Variational Tetrahedral Meshing

Pierre Alliez David Cohen-Steiner Mariette Yvinec Mathieu Desbrun

Figures and slides borrowed from: BryanK's talk, Slides the authors posted, www.cs.uiuc.edu/class/fa05/cs598anh/slides/Bell2005 AlCoYvDe2005.pdf

Goals

• 2D:

- In: Non-intersecting closed curve
- Out: Triangle Mesh
- 3D:
 - In: Given a watertight, nonintersecting manifold triangle mesh
 - Out: Tetrahedral Mesh

Mesh quality

Other requirements

- Graded mesh
 - Tets size based on a sizing field
 - Sizing field $\mu(x) : \Re^3 \rightarrow \Re$
 - Indicate desired tet's edge length near x

Algorithm

Initialize vertices based on sizing field While (! Good enough quality) { Delaunay Triangulation/Tetrahedralization Optimize vertices position

}

input domain

Optimization

$$E_{ODT} = \left\| f - f_{PWL}^{overlaid} \right\|_{L_1}$$

Minimize area between PWL and paraboloid

Optimization

- For fixed vertex locations
 - Delaunay triangulation is the optimal connectivity
 - Exists for any points set
 - Has several nice properties

Optimization

for fixed connectivity

 min of quadratic energy leads to the optimal vertex locations

$$E_{CVT} = \frac{1}{N+1} \sum_{i} \int_{\Omega_i} ||x - x_i||^2 dx$$

- x_i is vertex i position
- $|\Omega_i|$ is volume of tets in 1-ring neighbor of vertex i

Optimal vertex position

• For uniform sizing field, turns out to be

$$\mathbf{x}_i^{\star} = \frac{1}{|\Omega_i|} \sum_{T_j \in \Omega_i} |T_j| \mathbf{c}_j$$

- $|T_i|$ is volume of tet i
- c_i is circumcenter of tet i

Optimal vertex position

Optimization: Init

Optimization: Step 1

Optimization: Step 2

Optimization: Step 50

Graded mesh

- So far, uniform, we also want:
 - To minimize number of elements
 - To better approximate the boundary
 - While preserving good shape of elements

Sizing Field!

Sizing Field

Properties:

- size $\leq lfs$ (local feature scuize) on boundary
 - Ifs = Distance to medial axis
- sizing field is K-Lipschitz

$$\mu(x) = \inf_{y \in \partial \Omega} \left[K \| x - y \| + lfs(y) \right]$$

parameter

Need to modify vertex optimization

$$\mathbf{x}_i^{\star} = \frac{1}{\sum_{T_k \in \Omega_i} \frac{|T_k|}{\mu^3(\mathbf{g}_k)}} \sum_{T_j \in \Omega_i} \frac{|T_j|}{\mu^3(\mathbf{g}_j)} \mathbf{c}_j$$

Intuition: Tet whose sizing field at circumcenter is small has big weight

Other details

- Need to handle vertices near boundary specially
 - The vertex optimization does not respect boundary
- Need to get rid of tets outside the mesh
 - Because DT include tets that cover convex hull

Boundary Handling

- Create densely sampled set of points on the surface, quadrature points
 - Associate weight with each quadrature point
 - Corner Infinite weight
 - Crease dl / $\mu(x)^3$
 - Surface ds / $\mu(x)^4$

Boundary Handling

- Loop through all quadrature points, q
 - Let v be the closest vertex to q
 - $S(v) = S(v) \cup \{q\}$
- For all vertex v,
 - If $S(v) != \emptyset$,
 - Position(v) = weighted average of position of q's in S(v)

Else

Position(v) will be determined by the optimization

Outside tet strippping

• The method in the paper does not seem to work.

• What we did:

- Loop through all tets:
 - A tet is outside if 4 vertices of a tet are boundary vertices and
 - Its quality is bad OR
 - Its barycenter is outside
- Then loop through all tets:
 - If >= 2 of its neighboring tets are outside (as determined from the previous step), this tet is outside as well

Observations

- Worst tets usually found near boundary
- Worst tets quality improve when we replace circumcenter with barycenter in the vertex optimization
 - No theoretical support
 - Average quality decrease