Variational Tetrahedral Meshing

Pierre Alliez

David Cohen-Steiner
Mariette Yvinec
Mathieu Desbrun

Figures and slides borrowed from: BryanK's talk, Slides the authors posted,

Goals

- 2D:
- In: Non-intersecting closed curve
- Out: Triangle Mesh
- 3D:
- In: Given a watertight, nonintersecting manifold triangle mesh
- Out: Tetrahedral Mesh

Mesh quality

- In this paper
- radius-edge ratio $=r_{\text {in }} / r_{\text {circ }}$

Other requirements

- Graded mesh
- Tets size based on a sizing field
- Sizing field $\mu(\mathrm{x}): \mathfrak{R}^{3} \rightarrow \mathfrak{R}$
- Indicate desired tet's edge length near x

Algorithm

Initialize vertices based on sizing field While (! Good enough quality) \{
Delaunay Triangulation/Tetrahedralization
Optimize vertices position
\}

for 50,000 tets, takes about
I-IO seconds
[Klingner et al. 06]
(I) scatter points
(2) optimize topology
(3) optimize point position
repeat (2),(3)

Optimization

$$
E_{\text {oor }}=\left\|f-f_{\text {phl }}^{\text {ophaid }}\right\|_{L}
$$

Minimize area between PWL and paraboloid

Optimization

- For fixed vertex locations
- Delaunay triangulation is the optimal connectivity
- Exists for any points set
- Has several nice properties

Optimization

- for fixed connectivity
- min of quadratic energy leads to the optimal vertex locations

$$
E_{C V T}=\frac{1}{N+1} \sum_{i} \int_{\Omega_{i}}\left\|x-x_{i}\right\|^{2} d x
$$

- x_{i} is vertex i position
- $\left|\Omega_{\mathrm{i}}\right|$ is volume of tets in 1 -ring neighbor of vertex i

Optimal vertex position

- For uniform sizing field, turns out to be

- $\mid \mathrm{T}_{\mathrm{i}}$ | is volume of tet i
- c_{i} is circumcenter of tet i

Optimal vertex position

$$
x_{i}^{*}=\frac{1}{\left|\Omega_{i}\right|} \sum_{T_{j} \in \Omega_{i}}\left|T_{j}\right| c_{j}
$$

Optimization: Init

Optimization: Step I

Optimization: Step 2

distribution of radius ratios

Optimization: Step 50

Graded mesh

- So far, uniform, we also want:
- To minimize number of elements
- To better approximate the boundary
- While preserving good shape of elements

Sizing Field!

Sizing Field

Properties:

- size \leq lfs (local feature scuize) on boundary
- Ifs = Distance to medial axis
- sizing field is K-Lipschitz

$$
\mu(x)=\inf _{y \in \partial \Omega}[K\|x-y\|+l f s(y)]
$$ parameter

Need to modify vertex optimization

$$
\mathbf{x}_{i}^{\star}=\frac{1}{\sum_{T_{k} \in \Omega_{i}} \frac{\left|T_{k}\right|}{\mu^{3}\left(\mathbf{g}_{k}\right)}} \sum_{T_{j} \in \Omega_{i}} \frac{\left|T_{j}\right|}{\mu^{3}\left(\mathbf{g}_{j}\right)} \mathbf{c}_{j}
$$

Intuition:
Tet whose sizing field at circumcenter is small has big weight

Other details

- Need to handle vertices near boundary specially
- The vertex optimization does not respect boundary
- Need to get rid of tets outside the mesh
- Because DT include tets that cover convex hull

Boundary Handling

- Create densely sampled set of points on the surface, quadrature points
- Associate weight with each quadrature point
- Corner - Infinite weight
- Crease - dl / $\mu(x)^{3}$
- Surface - ds / $\mu(x)^{4}$

Boundary Handling

- Loop through all quadrature points, q
- Let v be the closest vertex to q
- $S(v)=S(v) \cup\{q\}$
- For all vertex v ,
- If $S(v)!=\varnothing$,
- Position(v) = weighted average of position of q's in S(v)
- Else
- Position(v) will be determined by the optimization

Outside tet strippping

- The method in the paper does not seem to work.
- What we did:
- Loop through all tets:
- A tet is outside if 4 vertices of a tet are boundary vertices and
- Its quality is bad OR
- Its barycenter is outside
- Then loop through all tets:
- If >= 2 of its neighboring tets are outside (as determined from the previous step), this tet is outside as well

Observations

- Worst tets usually found near boundary
- Worst tets quality improve when we replace circumcenter with barycenter in the vertex optimization
- No theoretical support
- Average quality decrease

