per processor, and the
whole search costs 380 1S per point per processor.

Comparing this estimate with the actual performance of the program shows that our perfor-
mance model is accurate, at least for large problems. Figure 4.15 shows the performance of the
concurrent spiral search algorithm on the KSR-1 for 4, 8, 16 and 32 processors. The figures show
that the synthetic program is an cost model for the actual application, at least asymptotically. From
our earlier experiments, we know that the spiral search agorithm performs roughly 17» distance
calculations. For n = 10, 000, the average val ues shown in Figures 4.14 and 4.15 for each machine
size are shown Table 4.1. When we remember that that init_buckets takes up about 10% of the
total runtime of the algorithm, it is apparent from thetable that the runtime of the parallel algorithm
iswithin 10% of 17 times the runtime of the benchmark.

75

Distance calculation loop

8 -
il
|
Time
Per Element }4
b 7 g bblg i YT

16 B
%
24 2 %g 16 Pbgg

32%%(231%% . B B I8 I8gBIgES 8 B 18 188B1BIBGE

3

14 %2 %g %g 16 161616446 16 16 16 161616666
32 B23BRABZD 2 32 32 RIBBBB

T T T T T T T T T T T
27 28 29 210 211 212 213 214 215 216 217
Number of Elements

Figure 4.14: Performance of the synthetic benchmark.

Parallel Nearest Neighbor Search

o
bbb T
60
Time 50 -
Per Site
! b F
(psecs) 40 L |" |4 |4|"|4|4I8,3 b b b BBBBE
30 + |4
20 8 B & BBE Bgl% 16 16 16 16161616166 6 46
10 4 ¥ # I8 8 &g;g%g;zz R 32 32 3233BBE2 2 3

T T T T T T T T T
210 211 212 213 214 215 216 217 218
Number of Sites

Figure 4.15: Performance of the concurrent local search algorithm on the KSR-1.

76

Parallel Nearest Neighbor Search

35
30
p p B ® 20 3282327 »
25 % -
7] :t2$2
Speedup 20 - Ry,
15 4 w0 p ¥ 6 188 16 16 16 16161616166 6 15
16 161616
10 16 16 16
8
5 e e o © 8 g ggB 8 18 8 BBBBSB CHE
') ') ,4'4'4-4|4|4|4|4 M 4 4 4 4uluy ¥y oy

T T T T T T T T T
210 211 212 213 214 215 216 217 218
Number of Sites

Figure 4.16: The parallel algorithm compared to one KSR node. The plot symbols are the number
of threads for each test.

The following profile shows us why thisisso. The spiral search program spends almost all of
itstimein the inner loop modeled by our benchmark:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
46.4 107.04 107.04 400000 0.27 0.27 find_pt [2]
29.0 173.94 66.90 next [4]
8.5 193.50 19.56 drand48 [5]
5.6 206.50 13.00 40 325.00 325.00 init_buckets [10]

Since this is a profile of the entire execution, the time needed to generate the points is
included. Thetwo routines drand48 and next are executed during thisphase. In the search phase,
init_buckets performs the bucketing loop and find_pt performs the spiral search. A more
detailed profile of £ind_pt shows that the inner loop of the spira search accounts for most of the
runtime.

Finally, we need to compare the performance of the paralle agorithm with the performance
of the original algorithm. We will compare the parallel agorithm against both a single processor
of the KSR and the SPARC-2 workstation from before. The first comparison provides information
about how the algorithm will scale on a given pardlel architecture, while the second evaluates the
algorithm on a cost/performance basis.

Figure 4.16 shows the speedup of the pardlel algorithm over the serial one running on one
KSR-1 processor. As before, the mean is plotted with the number of threads for that trial, and the
vertical line indicates the confidence interval for the sample. The graph shows that the algorithm
scales well as we add processors. The main sources of overhead are lock contention in the bucket
phase, and communication overhead in the search phase. The former does not contribute much
to the total runtime of the algorithm, and the latter becomes small as needed cache blocks are
replicated. Therefore, the algorithm obtains close to optimal speedup.

Figure 4.17 compares the paralel spira search algorithm against the serial spiral search
running on my SPARC-2. The relative speedups are better for small problems sizes because on

77

Parallel Nearest Neighbor Search

9 + ‘Jf21;2
2 2 52

8 - #32 {32 1‘ 1;
7 b A R R g 2R)
6- *®

ls {6 1616 16,616

Speedup 54 Is

44 146 16 16 16 16161616166 16
3+ 8 B B BgBge
2 1 u la P RTRRN L 8 18 8 8 88BBE 8
1+ uy 4 4 v uuuudy u

T T T T T T T T T
210 211 212 213 214 215 216 217 218
Number of Sites

Figure 4.17: The parallel algorithm compared to a Sparcstation.

those problems the parallel agorithm makes better use of theloca data cache. However, once the
K SR processors begin to depend on their large main memories for data, the relative performance of
the parallel agorithm degrades. Thisis caused by overhead associated with maintaining a virtua
address spacethat isshared by many processors, including cache directory lookups, fetching remote
cache blocks, and so on. This memory overhead, and the fact that each KSR processor isrelatively
slow compared to the SPARC CPU are the main obstacles to obtaining better speedups with this
algorithm.

4.8 Summary

This chapter has presented the design and analysis of a simple, parallel algorithm for the all-
nearest-neighbors problem. The agorithm executes efficiently on both centralized and distributed
memory systems, and may be used as a basis for solving many other proximity problems for
points that are independently chosen from smooth probability distributions. In addition, we have
constructed accurate performance models of both implementations by combining the use of well-
known techniques in algorithms analysis and simple cost models derived from benchmarking the
primitive operations of the vector programming model on thetarget machines. Finaly, we saw how
to use additional synthetic benchmarks to model the cost of the inner loop of the algorithm when
the bounds given by the standard cost parameters were inaccurate.

The main purpose of this chapter was to illustrate that it is possible to design effective
algorithms that can both be implemented and accurately analyzed. The concurrent local search
ideaworks very well in this context, because it allows many concurrent threads to process nearest
neighbor queries without much contention on the main data structure. However, it isnot a genera
solutiontotheproblem. In particul ar, when the pointswerenot uniform, we saw that the performance
of the algorithm degraded rather drastically. Thus, an interesting avenue for future work would
be to investigate the design of methods that are not as sensitive to worst-case inputs as the simple
spiral search. Two promising techniques would be using sampling to construct two-level bucket
structures or Bentley's “ semi-dynamic” %-d treesWei 78, Ben90].

78

Chapter 5
Parallel Delaunay Triangulation Algorithms

Dragons of the highest
probability were everywhere,
even in the streets of the capitol,
and the place literally swarmed
with virtuals.

—Stanislaw Lem [Lem85]

Thischapter beginsour study of parallel agorithmsfor constructing the Del aunay triangulation.
Sections 5.1 through 5.3 will survey the current theoretical literature on this problem, and will aso
provide a basic overview of randomized divide and conquer, which has recently emerged as a
useful technique in parallel algorithms design. It is the basis of severa fast sorting algorithms
[BLM*91, PHR92], and the technique extends to geometric algorithms. Section 5.4 presents the
framework in which we will design such agorithms, and sections 5.5 through 5.8 will propose and
analyze a paralel randomized divide and conquer algorithm for constructing the Voronoi diagram.

Whilethe theoretical analysis suggeststhat the algorithm will be able to make effective use of
a multiprocessor, the experimental analysis of this algorithm indicates that its constant factors are
too high to make it effective in practice. Never the less, it isuseful to study this algorithm because
it provides necessary background in randomized a gorithms and probabilistic analysis, and because
it illustrates how careful experiments can be used to evaluate algorithms before embarking on a
time-consuming implementation project.

5.1 Paralld Divide and Conquer

In her thesis, Chow [Cho80] presents a PRAM agorithm that constructs the Voronoi diagram of n
pointsin O(log® n) timeon O(n) processors. The agorithm makes useof awell-known relationship
between the £-dimensional Voronoi diagram and the & + 1-dimensional convex hull [Dwy88, GS85].
Let S be aset of » sites in the plane, and imagine projecting them into three dimensions using
the function f(z,y) = (z,y,22 + y?). The sites are projected onto a paraboloid of revolution in
three-space. Now, suppose that a site (z, y) lies inside the circle centered at (p, ¢) with radius r.
Then
(z=pP?+(y—-q?<r?
whichistrueif and only if

(2% + y?) < p* + ¢* — 1% — 2pz — 2qy.

Thus, (z,y) lieswithin the circle if and only if its projection lies below the hyperplane defined by
the right hand side of the equation. It followsthat the circleisempty if an only if the corresponding

79

halfspace does not contain the projection on any site. Thus, empty circles the plane in correspond
to empty half-spaces in space, so computing the convex hull of the projected point set is equivalent
to computing the Delaunay triangulation, or Voronoi diagram of 5. Many of the algorithms that
we discuss in this chapter will use this relationship by computing three dimensional convex hulls
rather than directly computing the Voronoi diagram.

Aggarwal, et. a. refine Chow’s work by computing the Voronoi diagram directly using a
paraléel version of Guibas and Stolfi's algorithm [ACG*88]. To parall€lizethisalgorithm, one must
determine a way to implement the merge step in parallel. Thisis non-trivial, since in Guibas and
Stolfi’s algorithm, each iteration of the merge loop depends on the cross-edge found by the iteration
beforeit. In parald, we must find away to find all the cross-edges at once.

Thea gorithm accomplishesthisindirectly, by constructing acontour of Voronoi edges passing
between L and R. Each of these edges isdual to a cross edge. The key to finding these edges in
parallel isto first find edgesin Vor(L) and Vor(R) that would cross such a contour. It follows that
aedgein Vor(L) crosses the contour if and only if the nearest neighbor of one of its endpointsisin
R. Therefore, to find the cross-edges between I, and R, it is sufficient to find the nearest neighbor,
in R, of each Voronoi vertex in I, and vice versa. Then, using this information, the algorithm can
determine how to connect the cross-edges into the merged diagram. Processing nearest-neighbor
gueriesinthe Voronoi diagram isequivalent to planar point location, and at thetime, the best-known
worst case bound on that problem was O (log? ») on O(n) processors.

Therefore, Aggarwal’s agorithm is more clever than this. It builds two speciaized point
location data structures for the region of the plane between 1 and R. Thefirst allowsthe algorithm
to locate points within Voronoi regions that intersect the boundary of the convex hull of 7. The
other allowsthe algorithm to quickly determine when avertex in the Voronoi diagram of . iscloser
to R than L, or vice versa. These data structures allow the agorithm to find the cross-edges in
O(logn) time, so the whole algorithm has a cost of O(log? ») on O(n) processors.

Goodrich, Cole and O’'Dunlaing [CGO90] refine this method with even more sophisticated
data structures, and some non-trivial scheduling techniques to obtain an agorithm that runs in
O(log?n) timeon O(n/ logn) processors, thus matching the optimal work bound.

Neither of these two agorithmsis particularly practical, since they both depend on complex,
expensive data structures. In addition, they are both designed for O(n) processor PRAM machines,
and simulating this environment on current multiprocessorsis not practical.

There has also been some investigation of divide and conquer techniques from outside the
PRAM community. Lu [Lu86], and Jeong and Lee [JL90] describe mesh agorithms for this
problem. Lu uses adual agorithm to obtain runtime of O(y/nlogn) timeona+/n x \/n mesh,
while Jeong and Lee computethediagram directly in O(+/n) time, whichisoptimal for themesh. In
addition, Stojmenovic [Sto86] describes an algorithm designed for hypercube architectures. These
algorithms use basically the same techniques as the Aggarwal algorithm, but with some variation
in the actua details. Again, theseresultsare primarily of theoretical interest, because none of them
were designed with real-world architectural constraintsin mind.

5.2 Optimal Expected Time Algorithms

It is possible to obtain more efficient algorithms when the input is assumed to be uniformly
distributed. Levcopoulos, Katagjainen and Lingas [LKL88] use a combination of bucketing and
Aggarwal’s algorithm to obtain an agorithm that runsin O(logn) expected time on O(n/logn)
processors. Their algorithm works in two phases. First, the points are placed in buckets and the

80

algorithm computesthe “inner” diagram, which is theintersection of the Voronoi diagram with the
unit square. Then, the algorithm computes the “outer” diagram, which contains the Voronoi edges
that lie outside the unit square.

Recall that given a point set .5, for each site s € .5, V() denotes the Voronoi polygon of
s. Thefirst phase of the algorithm uses a hierarchical bucketing scheme to find, for each site s,
a “rectangle of influence”, called RI(s) containing all the pointsin the set that may contribute to
V(). They show that the total expected size of dl these rectangles is O(n), and that the inner
diagram can be computed in O(logn) expected timewith O(n/logn) processors. They then show
that the expected number of sites that contribute to the outer diagram is small enough that a brute
force algorithm can compute the rest of the diagram in O(logn) expected time with O(n/logn)
processors. The structure of this algorithm is similar to the serial algorithm presented by Bentley,
Weide and Yao[BWY 80], but the hierarchical bucket structureis more general than the single level
data structure used in that paper.

MacKenzie and Stout [MS90] present another algorithm along these lines, but with a much
faster theoretical runtime. Using asophisticated and complicated bucketing scheme, their algorithm
isableto construct the Voronoi diagramin O(loglog ») expected timeon O(=/ loglog n) processors.
Thealgorithm usesaprimitivewhich MacK enzieand Stout call “ padded sort” whichisableto bucket
thesitesin O(loglogn) time. Then, the algorithm computes the inner diagram using spiral search,
and the outer diagram using bruteforce. Ananalysissimilar to Levcopoulos, Katajainen and Lingas
is enough to bound the cost of the brute force construction by O(loglogn).

Most recently, a paper by Venmuri, Varadargjan and Mayya [VVM92] shows how to modify
the standard divide and conquer algorithmto run in O(logn) expected time on n processors. This
algorithm divides the original problem into vertical strips, constructs the Voronoi diagram of each
strip, and then constructs the dividing chains of the strips in parallel. The algorithm now takes
advantage of the fact that only dividing chains that intersect need further processing. Therefore,
rather than recursively merging all pairs of subproblems, this agorithm constructs the rest of
the diagram by first examining the current set of dividing chains for intersection points and then
continuing the constructing process from those vertices. When no more intersections occur, the
algorithmisfinished. Using techniquessimilar tothosein Dwyer’sthesis[Dwy8§], the authors show
that the expected complexity of this schemeis O(log=) time since under the uniform distribution
assumption, the probability that a given dividing chain intersects a large number of other chainsis
low.

Each of these algorithms use ideas that are basically the same as the fast expected time
sequentia algorithms. The first two are doing spira search, while the last one is combining
bucketing with divide and conquer the way Dwyer’s algorithm did in Chapter 2. However, for the
sake of achieving “optimal” asymptotic runtimes within the PRAM model, each of these algorithm
has been made too complex to redly be practica. Not only do the algorithms use esoteric and
unnecessary data structures and scheduling techniques, the runtime analysis of each hides huge
constant factors within the confines of their asymptotic bounds.

For example, MacKenzie and Stout use a bucketing technique which they call “padded sort”
tofill the bucketsin their spiral search agorithm. This agorithm runsin nine stages. Thefirst six
alternate between attempting to place items into bins and reall ocating items which havefailed. The
last three sort the binsthemselves. The reall ocation procedureissimilar to the pack operation from
the previous chapter, but is complicated by the fact that it must runin @(loglogn) time.

What all of thisamountsto isan algorithm that is similar to the vectorized bucketing scheme

81

in Chapter 4. The algorithm attempts to bucket one item per processor, but if someitems collide,
thenit must iteratively pack away thefinished itemsand retry thefailed ones. We have seen that this
simple idea, without the trappings of PRAM complexity analysis, works extremely well on vector
machineslike the Cray, whilethelocking-based algorithm for achieving the same effect works very
well on MIMD machines like the KSR-1. In addition, the analysis of both of those agorithms
showed that the bucketing step was not the main bottleneck in the program, the searching steps
were. Therefore, not only do the PRAM results present unnecessary optimizations, they optimizea
relatively minor part of the algorithm.

Of course, thiscriticism should not be seen asan attempt to question theintegrity or taste of the
authors. Their stated goa wasto study basic questions about the complexity of parallel algorithms,
not to address the problem of constructing efficient parallel programs for these problems. What
this example does illustrate isthat it is often the case that the elegant and sophisticated proofs and
techniques used by theoreticians to prove their complexity results are often based on very simple
and practical ideas.

In fact, some practical work has been done on algorithms similar to the ones described
above. Merriam [Mer92] has implemented a parallel agorithm for three dimensional Delaunay
triangulation construction based loosely on the ideas in these papers. Hisalgorithm uses a k-d tree
and many iterated nearest-neighbor queries to construct the edges of the Delaunay triangulation one
a atime. Thismethodissimilar tothealgorithmsof Maus[Mau84] and Dwyer[Dwy88]. Merriam’s
implementation isfor the Intel Paragon, and uses message passing to maintain the distributed data
structures and coordinate the searches. His experiments indicate that the algorithm’s runtime is
O(nlogn/p).

In addition, Teng, et. a. [TSBP93] have implemented a similar algorithm, also for the
three dimensional problem, in a vector style on the Connection Machine CM-2 and CM-5. Their
algorithm uses buckets to perform searches, and their experiments indicate that the runtime of the
agorithmis O(n/p) on n sitesand p processors.

5.3 Randomized Algorithms

In Chapter 2 we saw that by randomizing the order in which we processed insertions in the
incremental Delaunay triangulation algorithm, we could bound the expected number of updates that
the algorithm performed without regard to the distribution of the point set. Intuitively, the reason
for this behavior was that a random insertion into the Delaunay triangulation of a random sample
of the point set is unlikely to cause many edgeflips.

Thisresultisactually aspecia caseof ageneral framework for designing randomized geometric
algorithms, both sequential and parallel. To motivate the formal machinery that we will present
later, consider the problem of sorting aset .5 of » real keys. Insertion sort is a ssimple way to do
this. Each key from .S’ isadded to aset R in someorder, and R iskept in sorted order aseach key is
inserted. The problem with thisalgorithmisthat finding the correct positionto place anew key can
be expensive. To dleviate this, for each key k € S — R, we store theinterval (e, b) in the sorted
set R that £ belongsto. Alternatively, for every pair of adjacent keysa and b in R, we storealist
of keys from S that belong in the interval from a to b. Now, to insert a new key, &, look up the
two keys, ¢ and b that & lies between, and we split the list of keys belonging to the interval (a, b)
into one for («a, k) and another for (k, b). The resulting algorithm just a version of quicksort, and
as aresult, shares quicksort’'s worst case. To dleviate this, we may insert the keys of S into R in
random order, in which case the listsfor each interva in R will be roughly the same size, and the

82

resulting algorithm has an expected runtime of O(n logn).

We can aso use thisidea to create a divide and conquer algorithm. Here, we pick a subset
R C S a random, and sort it. Then, for each key & € S — R, we use binary search to find the
interval in R that £ belongs to, and add & to a subproblem for that interval. Finaly, we sort the
subproblems one by one. Many sorting agorithms for parallel and distributed architectures use
this scheme, because the sample provides a convenient way to split the origina problem into many
subproblems that are solvable in parallel. Blelloch, et a survey these agorithms and describe a
high performance al gorithm designed for the Connection Machine CM-2 [BLM T 91]. A later paper
by Prins, Hightower and Reif presents a similar study for the MasPar MP-1 [PHR92].

The key idea behind these algorithms, which we will explore in the context of geometric
algorithms, is to use oversampling to obtain good load balancing with high probability. That is,
with P processors available, rather than choosing a sample of size P, we choose a sample of size
kP, sort it, and then form R with the elements that have ranks k, 2k, 3k, - - -, (P — 1)k. Blelloch,
et a show that using this scheme, the probability that the largest subproblem is more than a times

asbig asthe mean islessthan
Ne—(1-1/a)’ak/2.

for @ > 1. In practice, the results that their implementation obtains are somewhat better than this.

54 Preiminaries: The General Framework

Clarkson and Shor [CS89, CMS92] present a generalized formal framework for describing and
analyzing randomized geometric algorithms. We will present this framework here to motivate the
fact that, in principal, it could be applied to the design of awiderange of paralel agorithms. To keep
the discussion relevant, our running example will show how to apply the ideas to the construction
of the Delaunay triangulation.

Let 5 beaset with |5| = » elements, called objects. Let F(.5') be amultiset whose elements
arenon-empty subsetsof S. Theelementsof 7(.5) arecaled regions. Let b bethesize of thelargest
element of F(.5). If dl of the elementsof 7(.5) have size b, then we say that F(.5) isuniform. Let
F e F(S)and z € S begiven. Then we say that F' relieson z, or = supports F, if « € F. For
each R C 5, define F(R) tobe {F' € F(5) | £ C R}. Findly, for each particular problem, we
will define a conflict relation between S and F(.5). If R C 5, then Fo(R) will denote the set of
F € F(R) that conflict with no object. The nature of the conflict relation depends on the problem
a hand, so the term “conflicts with” will have a different meaning for each problem.

For concrete example, for the convex hull problem, S is the set of points in d-space while
F(5) ismade up of half-spaces defined by sets of d points. Assuming that .5 has no degeneracies,
F(S5)isuniform, withb = d. Each set I € F(5) of d points defines a hyperplane . Assuming
that we translate S' so that the origin isinside the convex hull, we associate with each ' € F(.5)
the halfspace on the opposite side of iz from the origin. A point = conflicts with £ € F(.9) if it
is contained in the corresponding half-space. Again, thoseregionsin Fo(.5) will define the convex
hull. Figure 5.1aillustrates this case.

Similarly, inthe Delaunay triangulation problem, S isthe set of sites, each element of 7(.5)isa
triple that defines a possible Delaunay triangle. Again, assuming no degeneracies, F(.5') isuniform
and b = 3. In an abuse of notation, we will identify each of these triples with the circumcircle
that they define. Therefore, the conflict relation will specify that a site « conflicts with a region
Fif z lies within the disk defined by F'. The goal of any algorithm that constructs the Delaunay
triangulationisto build Fo(.5). Figure 5.1b illustrates this case.

83

)

@ (b)

Figure 5.1: Objects, regions and the conflict relation. In (a), the three pointsare in conflict with the
half-space. In (b), the site conflicts with each circle that it liesin.

5.5 Randomized Divide and Conquer

We can also use the Clarkson and Shor framework to devel op divide-and-conquer algorithms based
on random sampling. Thisis a generalization of the technique used in the sample-based sorting
algorithms. Theideaistousearandom sample &, of S todivide .S into many independently solvable
subproblems. After choosing R, we construct Fo(R) and for each region £’ € Fo(R), let con(F')
denote the number of objectsin S — R that conflict with F. The following result characterizes the
performance of such algorithms. Define f, to bethe expected value of | Fo(R)| for arandom subset
R of S with|R| = r. Inaddition, let
F(r) = max f..

Theorem 5.1. Given S and R as above, with r = | R|, assumethat F(.5) is uniform with size b,
andthat | 7(5)| < K (}) for someconstant K. It followsthat for any ¢ > 0, there exists a constant
¢max Such that with probability 3/4 — e~?, the following conditions hold:

Y con(F)=0(n/r)F(r) (T)
Fero(R)
and
pmax con(F) < cmax(n10g7)/r (L).

This is a somewhat restricted version of Corollary 3.8 from Clarkson and Shor’s original paper
[CS89]. We can use thisresult to analyze algorithms that fit the following generic framework.

Algorithm 5.1 (RD). Randomized divide and conquer.

1. Giventheaset of 5 objects, the goal isto construct Fo(.5). Choose asubset R of S of sizer
at random.

2. Construct Fo(R).
3. Foreach ¥’ € Fo(R), let Py be the subproblem for £

4. Foreach z € (S — R), find every region F' € Fo(R) that conflicts with z and place z into
Pr.

5. For each F' € Fo(R), recursively solve Pr and use the results to compute Fo(.5).

Theorem 5.1 tells us that on average, the sample R can be used to split the original problem
into equally sized subproblemswhose tota sizeis not much larger than the original. In the context
of paralel algorithms, this result is especidly interesting because for the problems that we are
interested in, the subproblems are independent, and can be solved concurrently.

Reif and Sen [RS89] independently developed a refinement of thisideato design an efficient
PRAM algorithm for constructing 3-D convex hulls. Their algorithm actually solves the dual
problem, constructing an intersection of half-spaces. In this case, S is made up of half-spaces.
Given asample R C 5, let P(R) be the intersection of the half-spaces in R, and assume that
we know some point p« in the interior of P(R). We can then partition P(R) into cones in the
following way: take an arbitrary hyperplane i and cut the faces of P(R) into trapezoids. Then
triangulate each of the trapezoidal faces, and connect the vertices of the triangles to p*. We will
call theresulting set of cones A(R). For each I € A(R), ahaf-space s € S conflictswith £ if its
bounding plane intersects F'.

Thefollowing result follows directly from Theorem 5.1:

Lemmab.2. Using the terminology above, there exist constants kiog and kmax such that the
following conditions hold with probability at least 1/2:

> con(F) < kiota(n/r)|A(R)]
FEA(R)

and

e con(F) < kne(n/) log(r).

If asample R C S satisfies these two conditions, we will call it “good”, otherwise, we will call it
13 baj.!l

Reif and Sen’s algorithm follows the basic outline of Algorithm RD, but in order to achieve
an optima PRAM runtime, it must address the following issues that do not come up in a seria
algorithm:

¢ The sampling agorithm must be able to choose a good sample with high probability in
order to bound kmax and guarantee good load balancing in the recursive cals. To deal
with this problem, Reif and Sen present a sampling scheme called “polling” that processes
O(logn) samplesin paralel in O(logn) time. It does this by checking each sample against

85

Figure 5.2: Dividing around a convex hull facet. Thisis just a schematic drawing, and isn’t an
exact representation of the execution of the algorithm.

arandom sample of the input, rather than the entire set 5. They then use Chernoff bounds
[Cheb2, HR89] to show that will give an accurate estimate of the actual quality of the
sample. Testing O(logn) samples guarantees that the algorithm will fine one “good” one
with high probability. Polling is a generalization of the oversampling schemes that recent
implementationsof randomized sorting algorithms have used to guarantee good load balance
[BLM*91, PHR92]. We will see later that in practice, a similar, somewhat simpler scheme
providesthe same result.

¢ Thealgorithm must be able to compute the i ntersections between the cones and the hal fplanes
in O(logn) time, even though one planemay cut O(n°) cones, where ¢ > 0. To do this, Reif
and Sen take advantage of the fact that the random sample is small compared to », and so
they can use atrade time for processors and use a brute force approach.

¢ In anaive algorithm, the total size of the subproblems increases by a factor of kg With
each level of recursion. Reif and Sen present a scheme to filter redundant half-spaces out of
recursive calls and show that this guarantees that the total number of processors needed for
process the call treewill be O(n).

Goodrich and Ghouse [GG91] use a somewhat different algorithm to compute the 3-d convex
hull. Their algorithm picksa splitting point at random, and uses linear programming to find a facet
of the hull above thispoint. The algorithm then usesthisfacet to split the origina problem into four
parts (see Figure 5.2). The partitioning routine works by projecting the sites onto the zz and y=
planes and computing two two-dimensional convex hulls. All of these edges are edges in the 3-d
hull, and when they are projected down to the zy plane they split the sites into four subproblems.

86

The a gorithm then solves the subproblemsrecursively. Using some scheduling tricksthat are
similar to the onesin the MacK enzie paper, the authors prove atime bound of O(log?») and awork
bound of min(» log? &, n 1ogn) where n isthe number of pointsand % is the number of hull facets.
Each of these is a high probability bound. Thisis a parallel, randomized version of the 3-d hull
algorithm due to Edel sbrunner and Shi [ES91] which was an extension the planar hull agorithm of
Kirkpatrick and Seidel [KS82].

Thesea gorithmsagainfollow afamiliar pattern. Whiletheideasunderlyingthemarerelatively
simple, a large amount of complexity and overhead has been added in order to obtain “efficient’
or “optimal” time and work bounds in the PRAM model. Therefore, while we cannot seriously
consider implementing these techniques directly, we can use the basic ideas to design and evaluate
simpler, possibly more practica agorithms.

5.6 A MorePractical Randomized Parallel Algorithm.

We now turn to the question how to apply the theoretical ideasin the previous section into practical
solutionsto the problem. The goal isto be ableto construct aparallel agorithm for constructing the
planar Delaunay triangulation that exhibits a substantial performance advantage when compared to
fast sequential agorithms on the same inputs.

Our agorithm will follow the style of Reif and Sen’s algorithm because it has the following
potential advantages over the other algorithmsthat we have discussed:

e Thealgorithmis guaranteed to achieve its expected performance with high probability inde-
pendently of the distribution of the input.

¢ Thealgorithm is based on a simple framework. It is unclear how to simplify the divide and
conquer algorithmswithout taking a substantial performance hit. In addition, the spiral search
based algorithmstend to be be awkward because two separate algorithms are needed for the
inner and outer diagrams.

¢ The principle advantage of the convex hull algorithm of Goodrich and Ghouse is that its
work bound is output-sensitive. However, thisis no advantage when computing Delaunay
triangulation s, since we know that every projected sitewill be on the convex hull. Therefore,
the extra complexity of linear programming, point location along the contours, and adaptive
scheduling will gain us nothing.

¢ The Reif and Sen agorithm can be easily adapted to compute the Delaunay triangulation
directly.

¢ Finally, recent results have aready shown that randomized divide and conquer is extremely
effective for constructing fast sorting algorithms. Thus, we might expect that the technique
would be equally effective for geometric problems.

Our agorithm will follow the generic outline of algorithm RD. We will compute the Delaunay
triangulationdirectly, rather than concentrating on computing convex hullsbecausethe moregeneral
algorithm carries extra overhead that will only waste time. In addition, we will be comparing the
algorithm against the incremental algorithm from Chapter 2, and we need to make the comparison
afar one.

The objects in S will be sites in the plane, the regionsin F(.5) will be the disks associated
with Delaunay triangles, or equivaently, Voronoi vertices, in the current diagram. It will be more

87

convenient to describe this algorithm in terms of the Voronoi diagram, rather than the Delaunay
triangulation.

For a set of sites S, Vor(5') will denote the Voronoi diagram of 5, DT(.S) will denote the
Delaunay triangulation of 5. For each sites € ., V(s) will denote the Voronoi region of s and
DN(s) will denote the set of sitesin .5 that are connected to s in DT(.S'). Our agorithm will work
in the following three stages:

Algorithm 5.2 (RDDT). Randomized divide and conquer for constructing the Delaunay triangu-
lation.

1. Let & > 1 be a constant that we will choose later. Assuming that |.S| = N and we have P
processors, chooseasample R C S5 of size £ P. We do this by having each processor choose
k sites, at random, from 5. Construct Vor(R) using either a brute force parallel method or,
if P issmall, just use one processor to build the diagram sequentially. The idea of picking
more than one sample per processor comes from recent experience with randomized sorting
algorithms[BLM t91, PHR92]. The idea hereisthat while the size of any given subproblem
may differ greatly from the expected value ¢n/kP, it is unlikely that the total size of &
subproblems chosen at random will be far away from en/ P.

2. Foreach r € R, let P, bethe subproblem of . Then P, must contain every sitein S — R
that could change the structure of V(7). For each sites € S — R, search Vor(R) for circles
that conflict with s. Each circle that we find will be associated with three sitesin R. The
algorithm places s in the subproblems of each of these sites.

3. For each r € R, construct Vor(P,) using an efficient sequentia algorithm. Then remove
edges and vertices in Vor(P,) that lie outside the Voronoi polygon of r in Vor(R). We will
see that these vertices are redundant, and do not belong in the final answer.

To provethat Algorithm RDDT iscorrect, we need to show how to correctly construct the subprob-
lemsin step 2, and that step 3 actually reports al of the valid verticesin Vor(.5).

The algorithm for step 2 is more easily explained in terms of the Delaunay triangulation.
Assume that we have constructed DT(2) and need to find al the triangles in this diagram that
conflict with some sites € .S — R. We can do this with a simple modification to the incremental
insert procedure in Chapter 2. Figure 5.3 shows the modified procedure.

The procedure find-circles starts by locating p inthe DT(R). Obviously, p conflicts with
the circumcircle of the triangle that it liesin. Thus, p goes into the subproblems of each site
supporting this triangle. The routine then finds the rest of the conflicting circles using the same
search loop as the the edge flipping loop from Chapter 2. The difference isthat rather than flipping
edges, and walking through the modified diagram, find-edges keeps a queue of edges that are
suspect, and keeps walking until thisqueue is empty. The three edges making up theinitial triangle
are the origina members of thisqueue. Let ABC' be such atriangle with the point A opposite the
new sitep. If ABC failsthecircletest, p goesinto the subproblem of A, and theedges AB and AC
go into the queue. We don’t need to add p to the subproblemsof B or C', since they must belong to
atriangle that has already failed the circle test (see Figure 5.4)

Thefollowing result is not hard to prove.

Lemma5.3. Theroutine find-circles Vvisits exactly the same set of edges in DT(R) as the
incremental insertion procedure would.

88

% Q is a queue whose element are edges.
% p is the point being searched.
find-circles(p)
{
e := Locate(p);
if (p == e.0rg || p == e.Dest)
return;
if (is_on(p,e.Org, e.Dest)) {
t = e.Oprev;
e = t;

}

first = e.0rg;
init_queue(Q);

do { /* p conflicts with initial triangle */
add p to subproblem for e.Org;
enqueue(Q, e);
e = e.Lnext;

} while (e.Org !'= first);

for(;;) { /* Look for conflicting circles until done */
e = dequeue(Q);
t = e.Oprev;

if (not CCW(t.Dest, e.0Org, e.Dest) &&
in-circle(e.Org,t.Dest,e.Dest, p)) {
add p to subproblem for t.Dest;
enqueue(Q, t);
enqueue(Q, t.Lnext);

}

if empty(Q)
return;

Figure 5.3: Routine to find circles that conflict with a given site p. Thisroutine is just like the
incremental insertion procedure, but we don’'t change the current diagram at all. Instead, the queue
keepstrack of the edges that we need to look at.

89

C \
Figure5.4: Thetriangle ABC fallsacircletest, so p goesto A’s subproblem.

Proof. Theincremental agorithm checks the three edges of the initia triangle, and each edge
of any trianglethat failsthein-circletest. Infind-circles, the search beginswith the three edges
of the initia triangle, and each time atriangle fails a circle test, the routine adds the two far edges
to the queue. Therefore, we can conclude that it will check the same edges as the incrementa
algorithm does. O

Lemma 5.3 implies that find-circles will find all regions that conflict with a particular
site. Therefore, we can conclude that we may use this routine to correctly construct the needed
subproblems.

To prove the correctness of step 3, we switch back to looking at things from the perspective
of the Voronoi diagram. Let » € R be given, let P, be the subproblem of r, and let Vz(r) be the
Voronoi polygon of » in Vor(R). Let ¢(v) denote the circle associated with the vertex » and define
C(r) to be the union ¢(v1) U ¢(v2) U - - - U ¢(vy) where each v; is one vertex of Vr(r) (see Figure
5.5). Thefollowing basic result allows us to show that Algorithm RDDT is correct.

Lemmab5.4. Letv € Vi(r) begiven. Thenthecirclec,(v), centered a » and passing through r
isincludedinC(r).

Proof. Let v € Vr(r) begiven. It followsthat ¢,(v) N R isempty. Let ¢ be the neighbor of
r that is closest to v, and let »1 and v, be the two vertices from Vi (r) whose circles pass through
both » and ¢. If ¢,(v) istotaly included in either of these circles, then we are done. If not, we
can grow ¢, (v) by moving v directly away from = until the growing circle passes through both
and ¢. It followsthat thisnew circleis contained in c¢(v1) U ¢(v2). Therefore, we can conclude that
¢,(v) C C(r). (seeFigure5.5). O

Lemmab.5. Letvbeavertex of Vor(P,). If v € Vg(r), then v isavertex of Vor(.5).

Proof. We have that ¢(v) N P, isempty. But Lemma5.4 impliesthat that we can expand ¢(v)
until it touches » whilestayinginsideC(r). Thus, ¢c(v) C C(r). Itfollowsthat ¢(v)N.S C e(v)N P,
sonositein S canfall in¢(v). Therefore, v isavertex of Vor(5). O

The following result implies that every valid vertex of Vor(.S') will appear in the Voronoi
diagram of at least one subproblem.

Lemma5.6. If visavertex of Vor(.9), thenthereexistsr € R suchthat v € Vor(P,) N Vg(r).

90

Figure 5.5: The Voronoi region of a point r, and the “flower” of circles surrounding it. Any circle
centered in the region and passing through » must be contained in the flower.

Proof. Let v € Vor(5) begiven. Then ¢(v) passesthrough threesitesps, p2, p3 € 5. Wemay
chooser € R suchthat v € Vr(r). By Lemmab5.4, the circle centered at v and passing through
isasubset of C(r). Since ¢(v) isincluded inthiscircle, ¢(v) C C(r) soit followsthat p; € C(r),
1 < ¢ < 3. Therefore, each of these three siteswill bein P,, so v will beavertex of Vor(P,). O

These two lemmas imply that Algorithm RDDT will correctly compute all of the verticesin
Vor(5). For each r € R, it suffices to compute Vor(P,) and report al the verticesin that diagram
that fall inside Vr(r). Vertices which appear more than once in the final list can easily be filtered
out.

5.7 Analysis

Two factors are critical to the success of Algorithm RDDT. First, the average size of a subproblem
must be small, i.e. no more than ¢n/p with p processors. Second, the ratio between the average
subproblem size and the maximum subproblem size must be small. Thefirst condition impliesthat
the expected total work done by the algorithm will be cn, for some constant ¢. The hopeisthat ¢
will compare well with the runtime constants of a seria algorithm. The second condition implies
that efficiency will not be compromised by any one processor. Together, these conditionsimply a
fast parallel runtimeand low parallel overhead, which should result in good parallel speedups.

We will use the following notation from Section 5.3. The objectsin 5 will be the sites, the
regionsin F(5) will be triples of sites defining circles in the plane. A site s € .5 conflicts with
F e F(5) if it lies within the circle defined by F'. Let R C S be arandom sample of .5 with
|R| = r. The Condition (T) of Theorem 5.1 implies that the expected size of a subproblem in
Algorithm RDDT will be O(n/7).

The remaining problem is to show that the sampling scheme will produce evenly sized sub-
problems. Here we runinto technical problems. Aswe saw earlier, randomized divide-and-conquer
algorithmsfor constructing the planar Voronoi diagram are generally framed in terms of construct-
ing athree-dimensional intersection of halfspaces. Asin the Reif-Sen agorithm above, the divide
step of these algorithms partitionsthe faces of a convex polyhedron into a set of cones, and creates
one subproblem per cone. In the case of the Voronoi diagram, this action is equivalent to dividing

91

the Voronoi region of each sample point into triangular regions.

For the sake of simplicity, Algorithm RDDT does not create subproblems in thisway. The
routine find-circles creates one subproblem per sample point. This makes the algorithm easier
to program and easier to understand. In addition, our agorithm has the advantage that it computes
the Voronoi diagram directly, rather than going through the intermediate step of constructing an
intersection of halfspaces. Thisis not only a potential performance advantage, but could also be
important from the standpoint of numerical stability.

The problem with this scheme is that in theory, it makes the algorithm sensitive to the
distribution of the input, since certain worst case inputs can create subproblems of size O(n). The
result isthat condition (L) of Theorem 5.1 is of no help because Algorithm RDDT does not fit the
conditions of the theorem.

To remedy this situation, we can either change the algorithm so that we can use Theorem 5.1
to anayze it, or we can leave the algorithm as it is, and use experiments to give us confidence
that find-circles behaves as expected. The next section will present a series of experiments
that suggests that Algorithm RDDT is not sensitive to the distribution of the input, and that the
partitioning procedure almost always produces equally sized subproblems. Given these results, it
would be more interesting to try and improve the analysis to account for this behavior, rather than
modifying the algorithm to fit the current theory. The main reason for this conclusion is that any
maodifications would only make the algorithm more complex, and hence would further increase its
runtime constants.

5.8 Experiments

Our theoretical analysis suggeststhat Algorithm RDDT will make effective use of current multipro-
cessor architectures. However, the analysiswas not exact enough to tell us exactly what the runtime
constants might be. In order to study the method in more detail, we will gather experimenta data
using a serial simulation of the bucketing process.

Simulations have long been used to predict the performance of real systems. The ssimulation
that we will use here is somewhat different in that it will be used to measure abstract, as opposed
torea system costs. McGeoch [McG86] uses simulations of this type to study the performance of
many algorithms. She notesthat it is often possibleto construct simulation programsthat accurately
measure the abstract cost of an algorithm without actually executing the algorithm in question. For
example, the cost of the partition step in quicksort is determined by the rank of the splitter. Thus,
we can measure the cost of quicksorting without actually sorting keys.

In this section, we will use a simulation of thistype to measure the performance of Algorithm
RDDT. The performance of Algorithm RDDT is determined by the size of the subproblems created
in step 2 of the algorithm. Therefore, our simulator will execute steps 1 and 2 of the algorithm, and
then output the resulting problem sizes. We can then predict the performance of the last phase of
the algorithm using the experiments and analysisin Chapter 2.

The implementation of the simulator follows the outline of Algorithm RDDT fairly closely.
First, assuming P it picks a sample R of the input set, with |R| = kP and constructs DT(R)
using the incremental algorithm. It then uses the routine find-circles in Figure 5.3 to place
each remaining site into the appropriate subproblems. Finaly, assume that the subproblems are
numbered S P, S Py, - -+, S Pr.p. For each processor 1 < ¢ < P, the simulator adds up the sizes of
SPiky S Pikt1, - -+, S Pip1yr—1 and reports the result as the total work needed for processor s.

We will examine two sets of experiments, one to observe the expected vaue of the work

92

(8) Mean subproblem vs. Min (b) Mean subproblem vs. Max

35- ok
3_
25 * t + -2
Mean Max
IMin 2] , N " 15/ Memn
1.5 - ® , . * * L1
1_
05 | L 05

T T T T T T T T T T T T T T T T
20 21 22 23 24 25 26 D 20 21 22 23 24 25 26 D
Oversampling Ratio Oversampling Ratio

Figure 5.6: Load balancing results for 32 processors.

complexity of the algorithm, and another to observe the expected load imbal ance.

Each set of experiments was run assuming a machine with 32 processors and a machine with
128 processors. The first matches the size of our target machine, while the second will give some
idea as to how the method will scale to larger machines in the future. First, we will examine the
effect of oversampling on the variance in subproblem sizes. For each machine configuration, 100
trials of the bucketing procedure were executed with an input size of 100,000 sites and sample
sizes between one site per processor and 128 samples per processor. For this set of tests, the sites
were generated from a uniform distribution in the unit square. Unless otherwise noted, we plot the
sample mean aong with the 90% confidence interval.

We will look at four sets of results. First, Figure 5.6a shows the ratio between the mean and
minimum subproblem sizes over thisrange of inputs. In practice, thisratio is as important as the
ratio of the maximum to the mean because a processor holding a small subproblem wastes cycles
waiting for the rest of the machine to finish. Thefigure showsthat small sample sizes behave badly
in this regard, but that the oversampling scheme smoothes out the performance of the bucketing
structure significantly. At an oversampling factor of 32, theratio of the min to the meanislessthan
afactor of 1.5.

Figure 5.6b showstheratio of the maximum bucket sizeto the mean. Wewill call thisratio the
bucket expansion. The bucket expansion determines the efficiency of the algorithm both in terms
of running time and processor utilization. Again, while the variance in subproblem sizes is rather
large for small oversampling factors, at 32 samples per processor the average bucket expansion is
lessthan 1.5.

Figure 5.7 shows the same two results for the larger simulated machine. The graphs show
little change from the experiments with 32 processors. These results provide evidence that the
performance of the sampling scheme should, for the most part, be independent of machine size.

The remaining question to address is whether the schemewill perform equally well with poor
point distributions. To study this question, an additiona set of trials was conducted using the same
group of “bad” distributions from Chapter 2. For each distribution, 100 trials were run, with 32
simulated processors, a problem size of 20,000 sites and an oversampling factor of 32. Figure 5.8

93

Mean
/ Min

Max
/Mean

(8) Mean subproblem vs. Min

(b) Mean subproblem vs. Max

61 - 25
t
°- t -2
4 ¢
N Max
- 1.5
3 ' c, / Mean
2 ' 1
14 * ° o ° - 0.5
T T T T T T T T T T T T T T T T
20 2t 22 23 24 25 26 7 20 2t 22 23 24 25 26 27
Oversampling Ratio Oversampling Ratio
Figure 5.7: Load balancing for 128 processors.
Bucket Expansion, by distribution
1.6 -
1.5 -
14 -
13- ‘ ‘ ‘ ‘ +
12+ + + 4 + 4
11- | | | | P
14
T T T T T T T
unif ~ bal corner diam cross norm cus @ arc

Figure 5.8: Bucket expansion with bad distributionsfor 32 processors.

94

summarizes these resultswith a box plot for each set of trials.

The bucket expansion incurred by Algorithm RDDT does show some sensitivity to the dis-
tribution of the input. In particular, notice that the behavior for the arc and diameter distributions
is somewhat more erratic than the others. Thisis because in each of these cases, the subproblems
associated with the sites“at infinity”, which are added to the input asin the incremental agorithm,
become somewhat large. Each of these cases models a particular worst case for Algorithm RDDT,
where oneisolated sample point has a disproportionatel y high degreein the Delaunay triangulation
of the sample.

The above experiments indicate that the sampling scheme will be an effective way to manage
load imbalances in Algorithm RDDT. The experiments provide evidence to support the following
conjecture:

Conjecture5.7. Let S be a set of sites that are identically and independently chosen from a
distribution whose density function f satisfiese < f < b for a,b > 0. Then the bucket expansion
in Algorithm RDDT can be made less than 2 with high probability.

We will call distributions that satisfy these conditions “quasi-uniform,” [BWY 80, Dwy88].
The “bad” distributions that we used in our experiments all fit into this category, since even the
most pathological of them still has a small anount of randomness. In addition, as we mentioned
before, the oversampling schemeis directly related to the scheme used by Blelloch, et. d. in their
sorting algorithm [BLM*91], and isalso similar to the polling techniqueintroduced by Reif and Sen
[RS92]. Theorem 5.1, the experiments, and the fact that the above algorithmsall provide good |oad
bal anced with provably high probability are al strong evidence that a conjecture like Conjecture
5.7 can be proved.

Next, we move on to the total size of the subproblems created by the bucketing phase. To
measure the expected total subproblem size, 30 trials were run at various problem sizes between
1K and 100K sites. For each trial, the bucketing procedure was executed, and the total size of
the subproblems was tallied. Given the results above, these experiments were conducted using an
oversampling factor of 32.

Figure 5.9a shows the results for the 32 processor machine, while Figure 5.9b summarizesthe
experimentsfor 128 processors. The graphs show that for small problem sizes, thetotal subproblem
sizeisfairly small, whilefor large problemsthe total problem size approaches 6n.

Finally, Figure 5.10 summarizes additional data from our earlier trials with various input
distributions. For each distribution, the graph shows a boxplot summarizing distribution of the
total problem size over the 100 trials. Again, these trials were run with 20,000 sites from each
distribution, 32 simulated processors and an oversampling ratio of 32.

These experiments show that the total size of the subproblems comes close to 6n for a large
variety of inputs. The actual work done by algorithm would be a small constant times the total
subproblem size. Since the bucketing pass is rather expensive, and since the expected bucket
expansion would be about 1.2 to 1.5, on 32 processors, this would mean speedups of 4 to 5, while
on 128 processors, we might expect a speedup of 15to 16.

In addition, neither the total subproblem size nor the bucket expansion seems to be overly
sensitivetothedistribution of thesites. Therefore, wewould expect that the runtimeof thealgorithm
would stay close to its expected value for many types of problems. However, it is apparent that
this expected time has a constant that is high when compared to the sequential agorithmsthat we
studied in Chapter 2.

Themain problem with the algorithm isthat it creates subproblems containing alarge amount

95

(a) Total subproblem size (b) Total subproblem size

L LS
Total 42: i * *m :25 Total
/N 4 - } - 4 /N

35- } - 35

25] | *

T T T T T T T T T T T T T
210 211 212 213 214 215 216 211 212 213 214 215 216
Number of Sites Number of Sites

Figure 5.9: Total subproblem size for Algorithm RDDT.

Total Problem Size
by Distribution

5.9

5.8

Total 5.7 N +
IN + + + + ‘

5.6 - ‘ |

5.5

T T T T T T T T
unif ball corner diam cross norm clus arc

Figure 5.10: Tota subproblem size by distribution for 32 processors.

96

of redundant information. The constant size blowup in total problem sizeis necessary to guarantee
that all of the parallel subproblems can be solved independently. Perhaps more importantly, the
algorithm would use a large amount of space to store and solve each subproblem. Since paralel
machinestend to be used to solvelarger problems, this extra space cost may become a concern even
with the large memory sizes that are prevaent in modern machines.

One obvious way to reduce this overhead is to have Algorithm RDDT work in phases. After
constructing the diagram of the sample, we can add the rest of the sitesin small groups by running
steps two and three of the algorithm several times. The problem with this scheme isthat after each
phase, the algorithm will need to run a fix-up procedure to filter out invalid Voronoi vertices. This
filtering procedure will add both cost and implementation complexity to the final algorithm.

Another way to reduce the problem size blowup would be to only place a site s in the first
subproblem found by find-circles and then move it to neighboring subproblemsif there is not
enough informationintheinitial oneto correctly construct V' (s). We would expect that only asmall
fraction of al the siteswould need to examine more than one subproblem, since for thisto happen,
asite s must lie close to the boundary of a Voronoi region in Vor(R). However, it is a relatively
complex and costly task to determine, based on the solutions to the subproblems, exactly which
sites need further processing, and exactly how to proceed once these sites have been found.

59 Summary

This chapter was the starting point of our study of parallel algorithmsfor Delaunay triangulation
construction. After a survey of the literature, we introduced a framework for describing and
analyzing randomized algorithmsin Computational Geometry. In addition, we studied one possible
paralld agorithmfor constructing Delaunay triangul ationsthat was based on randomized divideand
conquer. Thealgorithmisasubstantially simplified version of existing theoretical results. Whilethe
theoretical analysis of this algorithm was promising, experiments suggest that the constant factors
in its runtime would be too high to make it effective.

Up to now,we have studied a number of different classes of sequential and parallel algorithms
for closest point problems:

¢ “Classical” divide and conquer.
¢ Sweepline algorithms.

¢ Randomized incremental and divide-and-conquer algorithms.

Incremental construction algorithms.
¢ Incremental search agorithms.

It islikely that the classic divide and conquer and sweepline schemes would be very difficult
to implement in such away as to take advantage of a large amount of parallelism. For machines
with a modest number of processors, however, a straightforward parallelization of the divide and
conquer algorithm could obtain reasonable performance on large problems. For P processors, such
an agorithm would first divide and pointsinto atree of subproblemswith P leaves. Then, inlog P
stages, the algorithmwould merge P problemsin P/2 subproblemsusing P/ 2 processors, then P/2
problemsinto P/4 using P/4 processors, and so on. Aslong as » is large enough, this agorithm
will abtain high levels of efficiency.

97

This chapter has produced experimental evidence that randomized divide and conquer has a
high runtime overhead when compared to current sequential algorithms. The high constants, and
the relative complexity of the algorithm kept were the main reasons for not studying an actua
implementation of the method. The method remains a strong possibility for applications where
inputsare likely to be extremely unpredictable, however, since the experimentsin this chapter have
shown that the performance of the algorithm is generally uniform across a wide range of possible
workloads.

In the next chapter, we will analyze and compare the other two possibilities: incremental
construction and incremental search. The mativation for studying the latter is obvious. Concurrent
local search proved to be a simple scheme with very good performance, and the incremental search
algorithmsfor constructing Delaunay triangul ationsare straightforward extensions of that idea. Our
interest in incremental construction is less obvious, since the incremental agorithm appears to be
inherently sequential. In fact, we saw in Chapter 2 that with arandom insertion order, incremental
updates tend to effect only a small portion of the current diagram. Thus, it islikely that many such
updates could be performed concurrently, assuming that we can devise a reasonabl e way to manage
concurrent access to the data structure representing the diagram.

98

Chapter 6
Practical Parallel Algorithmsfor Delaunay Triangulations

Asymptotic analysis keeps the
student’s head in the clouds,

while attention to
implementation details keeps his
feet on the ground.

—Jon L. Bentley

The shortest distance between
two pointsis under construction.
—Noedlie Altito

The incremental algorithm has largely been ignored in theoretical studies of paralel methods
for constructing the Delaunay triangulation. This is because there is no clear way to modify the
algorithm to obtain the levels of concurrency needed for good results in the popular theoretical
models of parallel computation. In practice though, obtaining such high levels of concurrency is
usualy not our main concern. Other issues, such as managing data movement, synchronization,
and obtaining an abstract work bound that is as close as possibleto good sequentia time bounds are
generally more important than being ableto utilize n processorsfor a problem of sizeO(n). Aswe
saw in Chapter 4, simpledata structures, a“coarse grained” parallel model, and careful engineering
of implementationsled to parallel programs with good performance.

In this setting, the incremental agorithm stands out as a natura extension to the concurrent
local search method that we used in Chapter 4. Rather than looking for radically new methods that
are asymptotically efficient, we will examine the practical issues involved in building concurrent
versions of the simplest algorithms for constructing the Delaunay triangulation. These algorithms
come in two flavors: incremental construction and incremental search. The former, like our
sequentia algorithm in Chapter 2 constructs the diagram by adding one site at atime. The latter,
like the nearest-neighbor agorithm in Chapter 4 constructs the diagram one Delaunay triangle at a
time using a variant on spiral search.

The remaining sectionsin this chapter will describe, analyze and compare the performance of
these two agorithms. Finally, section Section 6.7 will sum up the chapter, and the lessons learned
from implementing the algorithms.

6.1 Randomized |ncremental Construction

Randomized incremental construction is yet another way to apply random sampling to the design
of geometric algorithms. Randomized incrementa agorithms, like the one in Chapter 2, and the

99

variant of quicksort, construct Fo(5') by adding the objects of S one at atime to a set R, and
maintaining Fo(k). When anew object s isadded to R, the a gorithm adds new regions created by
s, and removes regionsin Fo(k) that conflict with s.

Intheir original framework, Clarkson and Shor present algorithmsthat use two data structures,
one to represent the regions and one to represent the conflict relation. The conflict relation is
represented as a bipartite graph, with edges between regions and objects. The main cost of the
algorithmsis updating this graph after each insertion. To do this correctly, and agorithm finds and
deletes all the regions that the new object conflicts with and then creates a new set of regions to
replace these. Finaly, each edge («, b) between an object « and a deleted region b must be replaced
with an edge («, b’) from « to the appropriate new region b'.

For example, in the case of the Delaunay triangulation the conflict graph storesand edge (s, ¢)
between a site s and any triangle ¢ whose circumcircle contains s. When a new site ¢ is inserted
into the diagram, the algorithm must del ete the triangles that ¢ conflicts with and replace them with
new triangle whose circumcircles do not contain ¢. In addition, if asite s conflicts with a deleted
triangle ¢, the must examine each new triangle ¢’ and add the edge (s, ¢') to the conflict graph if s
fallsin the circumcircle of ¢'.

To bound the expected cost of the incremental agorithm, it suffices to bound the expected cost
of each insertion. Assume that we have chosen some subset R of S at random, with |R| = r, and
we have built the Delaunay triangulation of the sitesin R. Let f, be the expected size of Fo(R)
andlet F(r) = maxi<.<, f.. Weknow that for the Delaunay triangulation problem, F'(r) = O(r).
The following lemma provides a bound on the expected cost of the last insertion. Thisis just a
specia case of Theorem 3.9 in Clarkson and Shor’s paper [CS89].

Lemma6.1. Theexpected cost of insertion step number » + 1isO(n/r).

Proof. Let s bethe siteinserted at step » + 1, and let sometriangle T’ € F(5) begiven. Let
Ip bearandom variablethatis1if 7' € Fo(R) and s conflictswithZ’. Then Iy is1if and only if s
isinserted after the three sites that are the vertices of the 7', and before any other sites that conflict
with 7. Let ¢(7") be the number of sitesthat conflict with 7. The cost of the update step will be

> o)y

TeF(S)

The probability that s is one of the ¢(7') uninserted sites conflicting with 7" is ¢(1")/(n — 7).
Therefore, the above sum isthe same as

>

TeF(S) (n—r)

o(T)?

Prob{ F’ € Fo(R)}.

Theorem 3.6 of Clarkson and Shor’s paper shows that thisis O(F(r))(n — 7)/r2. Since F(r) =
O(r), thewhole expressionisO(n — r)/r,whichisO(n/r). O

However, the incremental algorithm in Chapter 2 did not use a conflict graph to keep track
of conflicts between sites and triangles. Rather, it used a combination of point location and circle
testing to do the same job. In our implementation of the incremental agorithm in Chapter 2,
the cost of each update was proportiona to the number of triangles conflicting with the new site.
Equivalently, the update time was proportiona to the number of new trianglesthat the site created.

100

Let R = R U {s}, thenthiscostis

> Prob{T € Fo(R') and s isavertex of T'}.
TEF(S)

The probability that s isavertex of agiventriangle 7' is3/(r 4+ 1), so thissumiis:

Z il Prob{T € Fo(R')} = 3F(r + 1)/r = O(r)/r = O(1).)
rérs) T

Thus, the expected number of updates that each new site incurs is a constant. We will use this
result in the next section to design a an algorithm that constructs the Delaunay triangulation
incrementally and concurrently. The intuition behind the algorithm is the same as we used before
in Chapter 4. Since insertions into an existing diagram tend to cause a small number of local
updates, many insertions will tend to be independent from each other. A paralel agorithm will
be able to perform independent insertions concurrently. Therefore, as long as the current diagram
is“large”, a concurrent incremental algorithm will effective use of the parallelism availablein the
target machine.

6.2 Concurrent Incremental Construction

The concurrent incremental agorithm must be able to process independent insertions concurrently
while maintaining a“ consistent history” of intermediate diagrams.

To formaize what we mean by this, we'll borrow some terminology from the study of
concurrent database processing [BHG87]. A transaction T; is defined as a partial order <; where

1 7; C{READ(z), WRITE;(z) st. z isadataitem } U {ABORT, COMMIT}
2. ABORT € T;ifandonly if COMMIT ¢ T;.
3. IftisABORT or COMMIT, thenfordl p € T;,p <; t.

4. 1f READ;(z), WRITE;(z) € T; then either WRITE;(z) <; READ;(z) or
READZ'(.r) <; WRITEZ'(.r).

Condition 1 specifies that a transaction is a sequence of machine instructions that read and
write datafrom acentral, shared database. Conditions2 and 3 say that atransaction makestentative
updates to the database, and then either commits these updates permanently, or aborts and makes
no permanent changes. Finally, condition 4 requires that reads and writes to the same data item be
ordered.

We say that two operations p and ¢ collideif they operate on the same dataitem. Normally,
we could use the term conflict in this case, but since that term is aready used in the context of
randomized incremental construction, it would be confusing to overload its meaning. A complete
history over aset of transactions {71, 1>, ..., T}, } isapartid order < ;7 with thefollowing properties:

1. H - U;I:]_TZ
2. <gD U?:l <;.

3. If p,g € H collide, then either p <z gor g <g p.

101

Histories formalize the notion of defining an execution order on the operations of a set of
transactions. In general, the operations in a set of transactions can be interleaved in an arbitrary
fashion. However, some interleavings may not produce results that are consistent with sequential
execution. A complete history is serial if for any two transactions 7; and 1’;, either al the
operations in 7; come before those in 7; or vice versa. The completion of a history H, denoted
C(H) isobtained from H by deleting all operations not belonging to transactionsin H that have
committed. A history is serializableif C'(H) isequivalent to some seria history, in the sense that
it orders operationsthat collide in the same way. Serializable histories capture the intuitive notion
of what should happen when a concurrent program produces an execution history that is consistent
with asequentia program for the same agorithm.

To implement transactions that guarantee serializability, we use locksto synchronize accessto
shared data. It iswell knownthat if aset of transactions utilizes two-phase locking, then any history
over those transactions will be serializable. Two phase locking specifies that each transaction is
divided into two phases, one where it obtains all of itslocks, and one where it updates the database
and releases al of itslocks.

For the concurrent incremental agorithm, we would like to structure the insertion process as
aset of transactions that update DT(R) in a serializable manner. Each insertion step will act on
a centralized “database” representing the current triangulation.of 2. As before, we will assume a
shared memaory programming model, with multiple threads, and three types of program statements:

LOCK Obtainalock on an object s, or aregion F', and its conflict list.
UPDATE Update aregion ¥ and the corresponding entries in the conflict graph.
UNLOCK Unlock aregion F'.

The code for Insert-Site is shown in Figure 6.1. The routine is split into three phases.
Thefirst phase looks much like the bucketing loop in the previous chapter. Assuming that we have
inserted the sites in R, the routine searches DT(R) and marks the edges of each triangle that it
tests for a conflict with a unique identifier . This declares that this thread will attempt to obtain
a lock on this edge. In addition, the first phase of the algorithm places al the edges examined
by the search loop into a cache that will be used later to avoid repeated in-circle tests. Each
entry in the cache is a pointer to an edge record, and a flag indicating whether the edge needs to
be flipped. The algorithm puts al the edges that are examined into the edge cache, since it must
check al of them later in the second phase of the locking scheme. Thisis necessary because the
algorithm does not explicitly maintain a conflict graph, it uses the current state of the diagram to
locate conflicts between new sitesand existing triangles. Therefore, each thread must lock not only
the edges it plansto flip, but also any edges it needs to read so that other updates do not invalidate
any pre-computed circle tests.

The second phase of Insert-Site walksthrough the edge cache and checks to see if another
thread with a lower priority number has marked any of the edges there. If so, this insertion must
wait to try again in the next round. If al of the edges in the cache are marked with 7, then it is safe
to flip them all, which happensin the last phase of the algorithm. Insert-Site.

The Ddaunay triangulation construction algorithm is then composed of some number of
insertion phases. In each phase, each thread picks a site to insert and calls Insert-Site. We
assume that the sites are randomly permuted before the the first insertion phase begins. If thisisn’t
the case, permuting theinput is a straightforward task.

102

Insert-Site (p) {
% The variable TID holds the thread ID of the current thread.
Phase 1:
Locate an edge e, directly to the left of p,
as in the sequential algorithm;
initqueue(Q); initqueue(cache) /* Init cache */
do { /* p conflicts with initial triangle */
enqueue(Q, e); e = e.Lnext;
} while (e.Org !'= first);
for(;;) { /* Look for conflicting circles until done */
e = dequeue(Q); t = e.Oprev;

enqueue(cache, e); /* put edge in CACHE */

lock(e); /* system lock */

if (tid <= e.mark) { /* tag edge with ID */
e.mark = tid; e.sym.mark = tid; /* lock */

}

unlock(e); /* system unlock */

if (not CCW(t.Dest, e.0Org, e.Dest) &&
in-circle(e.Org,t.Dest,e.Dest, p)) {
enqueue(Q, t); enqueue(Q, t.Lnext); set e.flip to true;
}
if empty(Q) break;
}
Phase 2: /* Check to see if other threads are updating the same edges */
Barrier; private flag = 1;
for each elt in cache {
if (elt->e.mark != tid) flag = 0;
¥
Phase 3:
if (flag) { /* Now make updates */
do { /# Connect new point */
t = base.Sym; base = connect(e, t); e = base.Oprev;
} while (e.Dest !'= first);
for each edge e in cache {

e.mark = e.sym.mark = infinity; /* Unlock */
if (e.flip) swapedge(e);
}
Barrier;
} else abort;

}

Figure 6.1: The concurrent incrementa algorithm.

103

By assigning priorities carefully, we can guarantee that the algorithm always makes progress,
and that no thread tries repeatedly to insert a site without succeeding. The algorithm assigns
prioritiesin the following manner: let S be the original set of » sites, and let p = {p1, p2,...,Pn}
be a permutation on theintegers between 1 and ». The permutation p defines the order in which the
sequential randomized incremental would insert the sites. If athread ¢ is attempting to insert the
site p;, itis given the priority :.

This scheme, along with the locking protocol ensures that the algorithm will perform its
insertions in an order which is consistent with what the original, sequential agorithm, assuming
that each algorithm is given the same permutation. In addition, if we have P threads, the scheme
ensures that no thread will haveto wait for morethan P phasesin theworst case before itsinsertion
succeeds.

Assuming afixed number of processors, this a gorithm has the sameworst case O(n?) runtime
asthe standard incremental algorithm. Consider the situation wheren /2 sites are placed along the «
axis, and n/2 sitesare placed in acircular arc that intersectsthe z-axisat @ = —1. If wefirst insert
al thesitesin the arc, and then put in the other sitesfrom right to left, each new insertion will cause
n/2 edgeflips. In addition, thesitesalong the z-axiswill al need to be processed sequentially, since
none of them update digjoint sets of existing edges. Therefore, in this casethe paralel algorithmis
reduced to the worst case performance of the sequential a gorithm.

Luckily, we can refer to many theoretical results that show that the average-case performance
of this algorithm will be reasonable. We saw earlier that given adiagram DT(R) with |R| = r, if
we insert site number » 4+ 1 into R at random, then the expected number of updates the insertion
would cause is a constant. Ideally, we would like to be able to prove that the probability of an
insertion causing significantly more than the average number of edge flipsislow.

The probahilistic analysis that we used before does not provide the exact result that we need
here. The crux of the problem is bounding the sum that we derived in equation (I). If we knew that
the probahilitiesin the sum were independent, then a simpletail bound would suffice to provide us
with the needed result. But, thisisnot the case in general, and proving such abound becomes much
more difficult.

However, some useful bounds are available in the literature. First, the bound in condition (L)
of Theorem 5.1 implies that with high probability, no site that has yet to be inserted conflicts with
more than O(logr) existing triangles. In addition, Clarkson, et. a. show that the probability that
the total number of updates performed randomized incremental algorithm is greater than k times
the average is bounded by e~* [CMS92]. The first bound gives us arough ceiling on the maximum
number of updates needed for a given insertion, but it isn't as exact as we would like. The second
bound istighter, but only holdsin an amortized sense, not for any given insertion.

Outside the ream of randomized agorithms, Bern, et. a. show that under a restricted
model of the input, the expected maximum degree of a vertex in the triangulation with r sitesis
O(logr/loglogr) [BEY91]. In this paper, the point set 5 is modelled as a unit-intensity Poisson
process in the plane. The authors then restrict their attention to the portion of the Delaunay
triangulation of such a set of points that lies within a square with side length /n. This model is
used to avoid dealing with anomalies near the edges of the square, and thus does not correspond to
point sets generated from afinite distribution. However, this result is good evidence that when the
input to our algorithm is generated from the uniform distribution in the unit square, very few sites
will cause expensiveinsertionsto take place. Thisisbecause in theincremental agorithm, the cost
of aninsertion is proportional to the degree of the new site in the modified diagram.

104

Finally, we can supplement current theoretical thinkingwith experiments. For thispurpose, we
will depend on a simulation of the parallel agorithm that executes on a conventional workstation.
Such a simulation can provide relatively precise answers for a wide range of questionsthat we are
interested in, and for a large range of problem instances. Good experimenta results, along the
current set of similar, but not identical theoretical resultslisted above will all provide evidence that
theresult that we want is, in fact, true.

6.3 Simulations

To collect datafor our experiment, asimulator was constructed from the program for theincremental
algorithm used in Chapter 2. The simulator was designed to measure the abstract cost of Algorithm
CRIC, not to try and estimate the runtime of the algorithm on any real system. Therefore, the
simulator mimics multiple “threads’ of control, executing synchronously, by using for loops.
That is, whenever a statement in Algorithm CRIC is executed in parallel, by multiple threads, the
simulator wraps the statement in afor loop, with oneiteration per thread. Thus, the threads move
forward through the program in lock step. Of course, thisis agross simplification of areal system,
but since the simulation is not attempting to provide an accurate estimation of rea performance,
thisis not a concern.

The simulator was instrumented to keep track of the maximum number of edge flips over a
block of insertions. The size of the block is a parameter to the simulation. We will present results
for blocks of 32 and 1024 insertions. The simulator runs the sequentia algorithm, and keeps track
of the maximum and average number of edge flips needed in each block of insertions. The 32
processor simulation ran on inputs of 10° sites, while the 1024 processor simulation ran on inputs
of 10° sites. Each experiment used inputs from each of the nine input distributions used Chapter 2.

Figure Figure 6.2 shows the results of this experiment. For each run in each distribution,
the box plot summarizes the ratio of the maximum number of edge flips in any given block to the
mean in that same block. Thus, for the 32 processor case, the plot summarizes about 300 trials,
while the 1024 processor plot summarizes 100 trials. In each case, we can see that the maximum
number of edge flipsis never more than a small constant times the mean. There does seem to be a
small dependency on problem size and block size, since the values are uniformly higher in the 1024
processor plot. But, for practical problem sizes, thissmall factor does not appear to be significant.

These experiments give us confidence that for the range of problem sizeswe are studying, (i.e.
up to, say, 200K sites), and on machines with less than 1000 processors, the maximum number of
edges flipped by any insertion will be a small constant times the average. If thisis the case, and
|R| = r, the probability that s conflicts with any given triangle in the current diagram is O(c¢/r),
for some constant ¢ > 0. Now suppose we have P sites that we wish to insert into R. We will
say that two insertions collide if their update sets intersect. Using the same analysis as in Section
4.3, we can see that the average number of insertions that collide with each other is O(P?/r).
Therefore, as long as r = O(P?), the expected number of collisions in one insertion phase is a
constant. Therefore, for n sites, there will be O(n/P) phases. If we use the same point location
structure as in Chapter 2, the expected runtime of each phase will be a constant, so the expected
cost of processing insertionswill be O(n/P) time.

Theremaining cost of the algorithm will be in managing the insertion queue, managing locks,
memory system overhead, and the cost of barrier synchronization. All of these factors are machine
dependent constants, and for fixed P, they will not affect the asymptotic runtime of the algorithm.
However, they play alargerolein determining the actual performance of an implementation, so we

105

Max
/ Mean

(8) 32 Processors, 10K sites (b) 1024 Processors, 100K sites

4 -4
3.5 4 - 3.5
3 -3

+ o+ +
2.5 + - 25
2- + o+ N T L2
+ + * + *
1.5] | o | - 15
14 -1
T T T T T T T T T T T T T T T T
unif ball corn.diamcrossnorm clus arc unif ball corn.diamcrossnorm clus arc

Figure 6.2: Load balancing in the concurrent incremental algorithm.

will deal with these issues at that stage of the discussion.

Now welook moreclosely at thethe expected cost of processinginsertionsin Algorithm CRIC.
We will examine two aspects of Algorithm CRIC: how much concurrency is actually available, and
how much total work, in terms of circle tests and edge tests, does the algorithm perform.

Thefirst question to consider iswhether or not the algorithm actually achieveslow contention
and high concurrency. To examinethis, the simulator was programmed to keep track of the number
of insertions that succeeded in each iteration. These “concurrency profiles’” were collected for a
wide range of problem sizes between 1,024 and 131,072 sites, and for simulated machines with
between 4 and 128 processors. The inputs were generated from the uniform distribution in the unit
square. Each simulationwasrun with aninitial sample sizes of between one sample and 32 samples
per processor. We will examine the resultsfor one sample per processor, sincelarger initial samples
only increase the potentia concurrency in the agorithm.

Figure 6.3 showsthe results of this preliminary experiment. For each machine size between 4
and 128 processors, each graph shows one simulated run of the algorithm, on 1024 P sites generated
uniformly in the unit square. The “Time" axis of the plot represents the forward motion of the
algorithm through each insertion phase. The simulation breaks the run of the algorithm up into
groups of 20 insertion phases. For each phase, it records the number of threads in that phase that
successfully inserted a site. This number reflects the number of threads doing useful work, and
thusthe processor utilization for that phase. After each group of 20 insertion phases, the simulation
stops and computes the average number of active threads for that group. Thisvaueisshown onthe
graph. All of the profiles display the same general pattern. Once a sufficient number of sites have
been inserted into the diagram, the algorithm can support as many active threads as is needed.

With these encouraging results in hand, we now take a more detailed look at the algorithm’s
performance. As before, the relevant measures are the total number of circle tests the algorithm
performs and the number of edge tests the a gorithm needs for point location.

For each statistic, ten trials were for problem sizes between 1,024 and 131,072 sites, and with
simulated machine sizes of between 4 and 128 processors. As before, the inputs were generated
from the uniform distribution in the unit square. The size of the initial sample was chosen to be
one sample per processor. The graphs show box plots that summarize the distribution of the trials

106

Max
/ Mean

(a) 4 procs, 4K sites, 4 samples

4.5 4

O P p——

3.5 °e
Active 37

Threads '2 |

1.5
14
0.5 -

250 500 750 1000

Time

(c) 16 procs, 16K sites, 16 samples

16 -
144 .
124 °
Active 107
Threads 8 7°
6
4 4
9

oo ©00008000000006200°000,00000000,00000000,0
o

@% © °

T T T T
250 500 750 1000

Time

(e) 64 procs, 64K sites, 64 samples

64 -

56 4

48

Active 40 H
Threads 32
24 4°

16 A

8

T T T T
250 500 750 1000

Time

(b) 8 procs, 8K sites, 8 samples

]
T4 0
6
Active 5
Threads 4 -
3
9
1 -

o, 0 19060000, 00
600, 266000,99°940,00090 4060900500994 90C0, 000
000°° 00 ° °

250 500 750 1000

Time

(d) 32 procs, 32K sites, 32 samples

32

284

24 -
Active 20 -

Threads 16
12 -

8
4 Jo

00000 o °
0099°° o

T T T T
250 500 750 1000

Time

(f) 128 procs, 128K sites, 128 samples

s
1124 .° .

96 4 °
Active 80
Threads 64
48
32 4
16 -

°

T T T T
250 500 750 1000

Time

Figure 6.3: Concurrency Profiles for various machine and problem sizes.

107

at each problem size.

Figure 6.4 showsthat for large problems, the parallel incremental algorithm does only slightly
more circle tests, on average, as the seria agorithm did. For small problems, there is more
contention, so more transactions must be aborted and retried. This causes extra circle tests to be
performed. These results are consistent with our analysis, which said that the algorithm would
performwell aslongas N >= P2.

Figure 6.5 showsthe performance of the point location algorithm. These graphs show the same
pattern asthe resultsfor circle testing. For large problem sizes, the performance of the algorithmis
very close to that of the seria agorithm. For smaller problem sizes, the algorithm does somewhat
worse, but aslongas N > P2, the expected cost of this phase of the algorithm, as measured by the
simulator, is never more than afactor of two worse than the serial algorithm.

Theseresultsimply that inthe absence of other system overhead, Algorithm CRIC will perform
very well when compared to the serial incremental algorithm. Even though the simulations were
idealized, they provide good evidence that the runtime constants in the algorithm are low enough
to not effect on the performance of an implementation. Thus, thisalgorithm isagood candidate for
apractical solution to the problem of constructing Delaunay triangulationsin parallel.

6.4 Thelmplementation

Of course, any real implementationwill need to contend with the overhead present inrea systems.
To examine these issues, we will discuss an implementation of Algorithm CRIC on the KSR-1. We
choose the KSR-1, rather than the Cray for severa reasons:

¢ Theagorithmisnot suited to avector style of programming. We saw earlier that vectorizing
spiral search, which is considerably simpler than Algorithm CRIC, was a very intricate
process. So, whileitisin principle possibleto translate the algorithm to a vector style, it is
much more natural, and convenient to take advantage of the multithreaded, shared memory
programming model that the KSR provides.

e TheKSR-1 providesmore potentia concurrency at the processor level, so we can better study
how well the algorithm will scaleto larger numbers of processors. The Cray has ahigh level
of potentia instruction level parallelism, but only for programs that vectorize. Otherwise,
only 4 processors are available on the Cray Y-MP that we have access to.

¢ Finally, theirregular and dynamic nature of Algorithm CRIC will put maximum stress on
the KSR-1 memory system. Therefore, the performance of the memory system on this
test will provide insight as to the practicality of large, distributed memory, cache coherent
multiprocessors.

Theimplementation of Algorithm CRIC followsFigure 6.1 fairly closely. Each thread repeat-
edly calls Insert-Site, retrying aborted insertions as needed. The sitesto be inserted are kept in
acentralized queue, out of which idlethreads fetch new work to do. In addition, ashared version of
the point location data structure is maintained and updated in parallel. Since theinsertion phases of
the algorithm occur synchronously, after each phase the algorithm checks to seeif the bucket table
needs to be expanded. If so, amaster thread performs the expansion, and then al threads rebucket
the sites that have been inserted.

Intheimplementation, our main concern isreducing the cost of datamanagement and synchro-
nization. The KSR parallel runtime libraries [KSR91] contain routines for barrier synchronization

108

(8) 4 processors, 4 samples

10
9.8 |
964 . |
Circle Tests \
Per Site 9.4 .
9.2 - ol
i |
9_ T.}*}?a
T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites
(c) 16 processors, 16 samples
1384 !
134 1
_ 12.2
C|;(;Ires'll_':ﬂs 11.4 %
© 106+ 6
9.8 1 4
9_ A T S
T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites
(e) 64 processors, 64 samples
T
25
Circle Tests 20 7
Per Site 15 :
13
104 e e e

210 211 212 213 214 215 216 217
Number of Sites

Circle Tests
Per Site

Circle Tests
Per Site

Circle Tests
Per Site

(b) 8 processors, 8 samples

11.8
11.4
114 .,
106 !

10.2 4 '
9.8 ,
9.4

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(d) 32 processors, 32 samples

o

18
16
14 4 i

12 :

10 .

210 211 212 213 214 215 216 217
Number of Sites

(f) 128 processors, 128 samples

30
25 -
20 t

10 -

211 212 213 214 215 216 217
Number of Sites

Figure 6.4: Circle tests per sitefor Algorithm CRIC.

109

Edge Tests
Per Site

Edge Tests
Per Site

Edge Tests
Per Site

(8) 4 processors, 4 samples

19 -
18 -
17 4
16
15

—o-

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(c) 16 processors, 16 samples

210 211 212 213 214 215 216 217
Number of Sites

(e) 64 processors, 64 samples

°

-0 —

210 211 212 213 214 215 216 217
Number of Sites

(b) 8 processors, 8 samples

19 -
|
184 -
Edge Tests .
Per Site 174 ‘ b, ' |
16 - . T
I i i
IS 4
T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites
(d) 32 processors, 32 samples
324 .
28 -
Edge Tests .
Per Site 241 |
20 |
! .
64 by
T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites
(f) 128 processors, 128 samples
55
504
45 - |
Edge Tests gg i |
Per Site 30 [
25 1 f
20 - b .
LT MRS

211 212 213 214 215 216 217
Number of Sites

Figure 6.5: Edgetests per sitefor Algorithm CRIC.

110

and queue locks, but the overhead of using these routine is too high. Therefore, the simple locks
needed in Figure 6.1 were implemented using the _gspwt instruction. This instruction attempts
to obtain exclusive access to a cache block and halts the processor until the block is available.
This mechanism is similar to the QOSB instruction described by Goodman [GVW89]. The _rsp
instruction is used to release alock.

Barriers were implemented using Mellor-Crummey and Scott’s arrival tree barrier [MCS91].
This barrier agorithm is attractive because it uses less communication than standard counting
barriers. Thisisanimportant consideration ontheK SR, sincecommunicationisexpensive compared
to local processing. The routine was ported to the KSR from its original implementation for the
Sequent Symmetry.

With these mechanismsin place, the main source of overhead becomes the cost of managing
the distributed quad-edge data structure. Because the a gorithm must update the diagram after each
insertion phase, it incurs network traffic to fetch datafrom remote memoriesand to invalidate copies
of cache blocks that may have been replicated. In Chapter 3 we saw programs that exhibit this
pattern of memory access introduced a significant runtime overhead. The unstructured permutation
benchmark from that chapter is representative of this sort of code. On that benchmark, eight
processorsrunning in parallel achieved little speedup over the sequential code, except for very large
vectors. Given these results, we would expect that the direct cost of maintaining the shared data
structure will limit the absol ute speedup attainable by this algorithm.

However, non-uniform memory access timesal so produce an unexpected indirect effect on the
program’s performance. The unpredictable performance of the memory system introduces a large
amount of variance into the relative runtimes of the threads in the parallel algorithm. As aresult,
the arrival times of threads at the barrier pointsin the agorithm becomes very unpredictable. The
performance of the barrier algorithms is good when the al the threads reach them at roughly the
same time, but when the arrival times are spread over alarge range, fast threads spend a significant
amount of time spinning inside the barriers.

In order to combat this effect, we will use two ad-hoc devices. First, we process insertions
in batches to amortize the overhead of the barriers over a larger number of transactions. This
idea was motivated by the fact that one of the main goals of data parallel language compilers for
MIMD machinesisto reduce the synchronization overhead of data parallel programs by combining
individual instructions into larger blocks of code that could be run asynchronously by multiple
threadg|Cha91, QHJ88]. Similarly, Algorithm CRIC is defined as a set of synchronous phases,
with one phase per site per processor. However, the concurrency profiles indicate that moderately
sized problems can support alarge amount of virtual concurrency. Therefore, it makes senseto take
advantage of this, and simulate many insertions using one processor. The effect is to increase the
grainsize of each insertion phase, and spread the cost of synchronization across many insertions.

The second device that we will use in the implementation is motivated by the “guided self-
scheduling” (GSS) technique of Polychronopoulos and Kuck [PK87]. Guided self-scheduling was
designed to facilitate the scheduling of do-loop iterations across multiple processors in a shared-
memory environment. Information about iterations still needing serviceis storedin acentral queue.
When a thread becomes idle, it examines this queue and pulls off some fraction of the remaining
work. Polychronopoulos and Kuck describe how threads can make a set of local, independent
scheduling decisionsin such away asto minimizethe spread of arrival timesat the barrier marking
the end of the loop.

111

Original:

for each thread
for each site in current batch
Insert-Site (site)
grab new sites
end

Changesto:

place new batch of points in PQ
for each thread
while (PQ is not empty)
pull off a set of sites using GSS
run phase 1 of Insert-Site
end
barrier;
end
place current batch of points in PQ
for each thread
while (PQ is not empty)
pull off a set of sites using GSS
run phase 2 of Insert-Site
end
barrier;
end
place current batch of points in PQ
for each thread
while (PQ is not empty)
pull off a set of sites using GSS
run phase 3 of Insert-Site
end
barrier
end

Figure 6.6: Interchanging loopsto use GSS.

Restructuring Algorithm CRIC to use GSS would have required major surgery to the existing
program. To make the scheme work, we would need to interchange the inner loops of the algorithm
according to the schemein Figure 6.6. The new codeinterchanges the order of theloops, bringing
the internal phases of Insert-Site to the outer level of the loop nest and pushing the loop over
each batch of sites into the inner level. This alows use to use GSS to schedule the phases of
Insert-Site in away that minimizes the overhead of the barriers. However, a change of this
magnitude should not be undertaken without looking for asimpler method first.

Profiles of the program showed that the major source of overhead was the barrier after phase 1
of Insert-Site. Therefore, the algorithm was modified so that thefirst thread to reach thisbarrier
would use aglobal flag to inform the other threads to finish up. When other threads detect that this
flag is set, they break out of the phase 1 loop and enter the barrier as soon as possible.

112

Phase 1 []

(8) 16 processors Phase 2 [(b) 32 processors
50 Barriers Il
30
40 =]
5 0 5 20
. T
£ 20 £]
=3 = 3
E 105
10]
0 F— e Or—T—T T T T 1
0 1 2 4 8 16 32 64 0 1 2 4 8 16 32 64
Batch Size Batch Size

Figure 6.7: The effect of large batch sizes for 16 and 32 processors.

Figure 6.7 showsthe combined effect of thesetwo schemes on 16 and 32 processors. For these
tests, batch size was varied from 1 site per iteration to 32 sites per iteration. At each batch size, five
trials were run and the average value of each component of the total runtime was calculated. The
graph summarizes the results of five trials at each batch size on a problem with 100K uniformly
distributed sites. As the batchsize becomes larger, the contribution of barrier overhead to the
total runtime of the program shrinks significantly, resulting in a larger improvement in overall
performance.

While this simple scheduling trick workswell for relatively small numbers of processors, the
use of the global flag clearly limits the usefulness of this agorithm to relatively small machines.
On large machines, the expense of the the broadcast operation will eventually outweigh any of the
gains that better scheduling may have made. Making the implementation use more sophisticated
scheduling techniques, such as GSS, and examining its scalability in that context is a promising
avenue for future research.

Even with these extra refinements, theimplementation of Algorithm CRIC behaves much like
itssimulation. Figures 6.8 and 6.9 show the cost of the algorithm in terms of circle and edge tests.
For each measure, the algorithm was run on 4, 8, 16 and 30 processors, and on problem sizes
between 1,000 and 200000 sites generated from the uniform distribution in the unit square.

As in the simulations, on small problem sizes, contention on the shared database causes
many retries. But, as the problems become larger, the work that algorithm CRIC does is very
close to that of the original incrementa agorithm. The actual values are somewhat different from
those in the ssimulation because the simulation did not mimic batched insertions or the simple-
minded loop scheduling that the final implementation performed. Both of these mechanisms are
machine dependent optimizationsthat are not appropriate to study in a simulation concerned with
abstract costs. Even with these weaknesses, comparing the output from the simulations with the
measurements from the implementation shows that the original experiments provided reasonably
accurate upper bounds on the actual performance of the a gorithm.

113

(8) 4 processors

10.8 -

10.4 -

Circle Tests 101
Per Site 9.6
9.2

8.8

210 211 212 213 214 215 216 217
Number of Sites

(c) 16 processors

11.5
11

Circle Test 0.

Ircie S

Per Site 10 1
95 -
9_
85 -

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(b) 8 processors

11.2 -

10.8 -

10.4 -
CircleTests 10 -
Per Site 9.6 |
9.2 4

8.8 1

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(d) 30 processors

12 -

11.5 +

11 -

Circle Tests 10.5
Per Site 10 -
9.5 -

9O 4

8.5

—o

-
—- =
=

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 6.8: Circle tests per sitefor Algorithm CRIC.

114

Edge Tests
Per Site

Edge Tests
Per Site

(8) 4 processors

19 -
18 -
17
16 -
15
14
13 4
12

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(c) 16 processors

28 -
26 -
24 -
22 -
20 -
18 -
16
14
12

L oo
9000y,

°

Speedup

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Edge Tests
Per Site

Edge Tests
Per Site

(b) 8 processors

19 -
18 -
17
16 -
15
14
13 4
12

[
i
?
b,
4"”&
[
® 446000

°

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(d) 30 processors

21
20 -
19
18 -
17
16
15
14
13 4
12

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 6.9: Edgetests per sitefor Algorithm CRIC.

Speedup of CRIC Algorithm

9 30
8 - 300
30 30 P30
7 - 30 0
6 - 30
3030300 16
54 6 6 0 16 16505646
4 0 .16 1616161
0 16
16
31 ® . g 88888 8 8 8 8gg8s 8
2 8
? 4 4 4 4 44444 4 4 4 4444 4
1 | 4
T T T T T T T T
210 211 212 213 214 215 216 217

Number of Sites

Figure 6.10: Speedup of Algorithm CRIC vs. the standard incremental agorithm on one KSR
processor.

115

Speedup of CRIC Algorithm, 30 processors

+
44+
+++

Speedup

coo PPk

~NOOOORFRFENWA

L
+

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 6.11: Speedup of Algorithm CRIC with 32 threads vs. the standard incremental agorithm
on a Sparc 2.

The final performance measure of interest for Algorithm CRIC is, of course, speedup. The
speedup plots show the average speedup over ten trids of the parallel agorithm for problem sizes
between 1,000 and 200,000 sites. Theinputswere again generated from theuniform distributiondis-
tribution in the unit square. Figure 6.10 compares the runtime of the concurrent algorithm with that
of the original sequentia agorithm running on one KSR processor. The graph indicates that while
it takes four processors running agorithm CRIC to match the performance of the single, sequential
node, the algorithm does achieve reasonable levels of relative speedup as we add processors. up
to 9 with 30 threads. Two factors handicap the performance of algorithm CRIC when compared
against the original incremental method. First, the KSR memory systemisat itsworst when dealing
with unstructured read/write access patterns. We observed this behavior before in our study of the
permute benchmark, presented in Chapter 3. Second, Algorithm CRIC makes two passes over the
current diagram for each insertion, one checking for conflicts and one flipping edges. The original
incremental agorithm only needs one pass to perform both tasks. While Algorithm CRIC caches
the results of circle tests and point location, there is still extra work related to managing queues,
checking locks and so on.

Both of these factors, and the fact that the KSR node processor is much slower than current
off-the-shelf partsresult in the speedup curve shownin Figure6.11. Here, theruntimeof Algorithm
CRIC using 30 processorsis compared with the runtime of the seria algorithm on afast workstation.
For this range of problem sizes, the workstation has the clear advantage in cost/performance. On
the other hand, as problems become larger, the parallel algorithm will be able to take advantage of
much more memory than the workstation. One indication of this effect is the small upward jump
that the speedup curves in Figure 6.10 take for the largest problem sizes. In genera though, the
cost of maintaining all intermediate diagrams in a shared memory istoo high for Algorithm CRIC
to compete with current workstations.

Onthefaceof it, theperformanceof thisalgorithmin absol utetermsis somewhat disappointing.
However, our experimentsal so showed that the al gorithm makes effective use of multipleprocessors
when they are available. The relative speedup exhibited by the algorithm on up to 30 processorsis

116

typical of this, and other irregular applicationswith high communication requirements. Chatterjee’s
thesis contains many other benchmarks of this type [Cha91], though none are as complex as the
construction of the Delaunay triangulation. Thus, the real advantage of the parallel algorithmisthe
fact that with many processorsavailable, it will be ableto solve problemsthat aretoo largetofit into
the memory of current workstations. The multiple CPUs, and the memory management hardware
available on machineslike the KSR-1 makeit possibleto work with very large data sets efficiently.

6.5 Concurrent Incremental Search

Next, we turn to a parallel implementation of Algorithm IS from Chapter 2. We will call the
new algorithm “Algorithm CIS’, for Concurrent Incremental Search. Recall that this algorithm
constructs the diagram on triangle at a time using a search process that is much like spiral search.
In the paralldl version of the algorithm, we perform many site searches in parallel rather than one
a atime. In order to make this work, we need to construct concurrent versions of three data
structures: the bucket grid, the edge dictionary and the edge queue. Chapter 4 showed how to
construct the bucket grid in parallel using a simple locking protocol. The implementation of the
edge dictionary is similar. The edge dictionary is also represented using a hash table with external
chaining. Therefore, when inserting a new edge record into the dictionary, each thread first locks
the bucket that therecord fallsin, adds therecord to the bucket, and then unlocksthe bucket. Unlike
the bucket grid, the edge dictionary is modified as the algorithm progresses. Therefore, searching
the dictionary, threads must a so lock any buckets that they scan in search of an edge record. Since
edges are mapped to buckets a uniform manner, contention on the bucket locks should not be a
problem, so, as before, the edge dictionary will not be a major bottleneck in the performance of
the parallel agorithm. Figure 6.12 shows pseudo-code that summarizes the implementation of the
concurrent edge dictionary.

Handling the edge queue is a slightly more subtle problem. The edge queue is implemented
as a circular queue embedded into an array. A straightforward way to make the queue work
concurrently isjust to have threads lock the head and the tail when queueing or dequeuing an edge.
However, early runs of the program showed that contention was limiting the performance of the
paralle agorithm. Therefore, the final implementation removes this contention by having each
thread keep alocal queue of edges, and threads only place edges onto the global queue when they
run out of local space. In addition, to make sure that no thread terminates prematurely because its
local queue empties out, we make sure that each thread puts at least a fixed fraction of its edges
onto the globa queue to keep everyone busy. The agorithm can then be tuned by adjusting the
local queue size and the frequency of global inserts to optimize load balance and contention. For
the experiments in this chapter, the local queue sizewas set to n/ P, and no extra global insertsare
performed. In practice, the premature termination of threads did not happen often enough to have a
significant impact on the performance of the program. Figure 6.13 shows pseudocode for the queue
handling functions in our implementation.

Except for codeto create threads and synchronize between the bucketing and searching phases
of the agorithm, the program for the concurrent incremental search agorithm is identical to its
sequential counterpart.

6.6 MoreExperiments

To test the effectiveness of the parallel agorithm, | ran the standard set of experiments on an
implementation for the KSR-1. 1 tested the program on point sets generated at random from the

117

// node(org,dest) == the edge record corresponding to (org,dest)
// link[bucket] == pointer to first edge record in this chain.
//

Insert-edge (org, dest)

{

}

bucket = hash(org,dest)

lock(link[bucket])

if node(org,dest) already exists in bucket
unlock(link [bucket])

return node(org,dest);

newnode = construct node(org,dest);

newnode.next = link[bucket];
link[bucket]

newnode;

unlock(link [bucket])
return newnode;

Find-edge (org, dest)

{

bucket = hash(org,dest)
answer = nil

lock(link[bucket])

if node(org,dest) already exists in bucket
answer = node(org,dest)

unlock(link [bucket])
return answer;

Figure 6.12: Code for a concurrent edge dictionary.

118

// qunodes == array for global queue

// pqnodes == array for local queue
// ghead == head of global queue
// qtail == tail of global queue
// pghead == head of local queue
// pqtail == head of local queue

enq_edge (e)
{
temp = (pqtail + 1) % num_pgnodes
if (temp != pghead || !should_insert_globally()) {
pqtail = temp;
put e into pqnodes[pqtaill;
return;
}
// local queue is full
lock(qlock);
qtail = (qtail + 1) % num_gnodes;
if (qtail == ghead) {
fprintf(stderr,"Queue overflowed, try again\n");
exit(1);
}
put e into gnodes[qtaill;
unlock(qlock);
}
deq_edge()
{
// check local queue
if (pghead '= pqtail) {
pghead = (pghead + 1) % num_pgnodes
e = pqnodes[pghead] .e
return e
}
// look in global queue
lock(qlock)
if (ghead == gtail) {
unlock(qlock)
return nil;
}
ghead = (ghead + 1) % num_gnodes
e = gnodes[ghead]
unlock(qlock)
return e

Figure 6.13: Code for the concurrent edge queue.

119

(8) 4 processors

(b) 8 processors

225 - \ 225 -
- 2125: e tpati - 2125:
Dist. sl 1|1] | Dist. 21] ! | |
Calcs . ‘ Calcs 1os Lo
20.5 20.5 i]° iR Tv?f,;*
Per "20- Per 20- ‘ 11
Ste 195 Ste 195
19 19
18.5 18.5
T T T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 210 211 212 213 214 215 216 217
Number of Sites Number of Sites
(c) 16 processors (d) 32 processors
225 - 22.5 -
22 - 22 -
|
Digt. 212?: TR Digt. 212?: G e ,mi.ﬁ
Cdos o5 1 ¢ irlnh T it Cdes o1 1 79 I
Per =1 . ! Per = I |
: 20 - : 204 %
Ste 195 | Site 195
19 19
18.5 18.5

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 6.14: Distance calculations per site for the concurrent incremental search algorithm.

uniform distribution in the unit square. The program was tested using between four and thirty-
two processors. Five trials were executed for point sizes between 1,000 and 100,000 sites. For
comparison, the sequential version of the program wasrun on one KSR node, and on the Sparcstation
used in the earlier tests. Finaly, as usua, | used the sequential incremental agorithm running on
a Sparc 2 as a baseline for an absolute performance comparison with a fast workstation. 1 did
thismainly for consistency with my other comparisons. While it is true that Dwyer’s agorithmis
somewhat faster the difference on the Sparc is only about 10%.

Algorithm CIS performs almost exactly the same searches asthe sequential one. One situation
where it might perform aredundant search isif one thread is about to mark an edge as finished just
after another thread has pulled it off the global event queue and called Site-search. However,
the use of local queues makes this possibility relatively remote. Figures 6.14 and 6.15 provide
experimental evidence for this fact. Recal that in Chapter 2 we saw that the performance of
Algorithm IS was largely determined by the number of buckets it examined and the number of
distance calculations it performed. The figures show box plots summarizing the behavior of the
two metrics in this set of experiments. It is apparent from these trials that the parallel algorithm
performs very little extrawork when compared to the sequential code.

We saw in Chapter 2 that Algorithm ISwas significantly slower than theincremental algorithm.

120

(8) 4 processors

25.5 -

24.5 4
24 -
23.5 1
23 -
22.5

Boxes

Site

21.5 4

(b) 8 processors

Boxes

Site

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(c) 16 processors

| [i !

T

o

Boxes

Site

. |
¢ | | |
”"Tﬁ?

—o
—_— 0 —
p—]
—
—o

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

(d) 32 processors

Boxes

Site

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

T T T T T T T T
210 211 212 213 214 215 216 217
Number of Sites

Figure 6.15: Buckets examined per site for the concurrent incremental search a gorithm.

Speedup

biH
AL,
15 - *z
10 - ls P I G o 4o i I o b fs tole 1616}6
5 B B B BB B BBEB B B B BBBBB
%}) 4 4 444Uy) 3 4y u 4y |4|4
L

Number of Sites

121

Figure 6.16: Speedup of Algorithm CIS relative to one KSR node.

8 4

- NI Ty

6 -
Speedp i: L i fo fs 1o Jo 16*61616 fs fs 16 fs b JfGJrGHG

34
5 B B B B P pBBEB B | B BBEBBE
1. u W M oUW BuuUl bu B, oy uupu

T T T T T T T
210 211 212 213 214 215 216
Number of sites

Figure 6.17: Speedup of Algorithm CIS relative to the SparcStation 2.

Initsconcurrent incarnation, the situationisreversed. The combination of simplicity, lack of global
synchronization, and lack of contention on shared datastructuresallowsAlgorithm Cl Sto effectively
utilize much more parallelism than Algorithm CRIC. The following figures summarize the speedup
in three different ways. Each shows the average speedup obtained in the five trials along with the
90compares the runtime of Algorithm IS on one KSR processor to the runtime of Algorithm CIS
on multiple KSR processors. The figure clearly shows that the Algorithm CIS is making much
better use of extra processors than Algorithm CRIC did. Algorithm CIS behaves much like the
paralle all-nearest-neighbors code did in Chapter 4. Since it mainly depends on searching the
bucket grid in parald rather than searching and updating it, the KSR memory system supports
concurrent reads using the local cache of each processor. Algorithm CIS is not quite as scalable
as the earlier all-nearest-neighbors agorithm because its searches cover a larger area, making the
cache less effective, and because the algorithm needs to maintain the shared edge dictionary.

Figure 6.17 compares the Algorithm CIS running on the KSR to Algorithm IS running the
Sparcstation 2. It is evident that the KSR has a significant performance advantage over the
workstation in this case. This advantage remains even when we compare Algorithm CIS to the
origina incremental algorithm (see Figure 6.18). These two graphs provide solid evidence that
within the limitations that we noted in Chapter 2, Algorithm CIS shows that it is possible to use
parallelism effectively in the construction of the Delaunay triangul ation.

Finally, Figure 6.19 shows a direct comparison between Algorithm CIS and the Algorithm
CRIC on uniformly distributed sites. Both agorithms were run with 32 processors on problems
of between 1K and 100K sites. The graph shows the ratio between the mean runtimes of each
algorithm. Even though these results are easily derivable from the previous graphs, it helps to see
them directly. The graphs show that for smaller praoblems, Algorithm CIS is more than five times
faster then CRIC. For large problems, Algorithm CRIC improves, but Algorithm CISis still more
than twice as fast.

6.7 Summary

Thischapter presented two practical algorithmsfor the parallel construction of the Del aunay triangu-
lation with extensive experimenta analysis of their performance. Each of the algorithm constructs

122

6
3 b by

" b g |

Speedup N *}2 . JrG lﬁ »
T

i: B e b b BpBBPB B b B B BEBb

T T T T T T T
210 211 212 213 214 215 216

Number of sites

Figure 6.18: Speedup of Algorithm CISrelativeto the sequentia incremental algorithm running on
a SparcStation 2.

5

4.5

Speedup 4 4
3.5+ +

3 + +

+
2.5 + 4

2![0 2_![1 2;.2 2![3 2![4 2![5 2![6
Number of Sites
Figure 6.19: Speedup of Algorithm CIS relative to Algorithm CRIC on 32 procs.

123

the Delaunay triangulation in an concurrent, incremental fashion. Algorithm CRIC is a concurrent
version of the randomized incremental agorithm that we studied in Chapter 2. Algorithm CIS
is a concurrent version of the incremental search algorithm that we studied in Chapter 2. The
experiments in this chapter, and in Chapter 5 led to some important observations about the practi-
cal behavior of paralel algorithmsfor Delaunay triangulation construction. We summarize these
observations below.

¢ Using arandom sampleto divideand conquer produces independent subproblemsthat appear
to beof roughly equal sizes. However, experimentswith uniform inputs also showed that this
technique adds alarge multiplicative constant to the work bound of the algorithm.

¢ Theincremental algorithmsthat we first discussed in Chapter 2 provide a practical basis for
parallel agorithmsfor constructing the Delaunay triangulation.

¢ Simulations showed that on uniform inputs, the incremental construction algorithm has the
potential to support a high level of concurrency, assuming that synchronization is not a
bottleneck.

¢ The implementation of the concurrent incremental construction agorithm showed perfor-
mance is poor due to high synchronization and memory management overhead.

¢ Theincremental search a gorithm avoidsmuch of theoverhead of theincremental construction
algorithm, and thus exhibits much better performance in a parallel implementation.

Like the experiments in Chapter 2, our experiments with parallel algorithms also illustrate
some principlesthat should be of general interest. We aready covered some of these in Chapter 2,
but we repeat them here in the new context of paralel agorithms design.

Keep it simple, stupid (K1SS). After studying many elegant, but complicated methods for con-
structingthe Delaunay triangulationin parallel, the simpl est methods proved to bethemost practical.
The agorithmsthat | finaly implemented were the oldest and simplest available.

Abstraction. Designingand analyzing parallel agorithmsat ahighlevel ispossiblebothintheory
and in practice. In Chapter 4, we were able to derive very accurate performance models from a
combination of high level analysis and machine benchmarking. In this chapter, we used our earlier
analysis of the sequentia algorithms, and the high level primitives that they were based on, to
obtain at least aqualitativefeel for the performance of thefina programs. Thiswas more successful
for Algorithm CIS than Algorithm CRIC since the core of Algorithm CIS is nearly identical to its
sequentia counterpart and therefore no new analysis was needed.

Concurrent DataStructures. Being ableto utilize concurrent versions of common datastructures
makes the implementation of data parallel algorithms much easier. The agorithmsin Chapter 4
and Algorithm CIS in this chapter use concurrent hash tables and queues. Algorithm CRIC uses a
concurrent version of the quad-edge datastructure. Theavailability of good, efficient, datastructures
allows the programmer to work at a high level of abstraction while maintaining efficiency. It aso
makes it much easier to develop programs and prove that they are correct.

Experimental Analysis. We have depended heavily on experiments to characterize the expected
runtime of algorithms over a wide range of possible input distributions. Thisis crucia in those
cases where amathematical characterization of performance isnot available, or isnot exact enough
for practical purposes.

124

Algorithm Animation. The animation of parallel algorithmsis just as useful for debugging and
visualization asit was for sequential algorithms.

Concurrent Read is Easier. Current parallel architectures seem to deal with read-shared data
structures much more effectively than read/write shared data structures. Thisis reflected in both of
our target architectures. The Cray Y-MP memory system only supports one write port per CPU,
while each CPU hastwo read ports. The poor performance of Algorithm CRIC wasin part duetothe
large amount of read/write sharing that it utilized. In contrast, the all-nearest-neighbors algorithm
and Algorithm CIS both performed well on the KSR, and both utilize much more read sharing than
write sharing.

125

Chapter 7
Summary and Future Work

Thisisthe most difficult part: to
summarize...
—C. A. Hoare

This thesis examines the construction of efficient programs for solving proximity problems.
Whilethe more novel results have been in the area of parallel agorithms, thereal focus of the work
is to combine theoretical and experimental results to create practical solutions. The contributions
that thisthesis makes are in three areas: algorithms, experimental analysis, and implementations.

7.1 Algorithms

This dissertation presented four case studies on sequential and parallel algorithms for solving the
all-nearest-neighbors problem and for constructing Voronoi diagrams and Delaunay triangulations
(see Chapter 1). The case studies presented four novel algorithms along with mathematical and
experimental analysis of their performance:

¢ A faster version of the randomized incremental construction algorithm of Clarkson that
combines randomization with buckets to obtain an average runtime of O(n) steps. The
algorithm is simple to implement and its performance is competitive with al other known
methods (see Chapter 2).

e A paralle agorithm for the all-nearest-neighbors problem that is demonstrably efficient on
both traditiona vector processors and on newer cache-coherent multiprocessors. On each
machine, the algorithm achieves good speedups over sequentia code on current workstations
(see Chapter 4).

¢ A concurrent incremental agorithm for constructing the Delaunay triangulation that uses a
transactional abstraction to dynamicaly maintain the subdivision. The agorithm has the
advantage of being more “on-ling” and could be extended to support concurrent deletion as
well. However, the overhead of maintaining a complicated shared data structure limits the
algorithm’s performance (see Chapter 6).

e A concurrent incremental search algorithm that constructs the Delaunay triangulation one
valid triangle at a time using a series of nearest-neighbor-like queries. The algorithm uses
a bucket grid to accelerate the search process and obtains reasonable speedups over fast
sequentia algorithms running on current generation workstations (see Chapter 6).

126

7.2 Modelsand Experimental Analysis

The case studies in this thesis illustrate the utility of using abstract models that are high level
enough to be machine independent, but flexible enough to be tailored to particular applications.
Such models have been used before in the study of parallel sorting, and the work presented here
extends their usefulness to the realm of computational geometry. Our models are data parallel in
the sense that they focus on performing concurrent operations on aggregate data structures rather
then specifying large systems of independent processes. At the lowest level, the models are based
on three classes of vector operations: € ementwise arithmetic, routing and parallel prefix operations
(scans). In Chapter 3 we made the following arguments in favor of this style of programming
model:

¢ The models are portable in the sense that the low-level primitives are easy to implement
efficiently on awide variety of machines. Chapter 3 benchmarks example implementations
of the primitives on the Cray Y-MP and the KSR-1.

¢ The models are simple but expressive. By providing powerful primitives, such as scans, the
models allow programmers to express and analyze agorithmsin high level terms.

¢ Themodesarerealistic. Themodelsdo not losesight of real-world costssincethey can easily
be parameterized to account for the cost of each of the primitives on a given architecture.

¢ Themodelsareflexible. If the need arises, new, higher level primitivescan be substituted for
thelow level onesaslong asit isclear that the new primitives can beimplemented efficiently.

In Chapter 4 we saw how to combine the expressiveness of the vector models with redlistic
machine parameters to obtain accurate estimates of the expected performance of a non-trivia
algorithm.

The other case studies utilize a higher level version of the basic models, where the vector
primitivesare augmented with operationssuch asthe in-circle test, orientation tests, and distance
computations. By concentrating on high level, abstract operations, experiments can be used to make
genera observations about the behavior of an algorithm. Some observationsthat we have made are
asfollows:

¢ Incremental constructionisasimple, effective method for building the Delaunay triangulation
when combined with a dynamic, bucket-based data structure for accelerating point location
(see Chapter 2).

¢ Onuniforminputs, theincremental search algorithmappearsto runin O(n) expected time, but
itissomewhat slower than the other al gorithmsdue to higher constant factors (see Chapter 2).

¢ On sets of » uniformly distributed sites, the frontier in Fortune's algorithm has an expected
sizeof O(/n) edges. The expected size of the event queuein the algorithmisalso O(/n)
(see Chapter 2).

¢ On uniformly distributed sites, circle events in Fortune's algorithm cluster near, and move
with, the sweepline (see Chapter 2).

¢ Using a heap to represent the event queue in Fortune's agorithm improves its performance
on large problems by a small anount. Most of the cost in maintaining a heap in Fortune's
algorithmisincurred by extract-min (See Chapter 2).

127

¢ Dwyer’s adgorithm is the strongest overal for the range of problems that we tested (see
Chapter 2).

¢ Using random samples for divide and conquer is a viable basis for a paralel algorithm to
construct the Delaunay triangulation but suffers from large constant factors in its empirica
runtime (see Chapter 5).

¢ In the randomized incremental construction agorithm, most insertions update independent
areas of the current diagram, and thus can be processed concurrently (see Chapter 6).

¢ Inpardld,theincrementa search algorithm performsbetter, even thoughitsabstract constants
are higher, because it avoids high-overhead operations such as synchronization and fine-
grained read/write sharing of data structures (see Chapter 6).

Finally, the data parallel models alowed usto implement our algorithm in terms of high-level
data structures and appropriate primitive operations. The cost of using such data structures could
be incorporated into the parameters of the model. The sequential algorithmsin Chapter 2 used such
structures as buckets, heaps, queues, dictionaries, and the quad-edge data structure. The parald
algorithmsutilized concurrent versions of these same structures. Thisuse of dataabstraction greatly
aided the implementation and analysis of both the sequential and parallel agorithms.

7.3 Implementations and Benchmarks

The final contribution that this dissertation makes is a suite of implementations of both sequentia
and parallel algorithmsfor closest point problems. The sequential suite collects code from severa
sources and adds the implementationsthe | have constructed myself. The parallel suiteis made up
of thefour programs, two for all-nearest-neighbors and two for Delaunay triangul ation construction
that were used for the experiments in Chapters 4 and 6.

The parallel programsform the basis of anew set of benchmarksfor studying the performance
of parallel computers on programs that solve proximity problems. Such a benchmark suite will be
useful to those eval uating the possible use of large machines on the many applicationsthat usethese
algorithms. In addition, our algorithms exhibit behaviors that are typical of many irregular and
dynamic programs. Therefore, they can be used in the further study of architectural and language
support for such programs.

7.4 Future Work

The experience that we have gained from designing and constructing implementations of these
algorithms leads to many questionsfor future consideration.

74.1 Algorithms.

In Chapter 2 and Chapter 4, we were ableto match experimentsresultswith known analytical results
from the literature in computational geometry. While the experimental results in Chapters 5 and 6
are fairly conclusive, no formal proofs were presented to back them up, only heuristic arguments.
Therefore, an interesting open problem is to match the mathematical analysis of these agorithms
to their performance in practice.

In addition, many improvements and extensions to the algorithms in Chapter 6 are possible.
The main bottleneck in Algorithm CRIC is memory management and synchronization overhead
resulting fromthe algorithm’sneed to maintain acomplicated shared datastructure. In particular, the

128

algorithm displaysalarge amount of read/write sharing, which on the KSR meansthat it generates a
largeamount of invalidatetraffic onthe network. Newer shared memory machines, with faster CPUs
and higher performance networks and cache protocols could improve the absol ute performance of
the algorithm substantially. But the experience we have gained with this algorithm suggests that
some agorithmic refinements would have alarger impact. Modifying the algorithm to use a better
scheduling scheme, like Guided Self-Scheduling could potentially reduce synchornization overhead
in the insertion loops.

In addition, a more sophisticated locking protocol could remove the need for barriers in the
inner loops of the algorithm. This would reduce the runtime of the algorithm by another 20% to
30%. However, it isunclear how to construct such aprotocol in such away asto avoid deadlock and
starvation, especialy because the algorithm accesses the quad-edge structure in an unpredictable
fashion, making deadl ock avoidance difficult.

Recently, Herlihy and Moss[HM 92] have proposed an extension to standard cache coherency
schemes, called transactional memory that would, to a large extent, alleviate these problems.
Transactional memory allows the programmer to construct custom, multi-word read-modify-write
operations that act atomically on shared data structures. This mechanism would alow usto define
Insert-0bject transactionally without the use of barriers or complicated locking schemes. A
restructured version of Algorithm CRIC that takes advantage of this mechanism is currently under
construction on asimulator for Transactional Memory.

The incrementa search algorithm could aso be improved by incorporating a better data
structure to support site searches. Bentley has proposed some novel data structures for supporting
thesetypes of queriesin two and higher dimensions[Ben90]. It would beinteresting to explore how
to use these structures in a concurrent environment. In addition, using techniques from Chapter 4,
the incremental search agorithm could be vectorized, resulting in even better performance on
machines like the Cray and the new CM-5 that have hardware to take advantage of vector code. In
particular, | am investigating the implementation of this and other algorithmsin Blelloch’'s NESL
language [BI€93], which will alow a vector style implementation to run on many platforms.

Finally, it should be possible to apply the methods used in these two agorithms to other
problemsand applications. The randomized incremental framework can be applied to awidevariety
of problems. In particular, | would like to explore segment intersection and higher dimensional
convex hull and Delaunay triangul ation construction algorithms. These problems have applications
that are potentially large enough to support the use of a multiprocessor. In addition, exploring
algorithmsfor the many applications of closest-point problems, such as the TSP problem, minimum
spanning trees, clustering, and so on, would lead to many more insights about the practical nature
of pardlel agorithms.

7.4.2 Programming Parallel Algorithms.

Parallel agorithms need to be easier to program. Each algorithm in this thesis was painstakingly
built by hand. This limited the scope of our investigation to a small number of algorithms for a
restricted class of problems. If more comprehensive studies of practical parallel agorithmsare to
be feasible, a portable, high level library implementing basic parallel primitives must be built. The
current trend is toward machines that are even more difficult to program than current architectures,
making such alibrary even more necessary.

Data parallelism is about data abstraction more than anything else. By packaging a large set
of useful, data-oriented parallel primitives together and providing efficient access to them, data

129

parallel languages provide users with a high level of abstraction at a modest cost. Currently, the
data paralld styleis associated with aggregate operations on collection-oriented structures such as
vectors. | would like to study the mechanisms necessary to further expand the data abstractions
availableto the programmer of parallel architectures. In particular, developing atransactiona style
of programming, similar to the one used in Chapter 6 would be a promising avenue for further work.
This style has two critical characteristics:

Shared memory Programming in a single address space is easier than programming in multiple
address spaces and explicitly placing and moving data. For complicated data structures with
irregular and dynamic reference patterns, shared memory models provide a large gain in
programmer efficiency in exchange for a modest loss in runtime efficiency.

Atomic Operations Herlihy and Moss[HM 92] show that simpleextensionsto current multiproces-
sor memory and cache management schemes can provide the programmer with an extendible
set of atomic operations that can be used to build transactional data abstractions without
complex locking protocols.

In order to make these idea usable in practice, much needs to be accomplished. Machines must be
built with suitable cache-management primitives. Notations for specifying concurrency and con-
current operations on data structures must be designed and incorporated into languages. Languages
based on such notations must be translated by new compilers into a runtime environment that is
suitable for the task. Algorithms that utilize the transactional style must be developed to test and
tune the primitives offered by such a system.

Finally, the high level toolsthat are available on workstations must migrate to multi processor
machines. High level programming languages, program instrumentation, profilers, data analysis
tools, algorithm animators, and debugging tools are all needed on the new machines. This thesis
has concentrated on the use of many of these kinds of tools and an ad-hoc fashion usually off-line
from the actual target machine. The future challenge is in integrating these tools together into a
coherent, efficient and systematic programming environment for multiprocessors.

7.4.3 Simulation and Performance Analysis.

Inthisthesis, simulationsplayed alarge rolein the design and eval uation of algorithms. In addition,
execution-driven machine simulation is the main vehicle for studying questions about parallel
architecture. These simulation systems have the potential to allow algorithms designers to easily
observe the behavior of their programsin arelatively realistic setting. Moreimportantly, ssmulators
would free designers from needing to develop many machine dependent versions of an algorithms
in order to evaluate its performance across a wide range of architectures. Also, the use of parallée
architectures to run simulations would allow large applications to be prototyped and tested in a
simulated environment, thus giving more realistic results.

Having new applications avail able on simulatorswould a so hel p the architecture and systems
community. The study of novel parallel agorithms can have alarge impact on the design of future
machines, since many architectural decisions are made by studying the behavior of standard suites
of benchmarks. These suites need to be expanded to include a more diverse set of agorithms,
especialy those that, like Algorithms CRIC and CIS, exhibit irregular and dynamic patterns of
read/write sharing. ldeally, one would like to accurately characterize the bottlenecks of more
irregular programs, and then design and evaluate new mechanisms for relieving these bottlenecks.

With such simulation systems available, many other problems become possible areas of

130

research. These include managing the data produced by large experiments, querying such a large
databases for useful information, visualizing performance trends, or dynamic and time-dependent
program behavior, and feeding performance information back into abstract machine models to
accurately predict the performance of related algorithms or machines.

Simulations could also be used in concert with high level performance models and compilers
to help programmerstune applicationsfor better performance. A combination of static flow analysis
and dynamicinformation collected at runtime or through asimul ation could be used to, for example,
tune data placement to increase locality or restructure programs to decrease synchronization costs.
Profiler/compiler feedback |oops have been used before to restructure sequential program in various

ways.

131

[ACF90]

[ACG*88]

[ACGS9]

[ACSS9]

[ACSO0]

[AGSS89]

[AJFO1]

[Aur9l]

[Bar93]

[Ben80]

[Ben82]
[Bengg]

[Ben90]

References

B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. ACM Symposium
On Theory Of Computing, pages 600—608, 1990.

A. Aggarwal, B. Chazdlle, L. Guibas, C. O'Dunlaing, and C. Yap. Parallel computa-
tional geometry. Algorithmica, 3:293-327, 1988.

M. J. Attallah, R. Cole, and M. T. Goodrich. Cascading divide and conquer: A
techniquefor designing parallel algorithms. SSAM Journal On Computing, 18(3):499—
532, 1989.

A. Aggarwal, A. K. Chandra, and M. Snir. On communication latency in pram
computations. Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 11-22, 1989.

A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of prams. Theo-
retical Computer Science, 17:3-28, 1990.

A.Aggarwal, L. Guibas, J. Saxe, and P. W. Shor. A linear timealgorithm for computing
the voronoi diagram of a convex polygon. Discrete and Computational Geometry,
4:591-604, 1989.

A. Aggarwal, J. Jubiatowicz, and C. Fields. Limitlessdirectories: A scalable cache
coherence scheme. In Proceedings of the Fourth ASPLOS, pages 224234, 1991.

F. Aurenhammer. Voronoi diagrams-a survey of afundemantal geometric data struc-
ture. Computing Surveys, 23(5):345-405, 1991.

C. Brad Barber. Computational geometry with imprecise data and arithmetic. PhD
thes's, Princeton, 1993.

J. L. Bentley. Multi-dimensiona divide-and-conquer. Communications of the ACM,
23(4):214-229, 1980.

J. L. Bentley. Writing Efficient Programs. Prentice-Hall, Inc., 1982.

J. L. Bentley. Experiments on travel salesman heuristics. ACM-SAM Symposiumon
Discrete Algorithms, pages 9199, 1989.

J.L.Bentley. K-dtreesfor semidynamic point sets. Proc. 6th Annual ACM Symposium
on Computational Geometry, pages 187-197, 1990.

132

[Ben91]

[BEY91]

[BHGS7]

[Blesg]

[Ble90]
[Ble93]

[BLM+91]

[BWY80]

[CBFO1]

[CBZ90]

[CCL8S]

[CF89]

[CGOY0]

[Chaol]

[Che52]

[Cho80]

J. L. Bentley. Tools for experiments on agorithms. In R. F. Rashid, editor, CMU
Computer Science: A 25th Anniver sary Commemor ative, chapter 5. ACM Press, 1991.

M. Bern, D. Eppstein, and F. Yao. The expected extremesin adelaunay triangul ation.
International Journal on Computational Geometry and Applications, 1(1):79-91,
1991.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

G. Bldloch. Scans asprimitiveparallel operators. |EEE Transactions On Computers,
38(11):1526-1538, 1989.

G. Bléloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

G. E. Bldloch. Nedl: A nested data-parallel language (version 2.6). Technical Report
CMU-CS-93-129, CMU, 1993.

G. Bldloch, C. Leiserson, B. Maggs, G. Plaxton, S. Smith, and M. Zagha. A compar-
ison of sorting a gorithmsfor the connection machinecm-2. Annual ACM Symposium
on Parallel Algorithmsand Architectures, 1991.

J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected time algorithms for
closest point problems. ACM Transactions on Mathematical Software, 6(4):563-580,
1980.

S. Chatterjee, G. Blelloch, and A. L. Fisher. Size and access inference for dataparallel
programs. Technical report, CMU, 1991.

S. Chatterjee, G. Blelloch, and M. Zagha. Scan primitives for vector computers.
Proceedings of Supercomputing’ 90, pages 666—675, 1990.

M. Chen, Y. Choo, and J. Li. Compilig parallel programs by optimizing performance.
The Journal of Supercomputing, 2:171-207, 1988.

A. L. Cox and R. J. Fowler. Theimplementation of acoherent memory abstraction on
anumamultiprocessor. exerience with platinum. In Proceedings of the Twel fth SOSP,
pages 32—43, 1989.

R. Cole, M.T. Goodrich, and C. O’ Dunlaing. Merging freetreesinparalel for efficient
voronoi diagram construction. LNCS 443, pages 432—445, 1990.

S. Chatterjee. Compiling Data-parallel Programs for Efficient Execution on Shared-
Memory Multiprocessors. PhD thesis, School of Computer Science, CMU, 1991.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Satistics, 23:493-507, 1952.

A. Chow. Parallel Algorithms for Computational Geometry. PhD thesis, Univ. of
Ilinois, 1980.

133

[CKP*+92]

[Clas4]

[CLR9O]

[CMS92]

[CMSS92]

[Cor9Z]

[CS89]

[CZ89]

[Deh8g]

[DMT90]

[DS90]

[Dwy87]

[Dwy88]

[Dwy91]

[EK89]

[ES91]

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,
and T.von Eicken. Logp: Towardsarealisticmodel of parallel computation. Technical
Report UCB/CDS 92-713, U.C. Berkeley, 1992.

K. L. Clarkson. Algorithmsfor Closest Point Problems. PhD thesis, Stanford Uni-
veristy, 1984.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
PresssMcGraw Hill, 1990.

K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental
construction. Annual Symposium on Theoretical Aspects of Computer Science, 1992.

E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout. Efficient comvexity and domination
algorithmsfor fine- and medium-grain hypercube computers. Algorithmica, 7:51—75,
1992.

T. H. Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1992. Available as Technical Report MIT/LCS/TR-559.

K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, ii. Discrete and Computational Geometry, 4:387—421, 1989.

R. Cole and Ofer Zgjicek. Theapram: Incorporating asynchrony into the pram model.
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 169178,
1989.

F. Dehne. Computing digitized voronoi diagramson a systolic screen and applications
to clustering. Optimal Algorithms, pages 14—24, 1989.

O. Devillers, S. Meider, and M. Tellaud. Fully dynamic delaunay triangulation in
logarithmic expected time per operation. Technical Report 1349, INRIA, 1990.

D. Dobkinand D. Silver. Applied computational geometry: Towards robust solutions
of basic problems. Journal of Computer and System Sciences, 40:70-87, 1990.

R. A. Dwyer. A faster divide-and-conquer algorithm for constructing delaunay trian-
gulations. Algorithmica, 2:137-151, 1987.

R. A. Dwyer. Average-case Analysis of Algorithms for Convex Hulls and Voronoi
Diagrams. PhD thesis, CMU, 1988.

R. A. Dwyer. Higher-dimensional voronoi diagramsin linear expected time. Discrete
& Computational Geometry, 6:343-367, 1991.

S. Eggersand R. Katz. Evaluating the performance of four snooping cache-coherency
protocols. In Proceedings of the Sxteenth |SCA, pages 2-15, 1989.

H. Edelsbrunner and W. Shi. An o(nlogsup2h) time algorithm for the three-
dimensional convex hull problem. S AM Journal on Computing, 20(2):259-269,
1991.

134

[FIL+88]

[For87]

[For89]

[For92]

[GGI1]

[Gibs9]

[GKS92]

[GS77]

[GS85]

[GVW89]

[GWS8S]

[HKTO1]

[HM92]

[HR89]

[HRO1]

[JL9O]

G. C. Fox, M. A Johnson, G. A. Lyzgenga, S. W. Otto, J. K. Salmon, and D. W.
Walker. Solving Problems on Concurrent Processors. Prentice Hall, 1988.

S. Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153-174,
1987.

S. Fortune. Stable maintenance of point-set triangulationsin two dimensions. |EEE
Symposium on Foundations of Computer Science, pages 494—499, 1989.

S. Fortune. Numerical stability of algorithmsfor delaunay triangulationsand voronoi
diagrams. Annual ACM Symposium on Computational Geometry, 1992.

M. Ghouseand M. Goodrich. In-placetechniquesfor parallel convex hull algorithms.
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 192—201,
1991.

P. Gibbons. A more practical pram model. Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 158-168, 1989.

L. Guibas, D. Knuth, and M. Sharir. Randomized incremental construction of delaunay
and voronoi diagrams. Algorithmica, 7:381-413, 1992.

P. Green and R. Sibson. Computing dirichlet tessellations in the plane. Computing
Journal, 21:168-173, 1977.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of voronoi diagrams. ACM Transactions on Graphics, 4(2):75-123,
1985.

J. R. Goodman, M. Y. Vernon, and P. J. Woest. Efficient syncrhonization primitives
for large-scale cache-coherent multiprocessors. Proceedings, Third ASPLOS, pages
64—75, 1989.

J. R. Goodman and P. J. Woest. The wisconsin multicube: A new large-scale cache-
coherent multiprocessor. 1n Proceedings of the Fifteenth ISCA, pages 422431, 1988.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-
independent parallel programming in fortran d. Technical report, Rice Univ., 1991.

M. Herlihy and J. B. Moss. Transactional memory: Architectural support for lock
free data structures. Technical report, DEC Cambridge Research Lab, 1992.

T. Hagerup and C. Rub. A guided tour of chernoff bounds. Information Processing
Letters, 33:305-308, 1989.

T. Heywood and S. Ranka. A practical hierachical moded of parallel computation:
The model. Technical report, Syracuse University, 1991.

C. S. Jeong and D. T. Lee. Pardld geometric algorithms on a mesh connected
computer. Algorithmica, 5:155-177, 1990.

135

[KK87]

[KMR90]

[KROO]

[KRSO0]

[KS82]

[KSR91]
[Lems5]

[LHKK79]

[LKL8S]

[LLGGY0]

[LLI"92]

[LM8S]

[LS80]

[Lu86]

[Maus4]

[McG86]

J. Katgjainen and M. Koppinen. Constructing delaunay triangulations by merging
buckets in quad-tree order. Unpublished manuscript, 1987.

C. Koelbel, P. Méhrotra, and J. Van Rosendale. Supporting shared data structures on
distributed memory architectures. Second ACM SIGPLAN Symposium on Principles
& Practice of Parallel Programming, pages 177-186, 1990.

R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines.
In J. van Leeuwen, editor, The Handbook of Theoretical Computer Science. Elsevier
Science Publishers, 1990.

C. P Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. Theoretical Computer Science, 71:95-132, 1990.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull agorithm? 20th
Annual Allerton Conference On Communication, pages 3542, 1982.

Kendall Square Research. KSR C Programming, 1991.

Stanislaw Lem. The Cyberiad: Fables for the Cybernetic Age. Harvest/HBJ, 1985.
Tranglated by Michagl Kandel.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear alge-
bra subprograms for fortran usage. ACM Transactions on Mathematical Software,
5(3):308-323, 1979.

C. Levcopoulos, J. Katgjainen, and A. Lingas. An optimal expected-time parallel
algorithm for voronoi diagrams. SWAT, pages 190-198, 1988.

D. Lenoski, J. Laudon, K. Gharachorloo, and A. Gupta. The directory-based cache-
coherency protocol for the dash multiprocessor. In Proceedings of the Seventeenth
ISCA, pages 148-159, 1990.

D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The
dash prototype: Implementation and performance. In Proceedings of the Ninteenth
ISCA, pages 92-103, 1992.

C. E. Leiserson and B. M. Maggs. Communication efficient parallel algorithms for
distributed random access machines. Algorithmica, 3:53-77, 1988.

D.T.LeeandB. J. Schachter. Twoagorithmsfor constructing adel aunay triangulation.
Int. J. of Information Science, 9(3):219-242, 1980.

M. Lu. Constructing the voronoi diagram on a mesh connected computer. 1EEE
Conference on Parallel Processing, pages 806-811, 1986.

A. Maus. Delaunay triangulation and the convex hull of » pointsin expected linear
time. BIT, 24:151-163, 1984.

C. McGeoch. Experimental Analysis of Algorithms. PhD thesis, School of Computer
Science, CMU, 1986.

136

[MCS91]

[Mer92]

[Mil8g]

[MNP*91]

[MS90]

[Nat90]

[NVO1]

[OBS92]

[OIM84]

[PHR92]

[PK87]

[PS85]

[QHJ8S]

[RS8Y]

[RSO2]

J. M. Méllor-Crummey and M. L. Scott. Algorithmsfor scalable synchronization on
shared memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21—
65, 1991.

M. L. Merriam. Parale implementation of an algorithm for delaunay triangulation.
First European Computational Fluid Dynamics Conference, pages 907-912, 1992.

V. Milenkovic. Verifiable implementations of geometric algorithms using finite pre-
cision arithmetic. Technical report, School of Computer Science, CMU, 1988.

P. Mills, L. Nyland, J. Prins, J. Reif, and R. Wagner. Prototyping paralel and dis-
tributed algorithmsin proteus. Technical report, Duke University, 1991.

P. D. MacKenzie and Q. Stout. Ultra-fast expected time parallel algorithms. ACM-
S AM Symposium On Discrete Algorithms, pages 414-423, 1990.

L. Natvig. Logarithmic time cost optimal parallel sorting is not yet fast in practice!
Supercomputing, pages 486—494, 1990.

M. H. Nodineand J. S. Vitter. Greed sort: An optimal external sorting algorithm for
multipledisks. Technical Report CS-91-20, Department of Computer Science, Brown
University, 1991.

Atsuyuki Okabe, Barry Boots, and Kokichki Sugihara. Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams. John Wiley & Sons, 1992.

T. Ohya, M. Iri, and K. Murota. Improvements of the incremental method for the
voronoi diagram with computational comparison of various algorithms. Journal fo
the Operations Research Society of Japan, 27:306-337, 1984.

J. Prins, W. Hightower, and J. Reif. Implementations of randomized sorting on large
parale machines. Annual ACM Symposium On Parallel Algorithms And Architec-
tures, 1992.

C. D. Polychronopoulos and D. J. Kuck. Guided sdlf-scheduling: A practical
scheduling scheme for parallel supercomputers. |EEE Transactions on Computers,
C-36(12):1425-1439, 1987.

F. Preparata and M. |. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

M. J. Quinn, P. J. Hatcher, and K. C. Jourdenais. Compiling c* programs for a
hypercube multicomputer. Proceedings ACM/Sgplan PPEALS, pages 5765, 1988.

J. Reif and S. Sen. Polling: A new randomized sampling technique for computational
geometry. Symposiumon Theory of Computation, 21, 1989.

J. Reif and S. Sen. Optimal parale randomized agorithmsfor 3-d convex hulls and
related problems. SSAM Journal on Computing, 21(3):466-485, 1992.

137

[RSW90]

[San76]

[SH75]

[SH86]

[Sto86]

[SY91]

[TOO83]

[TSBPY3]

[Val90]

[VS92]

[VVMO2]

[Wei78]

[WGWR93]

[WL92]

[Wol89]
[Yapoo]

[ZB91]

M. Rosing, R. Schnabel, and R. Weaver. The dino parallel progamming language.
Technical report, Univeristy of Colorado, 1990.

L. A. Santal6. Integral Geometry and Geometric Probability. Addison-Wesley,
Reading, MA, 1976.

M. I. Shamos and D. Hoey. Closest-point problems. Proc. Sxteenth FOCS, pages
151-162, 1975.

G. L. Steele and D. Hillis. Data paralel agorithms. Communications Of The ACM,
29(12):1170-1183, 1986.

I. Stojmenovic. Computational geometry on a hypercube. International Conference
On Parallel Processing, pages 100-103, 1986.

M. Sharir and E. Yaniv. Randomized incremental construction of delaunay diagrams:
Theory and practice. Annual ACM Symposium on Computational Geometry, 1991.

M. Tanemura, T. Ogawa, and N. Ogita. A new algorithmfor three dimensiona voronoi
tessellation. Journal of Computational Physics, 51:191—-207, 1983.

Y. A. Teng, F. Sullivan, 1. Beichl, and E. Puppo. A data-parallel algorithm for three-
dimensional delaunay triangulation and its implementation. submitted manuscript,
1993.

L. G. Vdiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level
memories. Technical Report CS-92-04, Department of Computer Science, Brown
University, August 1992. Revised version of Technical Report CS-90-21.

B. Venmuri, R. Varadargian, and N. Mayya. An efficient expected time parallée
algorithm for voronoi construction. Annual ACM Symposium On Parallel Algorithms
And Architectures, pages 392—401, 1992.

B. Weide. Satistical Methods for the Analysis of Algorithms. PhD thesis, School of
Computer Science, CMU, 1978.

D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: Making parallel
computer I/O practical. In DAGS’93, June 1993.

A. W. Wilson and R. P. LaRowe. Hiding shared memory reference latency on the
galactica-net distributed shared memory architecture. Journal of Parallel and Dis-
tributed Computing, 15:351-367, August 1992.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT, 1989.

C. K. Yap. A geometric consistency theorem for a symbolic pertubation scheme.
Journal of Computer and System Sciences, 40:2—18, 1990.

M. Zagha and G. E. Blelloch. Radix sort for vector multiprocessors. Proceedings
Supercomputing’ 91, pages 712—721, November 1991.

138

