Tetrahedral Mesh Improvement

Bryan Klingner and Jonathan Shewchuk
 12 March 2008

The usefulness of a mesh hinges on quality

bad elements

The best work so far:

"Tetrahedral Mesh Improvement Using Swapping and Smoothing" Freitag and Ollivier-Gooch, I997

Collection of improvement operations $+$

 best experimental schedule = most bad elements removed
The mesh quality landscape

The mesh quality landscape

The mesh quality landscape

mesh configuration space

The mesh quality landscape

The mesh quality landscape

Our strategy:

Use every available tool (and a new one-vertex insertion) and as much time as needed to produce the best mesh we can.

FOG '97: $12 \min / 160 \max$
 Our strategy: $30 \mathrm{~min} / 136^{〔} \max$

(2) Improvement operations

(3) Improvement schedule

(4) Results

2

(2) Improvement operations

(3) Improvement schedule

(4) Results

What is a 'bad' element?

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

What is a 'bad' element?

Extreme dihedral angles cause problems.

small dihedral angles may lead to poor conditioning, making the problem stiffer and slower to solve \qquad large dihedral angles lead to errors in discretization and interpolation

Bad shapes

Good shapes

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

Given a tetrahedron I, let $q(t)$ be its quality.
$q(t)$ gets bigger for better elements
$q(t) \leq 0$ for degenerate or inverted elements

Shewchuk, J. R. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, unpublished preprint, 2002.

Quality measures: turning shape into a number
(I) Minimum sine of the six dihedral angles

(2) Biased minimum sine - exaggerate obtuse

Root-mean-squared edge length ${ }^{3}$

What is the quality of the whole mesh M ?

A quality vector Q of each tetrahedron quality, sorted from worst to best:

$$
Q(M)=\{1,3,10,10,15,20,23 \ldots\}
$$

Compare quality vectors lexicographically: first by the first element, then by the second, and so on.

$$
\{1,100,100,100\}<\{2,2,2,2\}
$$

Improving the quality vector

$$
\{2,5,5,7,9,12,15,22,22,34,67,104\}
$$

$$
\{5,22,104\}
$$

Mesh Improvement Operation(s)

$$
\{8,10,18\}
$$

$\{2,5,7,8,9,10,12,15,18,22,34,67\}$

83

(2) Improvement operations

(3) Improvement schedule

(4) Results

Mesh improvement operations

Topological improvement

Vertex insertion
new

Mesh improvement operations

Vertex smoothing

Topological improvement

Vertex insertion
new

Mesh improvement operations

Topological improvement

Vertex insertion
new

Our new operation: vertex insertion

Our new operation: vertex insertion

Our new operation: vertex insertion

Our new operation: vertex insertion

Our new operation: vertex insertion

How do we choose the cavity?

How do we choose the cavity?

How do we choose the cavity?

Finding the optimal cavity

Finding the optimal cavity

Finding the optimal cavity

Finding the optimal cavity

Find the cut between root and leaves that maximizes the smallest edge.

Finding the optimal cavity

Finding the optimal cavity

Cavity improvement

Cavity improvement

Cavity improvement

Cavity improvement

$=1$

Insertion timing

$\begin{gathered}\text { drill } \\ \text { optimal } \\ \text { cavity }\end{gathered}$ $\begin{aligned} & \text { 22\% time finding biggest, } \\ & 22 \% \text { elime finding optimal }\end{aligned}$

If quality worsens, roll back insertion

(2) Improvement operations

(3) Improvement schedule

(4) Results

Building a schedule

How do we turn these tools into a working improvement procedure?

Previous schedules

Joe, 1995. Repeatedly check every face to see if local topological improvements will help. Hard to gauge success.

Freitag and Ollivier-Gooch, I997. A fixed schedule of 2-3 flips, edge removal, and then optimization based smoothing. Most dihedral angles between I2 and I60 degrees.

Edelsbrunner and Guoy, 2001. Sequences of 2-3 and 3-2 flips. Most dihedral angles greater than 5 degrees.

Alliez, Cohen-Steiner, Yvinec, and Desbrun, 2005. Alternates between global passes of smooth optimization-based smoothing and Delaunay retriangulation. No bounds given. In our experience, bad tetrahedra remain.

Smoothing Pass

Perform optimization-based smoothing on each vertex in the mesh.

Topological Pass

for each tetrahedron t in the mesh

Topological Pass

for each tetrahedron t in the mesh for each edge e of t (if t still exists) Attempt to remove edge e.

Topological Pass

for each tetrahedron t in the mesh for each edge e of t (if t still exists)

Attempt to remove edge e.
for each face f of t (if t still exists)
Attempt to remove face f.

Insertion Pass

for each tetrahedron t in L that still exists

Insertion Pass

for each tetrahedron t in L that still exists Attempt insertion to split t.

A pass succeeds if the overall mesh quality vector improves "enough."

$$
Q(M)=\{1,3,10,10,15,20,23 \ldots\}
$$

To get started,

while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q failed failed + I else failed 0 \{insertion pass succeeded\} else failed 0 \{topological pass succeeded\} else failed $0 \quad$ \{smoothing pass succeeded\}

failed 0

while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q failed failed + I else failed 0 \{insertion pass succeeded\} else failed 0 \{topological pass succeeded\} else failed $0 \quad$ \{smoothing pass succeeded\}

failed 0

while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q failed failed + I else failed 0 \{insertion pass succeeded\} else failed 0 \{topological pass succeeded\} else failed $0 \quad$ \{smoothing pass succeeded\}

failed 0

while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q failed failed + I else failed 0 \{insertion pass succeeded\} else failed 0 \{topological pass succeeded\} else failed $0 \quad$ \{smoothing pass succeeded\}

failed 0

while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

Topological pass

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
failed failed + I
else failed 0 \{insertion pass succeeded\}
else failed $0 \quad$ \{topological pass succeeded\}
else failed $0 \quad\{$ smoothing pass succeeded\}
failed 0
while failed < 3
Q list of quality indicators for the mesh

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q

if mesh not sufficiently improved over Q
failed failed + I
else failed 0 \{insertion pass succeeded\}
else failed 0 \{topological pass succeeded\}
else failed $0 \quad$ \{smoothing pass succeeded\}

(2) Improvement operations

(3) Improvement schedule

(4) Results

Staypurt \quad I4,2I4 sec

102,393 tetrahedra
130,736 tetrahedra

Insertion is slow: 90% of running time

P

I,26I tetrahedra

Insertion

RAND2

$4,658 \mathrm{sec}$

25,705 tetrahedra

17,527 tetrahedra

Insertion can also make meshes smaller.

Meshes that start out good run fast and end great.

Adding features

Initial distribution - all 12 meshes

smoothing + edge removal + body insertion

Initial distribution - all 12 meshes

Adding features

smoothing + edge removal + body insertion

Initial distribution - all 12 meshes

Adding features

body insertion only

All features on - all 12 meshes

Removing features

no edge removal

The next steps

anisotropy

adaptivity

