Tetrahedral Mesh Improvement

Bryan Klingner and Jonathan Shewchuk 12 March 2008

The usefulness of a mesh hinges on quality

bad elements

long running times wrong answers

The best work so far:

"Tetrahedral Mesh Improvement Using Swapping and Smoothing" Freitag and Ollivier-Gooch, 1997

Collection of improvement operations + best experimental schedule = most bad elements removed

mesh configuration space

Our strategy:

Use every available tool (and a new one-vertex insertion) and as much time as needed to produce the best mesh we can.

FOG '97: 12 min / 160 max Our strategy: 30 min / 136² max

What is a 'bad' element?

dihedral angle, the angle between two faces

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

What is a 'bad' element? Extreme dihedral angles cause problems.

small dihedral angles may lead to poor conditioning, making the problem stiffer and slower to solve large dihedral angles lead to errors in discretization and interpolation

Bad shapes

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

Given a tetrahedron l, let q(t) be its quality. q(t) gets bigger for better elements $q(t) \leq 0$ for degenerate or inverted elements q(t)+ $\left(\right)$

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

15

Quality measures: turning shape into a number

(I) Minimum sine of the six dihedral angles

2 Biased minimum sine - exaggerate obtuse

3

What is the quality of the whole mesh M?

A quality vector Q of each tetrahedron quality, sorted from worst to best:

$Q(N) = \{1, 3, 10, 10, 15, 20, 23...\}$

Compare quality vectors *lexicographically*: first by the first element, then by the second, and so on.

 $\{1, 100, 100, 100\} < \{2, 2, 2, 2\}$

Mesh improvement operations

Mesh improvement operations

Vertex insertion

Mesh improvement operations

Find the cut between root and leaves that maximizes the smallest edge.

Local smoothing and topological improvement

passes

If quality worsens, roll back insertion

Insertion timing

Building a schedule

How do we turn these tools into a working improvement procedure?

Previous schedules

Joe, 1995. Repeatedly check every face to see if local topological improvements will help. Hard to gauge success.

Freitag and Ollivier-Gooch, 1997. A fixed schedule of 2-3 flips, edge removal, and then optimization based smoothing. Most dihedral angles between 12 and 160 degrees.

Edelsbrunner and Guoy, 2001. Sequences of 2-3 and 3-2 flips. Most dihedral angles greater than 5 degrees.

Alliez, Cohen-Steiner, Yvinec, and Desbrun, 2005. Alternates between global passes of smooth optimization-based smoothing and Delaunay retriangulation. No bounds given. In our experience, bad tetrahedra remain.

Smoothing Pass

Perform optimization-based smoothing on each vertex in the mesh.

Topological Pass

for each tetrahedron t in the mesh

Topological Pass

for each tetrahedron t in the mesh
for each edge e of t (if t still exists)
Attempt to remove edge e.

Topological Pass

for each tetrahedron t in the mesh
for each edge e of t (if t still exists)
 Attempt to remove edge e.
for each face f of t (if t still exists)
 Attempt to remove face f.

Insertion Pass

for each tetrahedron t in L that still exists

Insertion Pass

for each tetrahedron t in L that still exists Attempt insertion to split t.

A pass succeeds if the overall mesh quality vector improves "enough."

$Q(N) = \{1, 3, 10, 10, 15, 20, 23...\}$

To get started,

then

then...

Q list of quality indicators for the mesh

if mesh not sufficiently improved over \boldsymbol{Q}

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
 failed failed + I
 else failed 0 {insertion pass succeeded}
 else failed 0 {topological pass succeeded}
else failed 0 {smoothing pass succeeded}

2 list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
 failed failed + I
 else failed 0 {insertion pass succeeded}
 else failed 0 {topological pass succeeded}
else failed 0 {smoothing pass succeeded}

Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
 failed failed + I
 else failed 0 {insertion pass succeeded}
 else failed 0 {topological pass succeeded}
else failed 0 {smoothing pass succeeded}

Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q failed failed + 1

else failed 0 {insertion pass succeeded}

else failed 0 {topological pass succeeded} else failed 0 {smoothing pass succeeded}

Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
 failed failed + /
 else failed 0 {insertion pass succeeded}
 else failed 0 {topological pass succeeded}
else failed 0 {smoothing pass succeeded}

STAYPUFT 14,214 sec

102,393 tetrahedra

130,736 tetrahedra

Insertion is **slow:** 90% of running time

927 tetrahedra

1,261 tetrahedra

Insertion can make meshes bigger.

RAND2

Insertion can also make meshes smaller.
CUBE10K 121 sec

Meshes that start out good run fast and end great.

Adding features

Adding features

179.9

no topological operations 29.4 150.3

The next steps

anisotropy

adaptivity