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Abstract

From Range Images to 3D Models

by

Ravi Krishna Bala Venkata Sai Kolluri

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jonathan Shewchuk, Chair

Surface reconstruction algorithms build digital models of real world objects from data

recorded by a scanning device. Since scanning devices are not perfect, they introduce

noise and outliers into the recorded data. From such noisy data, an effective reconstruction

algorithm must produce models that reflect the geometry and the topology of the sampled

surface In this thesis we analyze surface reconstruction algorithms and describe a software

system that we have developed for building three-dimensional models of real world objects.

Implicit methods for surface reconstruction are widely used in computer graphics as

they are fast, easy to implement, and scale well to large point clouds. However, these

implicit methods come with no provable guarantees on the reconstructed surface. We an-

alyze an implicit surface reconstruction algorithm based on a data interpolation technique

calledmoving least squares(MLS). We prove that under certain sampling conditions, the

reconstructed surface is an accurate geometric and topological representation of the origi-

nal surface. Our sampling requirements are adaptive and allow for noise in the input data

set.

Delaunay-based surface reconstruction algorithms build the reconstructed surface as a

set of triangles from the Delaunay tetrahedralization of the sample points. Many Delaunay-

based reconstruction algorithms have been proposed with guarantees on the reconstructed
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surface when the input point cloud satisfies certain sampling conditions. However, most

point clouds obtained from scanning devices violate these sampling conditions. We present

a Delaunay-based reconstruction algorithm calledeigencrustthat uses spectral partitioning

to robustly deal with noise, outliers, and regions of undersampling in the input point cloud.

We show empirical evidence that our implementation ofeigencrustis substantially more

robust than several closely related surface reconstruction programs.

We describe a software system that we have developed for reconstructing three-

dimensional models from data recorded using range scanners. Range images from a scan-

ning device are automatically aligned using point signatures calledharmonic shape con-

texts. An implementation of the MLS algorithm defines a smooth surface approximating

the scanned surface. Finally, aneigencrustimplementation meshes the surface defined by

the MLS algorithm.

Professor Jonathan Shewchuk, Chair Date
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Chapter 1

Introduction

Three-dimensional geometry plays an important role in applications such as physical sim-

ulation, medicine, and preservation and restoration of archaeological artifacts. Indus-

trial applications include reverse engineering of CAD models and product design. Three-

dimensional models required by these applications can be built in two ways: they can

either be designed using interactive modeling software, or they can be created by digitizing

a physical model. Digitizing is often the more accurate and cost effective option for creat-

ing complex models, and for applications such as medical imaging that require an accurate

model of an existing physical object. Surface reconstruction algorithms are used to build

three-dimensional models of physical objects from data captured using a scanning device.

The output of scanning devices such as laser range scanners is a set of point samples

that lie near the surface of a three-dimensional object. In this thesis, we address methods

that reconstruct a digital representation of the scanned object from these point samples.

In the first part of the thesis, we analyze a surface reconstruction algorithm based on a

scattered data interpolation technique calledmoving least squares. We prove that under

certain sampling conditions, the reconstructed surface is a good approximation to the sam-

pled surface. In the second part we describe a system for reconstructing surfaces that builds

smooth, watertight, outlier-free surfaces from noisy range data.
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Chapter 1. Introduction

1.1 Creating 3D Models

Developments in the design of laser range scanners allow us to create highly accurate mod-

els with millions of points in three-dimensional space. Figure1.1illustrates the pipeline for

creating three-dimensional models using acquisition devices such as range scanners. There

are several steps in the pipeline.

1.1.1 Acquiring Models

Methods of acquiring shape information can be broadly classified into active and passive

techniques. Active techniques include contact devices that probe the physical model by

touching, and non-contact laser range scanners[30] that project light onto the physical

object and record shape from the reflected light. Typically, the output of a scanning device

is a range scan which gives depth information indicating the surface as seen from the view

point of the scanner. Figure1.2shows two such range scans. Most modern range scanners

have digital cameras that can capture texture information along with the geometry of the

scanned object.

A lot of research in computer vision is focused on passive techniques for extracting

shape. These techniques include shape from multiple images[71], shape from shading[86],

and shape from texture[62]. While passive methods require only commonplace hardware,

they are less accurate than active methods and the data obtained is often very noisy. The

techniques described in this thesis can be applied to data derived from active as well as

passive techniques.

2



Chapter 1. Introduction

Reconstruction

Surface

Acquisition

Registration

Figure 1.1: Pipeline for creating three-dimensional models using laser range scan-
ners.
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Chapter 1. Introduction

Figure 1.2: Left, the Stanford bunny model. Shown in the center are triangulations
of two range scans of the bunny taken from different viewpoints. Multiple scans
must be registered as shown on the right to build a single model of the bunny.

1.1.2 Registration

Range scanners cannot scan an entire object at once because the whole surface is not visible

from a single point of view. Multiple scans, each taken from a different viewpoint, must

be registered—aligned into a common coordinate system—to form a unified model that

covers most or all of the object’s surface. Figure1.2 shows the alignment of two scans of

the Stanford bunny model.

The registration of multiple surfaces can be aided by external measuring devices like

trackers attached to a moving scanner, or a calibrated turntable used in conjunction with a

fixed scanner, but these methods are not always available or accurate, and registration must

often be done by hand or by algorithm.

Automatic surface registration typically takes two computational stages.Coarse regis-

tration provides a rough positioning of the surfaces, andfine registrationbrings the scans

into tight alignment. The most successful technique for coarse registration is based on

computingpoint signaturesthat summarize the shape of the scan relative to a given point.
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Chapter 1. Introduction

(a) (b)

Figure 1.3: (a) Implicit surface reconstruction: The reconstructed surface is the
zero set of a scalar function built from the sample points. (b) Mesh-based surface
reconstruction: The reconstructed surface is a piecewise linear approximation to
the sampled surface.

The computed signatures are used to find points with similar point signatures in different

scans. Fine registration is typically done using a variant of Besl and Mckay’s iterative

closest point algorithm[16] [28].

1.1.3 Surface Reconstruction

Scanners invariably introduce at least two kinds of errors into the data they record:mea-

surement errors(random or systematic) in the point coordinates, and,outliers, which are

spurious points far from the true surface. Furthermore, objects often have regions that

are not accessible to scanning and so remain undersampled or unsampled. Surface recon-

struction algorithms must process such imperfect data and produce a smooth surface that

accurately reproduces the topology and the geometry of the sampled surface. They must

also scale to handle data with billions of points such as the data sets created in the Digital

Michelangelo project[61].

Surface reconstruction algorithms can be broadly divided into implicit methods and

mesh-based methods. Implicit methods build a three-dimensional scalar functionI from

the point samples. The reconstructed surface is the zero set ofI given by{x ∈ IR3 : I(x) =

0}. Figure1.3(a) shows a two-dimensional example.

Mesh-based methods build a piecewise linear approximation of the sampled surface.

5



Chapter 1. Introduction

These include Delaunay-based surface reconstruction algorithms that recover the surface

as a set of triangles in the Delaunay tetrahedralization of the sample points. Figure1.3(b)

shows an example of a surface reconstructed by a mesh-based surface reconstruction algo-

rithm called Powercrust[6].

The two representations of the reconstructed surface have different applications. Im-

plicit representations are useful in physical simulations, level set methods, and point-based

modeling and rendering. They can also be rendered directly using ray marching methods.

Surface meshes are important for applications such as rapid prototyping and volume mesh

generation for finite element methods.

1.2 Related Work

We give an overview of previous work on surface reconstruction in this section. We discuss

related work in more detail in later chapters.

Surface reconstruction from unorganized points was introduced to the graphics com-

munity by Hoppe, DeRose, Duchamp, McDonald, and Stuetzle[50]. They construct an

implicit method based on an approximation of the signed distance function. Implicit sur-

face reconstruction algorithms derived on the data interpolation technique called moving

least squares (MLS) are now widely used as part of point-based methods for modeling,

simulation, and rendering. MLS methods have been used for scattered data interpolation,

and in meshless methods for simulation.

Although implicit methods are widely used in computer graphics, not much work has

been done on analyzing the surfaces reconstructed by these methods. All work on provably

good surface reconstruction has focused on Delaunay-based methods. The Delaunay-based

crustalgorithm of Amenta and Bern[3] was the first algorithm with theoretical guarantees

on the reconstructed surface. The advantage of Delaunay algorithms is that they do not

require sample normals and they easily adapt to changes in sample spacing.

6



Chapter 1. Introduction

The software system Scanalyze[76] is widely used for surface reconstruction. It con-

tains implementations of user-assisted coarse registration, the iterative closest point algo-

rithm for fine registration, and the space carving technique of Curless and Levoy[31] for

surface reconstruction. Scanalyze was used to reconstruct models from the point clouds

created in the Digital Michelangelo Project[61]. The Piet́a project[15] used a mesh-

constructing ball-pivoting algorithm[14] as part of a software system to build a model

of Michelangelo’s Florentine Pietá. Software systems for surface reconstruction have also

been developed for creating models of urban environments using range scanners. Examples

include the MIT city scanning project[81], and the work done by Früh and Zakhor[45] on

fast three-dimensional city model generation.

1.3 Our Contributions

The main contributions of this thesis are the following:

• An analysis of an implicit surface reconstruction algorithm based on a data interpo-

lation technique calledmoving least squares. We prove that under certain sampling

conditions, the reconstructed surface is an accurate geometric and topological repre-

sentation of the original surface. Our sampling requirements are adaptive and allow

for noise in the input data set.

• A Delaunay-based reconstruction algorithm calledeigencrustthat uses spectral par-

titioning to robustly deal with noise, outliers, and regions of undersampling.

• A software system for automatically reconstructing three-dimensional models from

range data that contains the following components.

– An implementation of a registration algorithm automatically aligns range im-

ages using point signatures calledharmonic shape contexts

7



Chapter 1. Introduction

– An implementation of the MLS surface reconstruction algorithm that defines

a smooth surface approximating the scanned surface. This step reduces the

scanner measurement noise and errors introduced during registration.

– An eigencrustimplementation that meshes the zero set of the implicit surface

defined by the MLS algorithm. The reconstructed mesh is outlier-free and wa-

tertight.

8



Chapter 2

Provably Good Moving Least Squares

In this chapter we analyze an implicit surface reconstruction algorithm based on an inter-

polation technique calledmoving least squares(or MLS). The input to the MLS algorithm

is a set of sample pointsS close to the surfaceF of a smooth, closed, orientable three-

dimensional object. For each sample point, an approximate surface normal is also given.

The output is a surface passing near the sample points.

For each sample points ∈ S we define apoint function, that approximates thesigned

distance functionof F in the local neighborhood ofs. These point functions are then

blended using Gaussian weight functions, yielding a three-dimensional functionI, which

we refer to as the cut function. The reconstructed surfaceU is given by{x ∈ IR3 : I(x) =

0}. Figure2.1shows a two-dimensional example.

MLS methods have been used for interpolation of irregularly distributed function-value

data, and for building meshless interpolants in computational mechanics. One of the ear-

liest MLS algorithms is the metric interpolation technique of Shepard[79]. Lancaster and

Salkauskas[58] give an excellent description of the geometric and differential properties

of MLS interpolants. The MLS method analyzed in this chapter is not entirely new; it is a

variation of the implicit MLS algorithm proposed by Chen, O’Brien, and Shewchuk[78].

We use the Gaussian function instead of the inverse distance as the weight function used to

9



Chapter 2. Provably Good Moving Least Squares

Figure 2.1: Left, a set of points with approximate outside normals. Center, the
cut function built by our algorithm from the points. The zero set of the cut function,
which is the reconstructed curve is shown on the right.

blend the point functions together. Our main contribution is to introduce theoretical guar-

antees for MLS algorithms. We prove that the cut functionI is a good approximation of

the signed distance function of the sampled surfaceF . We also show that the reconstructed

surface is an accurate geometric and topological reconstruction of the sampled surface.

The Delaunay-basedcrustalgorithm of Amenta and Bern[3] was the first surface re-

construction algorithm that guaranteed a correct reconstruction for sufficiently dense sam-

ple sets. The algorithm is guaranteed to work only if the input satisfies certain sampling

requirements, which are defined in terms oflocal feature size. The local feature size of a

point on the surface is the distance from that point to its closest point on the medial axis.

Our algorithm has its own sampling requirements, described in Section2.2, which are also

based on thelocal feature sizefunction. The MLS algorithm analyzed here requires uni-

form sampling in which the spacing between sample points is proportional to the smallest

feature size of the sampled surface. In Chapter3 we relax the uniformity requirements to

accommodate adaptive sampling. The MLS algorithm reconstructs smooth surfaces from

noisy point clouds, as the zero surface of the cut function is not constrained to interpolate

the sample points. Our analysis can handle noisy data provided the noise is small compared

to the local feature size of the sample points.

10



Chapter 2. Provably Good Moving Least Squares

2.1 Related Work

2.1.1 Implicit Methods

Implicit methods reconstruct the surface as the zero set of a three-dimensional function.

They are widely used in computer graphics as they are fast, easy to implement, and scale

well to point clouds with millions of points. Hoppe, DeRose, Duchamp, McDonald, and

Stuetzle[50] provide one of the earliest algorithms, which locally estimates the signed

distance function induced by the “true” surface being sampled. Sample point normals,

which are needed to estimate the signed distance function, are computed by a local least

squares fit of the sample points. Curless and Levoy[31] developed an algorithm that is

particularly effective for laser range data comprising billions of point samples, like the

statue of David reconstructed by the Digital Michelangelo Project[61].

Smooth surfaces can also be built by fitting globally supported basis functions to a point

cloud. Turk and O’Brien[83] show that a global smooth approximation can be obtained

by fitting radial basis functions. This method builds a linear system from the locations

of the sample points and from the normal at each sample point. The linear system is ill-

conditioned, and grows linearly with the size of the input point cloud. Carr et al.[26] adapt

the radial basis function-fitting algorithm to large data sets using multipole expansions.

Implicit methods are popular as they are easy to implement, scale well to large data sets,

and are robust against noise in the input. However, current implicit methods come with no

guarantees on the correctness of the reconstructed surface.

2.1.2 Moving Least Squares

Moving least squares belongs to a class of meshless interpolation methods used in com-

putational mechanics that also includes partition of unity methods, kernel methods, and

smoothed particle hydrodynamics. See the survey paper by Belytschko et al.[13] for a

11



Chapter 2. Provably Good Moving Least Squares

Method No normals Theoretical Scalable
required guarantees

Hoppe et al.[50] Implicit XX
Curless, Levoy[30] Implicit XXX
Turk, O’Brien[83] Radial basis

functions
Carr et al.[26] Radial basis X

functions
Pauly et al.[69] Projection MLS XXX
Alexa et al.[2] Projection MLS XXX
Amenta, Kil [7] Projection MLS XXX

Fleishman et al.[41] Projection MLS
Ohtake et al.[67] Implicit MLS XXX
Shen et al.[78] Implicit MLS XXX

Chapter2 Implicit MLS X XXX
Chapter3 Implicit MLS X XXX

Ball-Pivoting[14] Mesh X XXX
Gopi, Krishnan[46] Mesh XXX

Boissonnat[19] Delaunay X XX
α-shape[38] Delaunay X XX

Crust[4] Delaunay X X XX
Boissonnat, Cazals[20] Delaunay X X XX

Implicit
Powercrust[6] Delaunay X X X

Edelsbrunner[36] Delaunay X XX
Cocone[5] Delaunay X X XX

Tight Cocone[33] Delaunay X X XX
Eigencrust, Chapter5 Delaunay X XX
Robust Cocone[34] Delaunay X X XX

Table 2.1: Comparison of surface reconstruction algorithms. No normals required:
Can the algorithm reconstruct with no normal information at the sample points?
Theoretical guarantees: Does the algorithm have provable guarantees on the re-
constructed surface? Scalable: Can the algorithm scale to large data sets? Algo-
rithms with single checkmark can scale up to a million sample points, algorithms
with two checkmarks can handle points clouds with ten million points, and algo-
rithms with three checkmarks can scale up to a billion sample points.
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Noise Noise Adaptive Watertight Sharp
practice theory sampling reconstruction corners

Hoppe et al.[50]
Curless, Levoy[30] X
Turk, O’Brien[83] X X

Carr et al.[26] X X
Pauly et al.[69] X
Alexa et al.[2] X
Amenta, Kil [7] X

Fleishman et al.[41] X X
Ohtake et al.[67] X
Shen et al.[78] X

Chapter2 X X
Chapter3 X X X

Ball-Pivoting[14]
Gopi, Krishnan[46] X

Boissonnat[19] X X
α-shape[38]

Crust[4] X
Boissonnat, Cazals[20] X X

Powercrust[6] X X X X
Edelsbrunner[36] X X X

Cocone[5] X
Tight Cocone[33] X X X

Eigencrust, Chapter5 XX X X
Robust Cocone[34] X X X X

Table 2.2: Comparison of surface reconstruction algorithms. Noise practice: Can
the algorithm reconstruct from noisy point clouds? Noise theory: Does the algo-
rithm have provable guarantees for noisy point clouds? Adaptive sampling: Can
the algorithm accommodate point clouds in which sampling is proportional to fea-
ture size? Watertight reconstruction: Is the reconstructed surface guaranteed to be
free of holes? Sharp corners: Can the algorithm reconstruct a surface with sharp
corners?
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comparison between these different formulations. In computer graphics, Ohtake, Belyaev,

Alexa, Turk, and Seidel[67] present a partition of unity method with a fast hierarchical

evaluation scheme to compute surfaces from large point clouds. Our MLS construction is

based on the implicit MLS algorithm given by Shen, O’Brien, and Shewchuk[78], which

introduced the idea of associating functions, rather than just values, with each point to en-

sure that the gradient of the implicit function matches the gradient of the signed distance

function near the sample points.

A different approach to moving least squares is the nonlinear projection method orig-

inally proposed by Levin[60]. A point set surface is defined as the set of stationary

points of a projection operator. This surface definition was first used by Alexa, Behr,

Cohen-Or, Fleishman, Levin, and Silva[2] for point-based modeling and rendering. Since

then the surface definition has been used for progressive point-set surfaces[40] and in

PointShop3D[70], a point-based modeling tool. Because Levin’s method is not guaranteed

to converge, Amenta and Kil[7] give an explicit definition of point set surfaces as the set of

local minima of an energy function along the directions given by a vector field. Adamson

and Alexa[1] provide a simplified implicit surface definition for efficient ray tracing. They

also describe sampling conditions that guarantee a manifold reconstruction. The implicit

and the projection-based MLS algorithms require normals at each sample point. They scale

well to large data sets and are robust against noise in the input point cloud. However, there

are no provable guarantees on the reconstructed surface.

2.1.3 Computational Geometry

Following the Crust algorithm of Amenta and Bern[3], many Delaunay-based algorithms

for surface reconstruction with provable guarantees have been proposed. Amenta, Choi,

Dey, and Leekha[5] present the Cocone algorithm, which is much simpler than the Crust,

and comes with a proof that the reconstructed surface is homeomorphic to the original sur-

14
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face. The Powercrust algorithm of Amenta, Choi, and Kolluri[6] uses weighted Delaunay

triangulations to avoid the manifold extraction step of the Crust and Cocone algorithms,

and to recover sharp corners. Boissonnat and Cazals[20] build a smooth surface by blend-

ing together functions associated with sample points, using natural neighbor coordinates

derived from the Voronoi diagram of the sample points. The Robust Cocone algorithm of

Dey and Goswami[34] guarantees a correct reconstruction for noisy point data. Delaunay-

based algorithms do not require sample point normals, and current Delaunay software can

tetrahedralize hundreds of millions of points. However, surfaces reconstructed by Delau-

nay algorithms interpolate (a subset of) the sample points and a mesh smoothing step is

often necessary when the input point cloud is noisy.

2.1.4 Signed Distance Functions

Signed distance functions of surfaces are useful in their own right. Ray marching methods

used to render implicit surfaces can use the signed distance function to quickly compute the

intersection of a ray and the implicit surface. Mitra, Gelfand, Pottmann, and Guibas[64]

use approximation of signed distance functions to align overlapping surfaces. The cut func-

tion constructed by our algorithm is a good approximation to the signed distance function.

2.1.5 Level Set Methods

Level set methods that have been used in surface reconstruction[87], physical modeling

of fluids, and in many other areas rely on signed distance functions to implicitly maintain

moving surfaces. See the books by Sethian[77] and Osher and Fedkiw[68] for an intro-

duction to level set methods. Level set methods require the signed distance function and

its gradient to be very accurate near the sample points. We prove that the cut function

constructed by the MLS algorithm satisfies this requirement.
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2.1.6 Estimating Point Normals

The MLS surface definition analyzed here requires normals at sample points. In practice,

the sample point normals are obtained by local least squares fitting of a plane. This least

squares method was first suggested by Hoppe, DeRose, Duchamp, McDonald, and Stuet-

zle [50]. Mitra, Nguyen and Guibas[65] analyze the least squares method for normal esti-

mation and present an algorithm for choosing an optimal neighborhood around each sample

point. They show that under certain adaptive sampling conditions, the least squares fit will

produce an accurate normal with high probability. Bremer and Hart[24] prove a similar re-

sult based on a weighted least squares fitting near each sample. Alternatively, Amenta and

Bern[3] show that sample point normals can be approximated using the Voronoi diagram

of the sample points. Dey, Li, and Sun[35] compare these two methods of estimating sam-

ple point normals, and show that the Voronoi method is more robust against undersampling

and anisotropic sampling.

2.1.7 Contouring Algorithms

Sometimes it is desirable to generate a triangulation that approximates the implicit surface

that is the zero set of a cut function. The marching cubes[63] algorithm is widely used

in computer graphics for triangulating isocontours of implicit functions. Marching cubes

performs poorly near sharp corners, and often the contoured surface has bad quality trian-

gles. When the gradient of the cut function is available, the extended marching cubes algo-

rithm [57] can be used to recover sharp corners. Dual contouring[55] is also effective for

reconstructing meshes with sharp corners. There has been some recent work on contouring

algorithms with theoretical guarantees. Boissonnat and Oudot[23] give a Delaunay-based

contouring algorithm that guarantees good-quality triangles in the reconstructed surface.

Boissonnat, Cohen-Steiner and Vegter[22] present a contouring algorithm with guarantees

on the topology of the reconstructed triangulation.
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Figure 2.2: A closed curve along with its medial axis. The local feature size of p is
the distance to the closest point x on the medial axis.

2.2 Sampling Preconditions

Our sampling preconditions are based on thelocal feature size(lfs) function proposed by

Amenta and Bern[3]. For each pointp ∈ F , lfs(p) is defined as the distance fromp to

the nearest point of the medial axis ofF . Our theoretical guarantees require sampling

proportional to the smallest local feature size ofF .

Assume that the sampled surface has been scaled such that thelfs of any point onF is

at least1. Any smooth surface can be scaled in this manner because for each pointp on a

smooth surfaceF , lfs(p) > 0. We require that for each pointp ∈ F , the distance fromp to

its closest sample points is less thanε as shown in Figure2.2.

The amount of noise in the sample points should be small, compared to the sample

point spacing. For each sample pointr, the distance to its closest surface pointq should be

less thanε2 as shown in Figure2.2. Moreover, the angle between the normal~nr of r and

the normal~nq, of q should be thanε.
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Arbitrary oversampling in one region of the surface can distort the value of the cut

function in other parts of the surface. Hence we require that local changes in the sampling

density are bounded. Letαp be the number of sample points inside a ball of radiusε

centered at a pointp. If αp > 0, the number of sample points inside a ball at radius2ε at p

should be less than8α. The results in this chapter hold true for values ofε ≤ 1/50.

2.3 Reconstructed Surface Definition

Let si ∈ S be the sample points in the input point cloud that lie near the surfaceF and let

~ni be the approximate outside normal of sample pointsi ∈ S. For each sample pointsi we

define a point functionPi(x) whose value is the signed distance fromx to the tangent plane

atsi, Pi(x) = (x− si) ·~ni. The cut functionI is a weighted average of the point functions.

I(x) =
1∑

sj∈S Wj(x)

∑
si∈S

Wi(x)((x− si) · ~ni). (2.1)

For each sample pointsi define a oversampling factorai given by the number of sample

points inside a ball of radiusε aroundsi. The oversampling factorai accounts for over-

sampling in the neighborhood of sample pointsi. We use Gaussian weight functions along

with the oversampling factor,

Wi(x) = e−‖x−si‖2/ε2/ai,

in computing the weighted average of the point functions. Hereε is the parameter defined

in our sampling requirements.

The cut function is the best least squares fit to the point functions in the following

sense: at pointx, each sample pointsi votes for the value of the cut function to bePi(x)

with a weightWi(x). Setting the cut functionI(x) to the weighted average of these point
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Figure 2.3: For a point x, p is the closest point to x on the surface. The space
outside the ball B2(x) is divided into spherical shells of width ε. Hk is the shell
bounded by spheres of radius rk and rk + ε.

functions minimizes the weighted least squares error in the estimate ofI(x).

I(x) = min
β

∑
si∈S

Wi(x)(Pi(x)− β)2.

2.4 Geometry of the Reconstructed Surface

Consider a pointx shown in Figure2.3, whose closest point on the surface isp. Let φ(x)

be the signed distance function ofF . InsideF , φ(x) < 0, and outsideF , φ(x) > 0. The

vector ~xp is parallel to the surface normal ofp and‖ ~xp‖ = |φ(x)|. Let B1(x), B2(x) be

two balls centered at pointx as shown in Figure2.3. The radius ofB1(x) is |φ(x)| and the

radius ofB2(x) is |φ(x)|+ 4ε.

We define an error functionE(x) that measures the difference between the cut function

computed by the MLS algorithm and the signed distance functionφ(x). This error function
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E(x) is given by,

E(x) = I(x)− φ(x)

=
1∑

sj∈S Wj(x)

∑
si∈S

Wi(x)(Pi(x)− φ(x))

≡ 1∑
sj∈S Wj(x)

∑
si∈S

Wi(x)ζi(x). (2.2)

The functionζi(x) defined in Equation2.2 measures the error in the point function of

sample pointsi.

Our analysis of the cut function has two main ideas. First, the exponential decay of

the Gaussian weight functions means that the cut function is mostly determined by sample

points insideB2(x). Second, the cut function converges to the signed distance function

with ε because the error functions associated with sample points insideB2(x) converge to

zero asε goes to zero.

To prove our results, it is convenient to separate the contributions of sample points

insideB2(x) and outsideB2(x) to the error functionE(x). Let ξ(x) =
∑

si∈S ζi(x)Wi(x)

be the weighted combination of sample point error functions, and letW (x) =
∑

si∈S Wi(x)

be the sum of all weight functions atx. Let ξin(x) andξout(x) be the contributions toξ(x)

by sample points inside and outsideB2(x). Similarly, letWin(x) be the sum of weights of

all sample points insideB2(x), and letWout(x) be the weight of all sample points outside

B2(x).

Let Fout be the outsideε-offset surface ofF that is obtained by moving each pointp on

F along the normal atp by a distanceε. Similarly, letFin be the insideε-offset surface of

F as shown in Figure2.4. Dey and Goswami[34] (Lemma 3) prove that the offset surfaces

have the same topology asF whenε is small relative to the feature size of each point on

the surface. Theε-neighborhood is the region bounded by the inside and the outside offset

surfaces. For any pointx inside theε-neighborhood,|φ(x)| < ε. We study the properties of
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Fin

F

Fout

Figure 2.4: The inside and outside offset surfaces of a two-dimensional curve.

the cut function for points outside theε-neighborhood, in Section2.4.1and prove that the

cut function is non-zero outside theε-neighborhood ofF (Theorem2.7). This means that

the reconstructed surface is inside theε-neighborhood ofF . To prove that the reconstructed

surface is a manifold, we show that the cut function has a non-zero gradient at points inside

theε-neighborhood. These geometric results will be used in Section2.5 to show thatU is

isotopic toF .

We begin by proving some useful geometric properties of the surface and surface nor-

mals which we use later in the analysis of the cut function. Amenta and Bern[3] prove the

following Lipschitz condition on the surface normal with respect to the functionlfs. As we

assume that for each pointp ∈ F , lfs(p) ≥ 1, we can state the Lipschitz condition in terms

of the distance between two points.

Theorem 2.1.For pointsp, q on the surfaceF with d(p, q) ≤ r, for anyr < 1/3, the angle

between the normals atp andq is at mostr/(1− 3r) radians.

Consider the surface inside a small ballB centered at a pointp ∈ F as shown in

Figure2.5. The following lemma proves that the surface insideB has to be close to the

tangent plane atp.
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Figure 2.5: The surface inside a ball B of radius r has to be outside the medial
balls Bin and Bout. As a result, all sample points in B are between two planes P1

and P2 that are at a distance of O(r2 + ε2) from p.

Lemma 2.2. For a point p ∈ F , let B be a ball of radiusr < 1/4 centered atp. The

sample points insideB lie between two planesP1, P2 parallel to the tangent plane atp.

The distance fromp to P1, P2 is less than(r + ε2)2/2 + ε2.

Proof. Consider sample points ∈ B, and letp be the point closest tos on F . By the

sampling preconditionsd(s, q) ≤ ε2. Without loss of generality assume thats is above the

tangent plane atp as shown in Figure2.5. The distance fromp to q can be written as

d(p, q) ≤ d(p, s) + d(s, q) ≤ r + ε2. (2.3)

As point q is on the surface, it has to be outside the medial ballBout of radiusl ≥ 1.

Hence the distance fromq to the tangent plane atp is less thanl(1− cos 2θ) = 2l sin2 θ ≤

d2(p, q)/2. Let P2 be the plane passing throughs and parallel to the tangent plane atp. As

d(s, q) ≤ ε2, the distance fromp to the planeP2 is

d(p, P2) ≤ d2(p, q)/2 + ε2 = (r + ε2)2/2 + ε2,
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by Equation2.3.

Partition the space outsideB2(x) into spherical shells of widthε as shown in Figure2.3.

Let Hk be the region between balls of radiusrk andrk +ε. We sum over the spherical shells

starting atB2(x) to prove an upper bound on the error in the cut function due to sample

points outsideB2(x). In the following two lemmas we prove an upper bound on the weight

of sample points inside these spherical shells. Recall that for each sample pointsi, the

oversampling factorai is given by the number of sample points in a ball of radiusε around

si.

Lemma 2.3. For a ball B of radius ε
2
,
∑

si∈B
1
ai
≤ 1.

Proof. Without any loss of generality assume thatB containsα > 0 sample points. Let

si be a sample point insideB. As all sample points insideB are inside a ball of radius

ε centered atsi, ai ≥ α. The contribution of all sample points insideB is given by,∑
si∈B

1
ai
≤ α 1

α
≤ 1.

Lemma 2.4. Let Hk be a spherical shell of widthε, centered at pointx. Let the radius of

the smaller sphere surroundingHk berk > 4ε. Then,
∑

si∈Hk

1
ai

< 300
r2
k

ε2
.

Proof. Let C be the smallest number of spheres of radiusε/2 that coverHk. Consider

a covering ofHk with axis-parallel cubes of sizeε/
√

3. Any cube that intersectsHk is

inside a slightly larger shell bounded by spheres of radiusrk + 2ε andrk − ε centered at

x. So the number of cubes that coverHk is less than36
√

3πε(r2
k + rkε + ε2)/ε3. Any

cube in this grid is covered by a sphere of radiusε/2. Applying Lemma2.3to each sphere,∑
si∈Hk

1
ai
≤ C ≤ 36

√
3π(r2

k + rkε + ε2)/ε2. As rk > 4ε we can simplify the upper bound

onC to ∑
si∈Hk

1

ai

< 36
√

3π(r2
k + rk(

rk

4
) + (

rk

4
)2)/ε2 < 300

r2
k

ε2
.
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2.4.1 Outside theε-neighborhood

In this section we analyze the error functionE(x) for x outside theε-neighborhood. We

prove that the cut function is mostly determined by sample points insideB2(x), and that

the cut function is non-zero outside theε-neighborhood.

The following Lemma shows that for any sample pointsi ∈ B2(x), Pi(x) is close to

φ(x). In order to state this result for points in the inside and outside offset regions, it is

convenient to defineµ(x) = φ(x)
|φ(x)| to be the sign function ofF . Sincex is outside the

ε-neighborhood,|φ(x)| > 0. Forx outsideFout, µ(x) = 1 and forx insideFin, µ(x) =−1.

Lemma 2.5. Let x be a point outside theε-neighborhood. Letζi(x) be the error in the

point function of sample pointsi ∈ B2(x) evaluated atx.

• µ(x)ζi(x) ≤ 4ε.

• µ(x)ζi(x) ≥ −(6εµ(x)φ(x) + 13ε2).

Proof. Let p be a closest point tox on the surface. By the definition of the signed distance

function,d(x, p) = µ(x)φ(x). As si ∈ B2(x)

µ(x)Pi(x) ≤ d(x, si)

≤ µ(x)φ(x) + 4ε.

µ(x)ζi(x) ≤ 4ε.

To prove the lower bound onµ(x)ζi(x) consider the pointp′ closest tosi on the surfaceF

as shown in Figure2.6. Let Bm be the medial ball touchingp′ on the side ofF oppositex

and letl be the radius ofBm. Letθ be the angle betweenxsi and the normal atp′. We prove

a lower bound ond(x, si) cos θ and use it in proving the desired lower bound onµ(x)ζi(x).
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The distance betweenx and the centerq of Bm is

d2(x, q) = (d(x, si) cos θ + l + d(si, q))
2 + d2(x, p′) sin2 θ

≤ (d(x, si) cos θ + l + ε2)2 + d2(x, p′) sin2 θ, (2.4)

by the sampling preconditions.

The medial ballBm cannot intersectB1(x) which is contained in a medial ball on the

opposite side of the surface. Therefore the sum of their radii should be less than the distance

between their centers. By Equation2.4we have

(l + d(x, p))2 ≤ (d(x, si) cos θ + l + ε2)2 + d2(x, si) sin2 θ.

d(x, si) cos θ ≥ 1

2(l + ε2)

(
2ld(x, p)− (2l + ε2)ε2− (2.5)

16ε2 − d2(x, s) + d2(x, p)
)
. (2.6)

Sincesi is insideB2(x), d(x, si) ≤ d(x, p) + 4ε. From the local feature size assumption,

l ≥ 1. Substituting into Equation2.6,

d(x, si) cos θ ≥ d(x, p)(1− 5ε)− 9ε2. (2.7)

The angle between the normal atsi and the surface normal atq is at mostε by the sampling

preconditions. Therefore,µ(x)Pi(x) ≥ d(x, si) cos(θ + ε). Using standard trigonometric

formulas, it is easy to show that,cos(θ + ε) ≥ cos θ − ε. By Equation2.7we have

µ(x)Pi(x) ≥ d(x, si) cos θ − ε d(x, si)

≥ d(x, p)(1− 5ε)− 9ε2 − ε(d(x, p) + 4ε)

≥ d(x, p)(1− 6ε)− 13ε2. (2.8)

25



Chapter 2. Provably Good Moving Least Squares

B m

B2

B1

si ��

��

����

����

	�	


p
F

q
l

θ

p’
x

Figure 2.6: Sample Point si is inside B2(x) and p′ is the point closest to s on F .
Bm is a medial ball touching p′ on the side of F opposite x.

Sincep is the point closest tox onF , µ(x)φ(x) = d(x, p). Substituting into Equation2.8

µ(x)ζi(x) = µ(x)Pi(x)− µ(x)φ(x) ≥ −(6εµ(x)φ(x) + 13ε2).

In the following lemma we prove two results showing that the points outsideB2(x)

have little effect on the value ofI(x). We use a constantc1 = 0.001 to state these results.
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Lemma 2.6. Letx be a point outside theε-neighborhood. LetWout(x) be the total weight

of sample points outsideB2(x). ThenWout(x)
W (x)

< c1, and|Eout(x)| < c1ε.

Proof. Consider the division of space outsideB2(x) into spherical shells of widthε starting

with B2(x) as shown in Figure2.3. Let the radius ofB2(x) ber0 = |φ(x)|+ 4ε. The value

of the Gaussian weight function of each sample point inside shellHk atx is at moste−r2
k/ε2.

By Lemma2.4we have

Wout(x) =
∞∑

k=0

Wi(x)

ai

≤ 300

ε2

∞∑
k=0

r2
ke
−r2

k/ε2 ≤ 300

ε2

∞∑
k=0

r2
ke
−(r0rk)/ε2 . (2.9)

Here rk=r0 + kε is the radius of the smaller sphere boundingHk. The summation in

Equation2.9 is a geometric series with a common ratioe−r0/ε < 0.01 that has a closed

form solution. An upper bound is given by,

Wout(x) ≤ 450
r2
0

ε2
e−r2

0/ε2 . (2.10)

Let Bε be a ball of radiusε centered atp. The weight of samples insideBε is a lower bound

for W (x). From the sampling preconditions,Bε containsα ≥ 1 sample points, and a ball

of radius2ε centered atp contains at most8α sample points. Recall that the oversampling

factorai associated withsi is the number of sample points inside a ball of radiusε around

si. Therefore forsi ∈ Bε, 1
ai
≥ 1

8α
.

W (x) ≥
∑

si∈Bε

1

ai

e−(|φ(x)|+ε)2/ε2 ≥ α

8α
e−(|φ(x)|+ε)2/ε2 =

1

8
e−(|φ(x)|+ε)2/ε2 . (2.11)

Combining results in Equation2.10and Equation2.11we have

Wout(x)

W (x)
≤ 3600

r2
0

ε2
e−(r2

0−(|φ(x)|+ε)2)/ε2 = 3600
(|φ(x) + 4ε)2

ε2
e−3ε(2|φ(x)|+5ε)/ε2 . (2.12)
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For |φ(x)| ≥ ε, the expression in Equation2.12is a monotonically decreasing function of

|φ(x)| whose value is maximum when|φ(x)| = ε.

Wout(x)

W (x)
≤ 3600

25ε2

ε2
e−21 < c1.

To prove a similar bound on|Eout(x)| consider sample pointsi ∈ Hk. By definition,

|Pi(x)| = (x− si) · ~ni ≤ ‖x− si‖, and|φ(x)| < ‖x− si‖. Therefore,

|ζi(x)| ≤ |φ(x)|+ ‖x− si‖ < 2‖x− si‖.

Recall thatξout(x) is the sum of the error functions associated with sample points outside

B2(x).

|ξout(x)| ≤
∑

si 6∈B2(x)

|ζi(x)|Wi(x) < 2
∑

si 6∈B2(x)

‖x− si‖Wi(x). (2.13)

For‖x− si‖ ≥ r0 ≥ 5ε, the value of‖x− si‖e−‖x−si‖2/ε2 decreases as‖x− si‖ increases.

Hence for eachsi ∈ Hk, |ζi(x)|Wi(x) ≤ 2rke
−r2

k/ε2/ai.

|ξout(x)| < 600

ε2

∞∑
k=0

r3
ke
−r2

k/ε2 .

Just like Equation2.9, an upper bound of the summation in the above equation is given by,

|ξout(x)| < 900

ε2
r3
0e
−r2

0/ε2 . (2.14)

Substituting the lower bound onW (x) from Equation2.11into Equation2.14we have

|ξout(x)|
W (x)

<
7200

ε2
r3
0e
−(r2

0−(|φ(x)|+ε)2)/ε2 =
7200

ε2
(|φ(x)|+ 4ε)3e−3ε(2|φ(x)|+5ε)/ε2 . (2.15)
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The value ofEout(x) is maximized when|φ(x)| = 5ε. By Equation2.15we have

|Eout(x)| = |ξout(x)|
W (x)

<
7200

ε2
(125ε3)e−21 < c1ε.

In the following theorem we prove that the cut functionI(x) is non-zero outside the

ε-neighborhood.

Theorem 2.7. For each pointx outsideFout, I(x) > 0 and for each pointy insideFin,

I(y) < 0.

Proof. Consider pointx outsideFout. The cut function atx

I(x) = φ(x) + Ein(x) + Eout(x) ≥ φ(x) + Ein(x)− c1ε, (2.16)

by Lemma2.6. We have a lower bound onEin(x) from Lemma2.5.

Ein(x) =
1

W (x)

∑
si∈B2(x)

ζi(x)Wi(x)

≥ min{ζi(x)|si ∈ B2(x)}Win(x)

W (x)

> −(6εφ(x) + 13ε2). (2.17)

Substituting the result in Equation2.17into Equation2.16we have

I(x) > φ(x)(1− 6ε)− 13ε2 − c1ε.

As x is outsideFout, φ(x) ≥ ε. It is easy to check thatI(x) > 0 whenε ≤ 1/50, A similar

argument proves that the cut function is negative at any pointy insideFin.

Theorem2.7 proves that the cut functionI does not have any spurious zero crossings

far away from the sample points, and gives an upper bound ofε on the Hausdorff distance

29



Chapter 2. Provably Good Moving Least Squares

2B

Fout

Fin

����

��
�� ��

B1x
s

F p P
2

P
1

t

Figure 2.7: For x in the ε-neighborhood, the sample points inside balls B2(x) are
contained in a ball of radius 4ε centered at p.

betweenF andU . In Section2.4.2, we derive tighter bounds which show that the Hausdorff

distance betweenU andF is O(ε2).

Combining the results in Lemma2.5 and Lemma2.6, it is easy to show that the cut

function converges to the signed distance function asε goes to zero.

µ(x)I(x) ≥ µ(x)φ(x)(1− 6ε)− 13ε2 − c1ε.

µ(x)I(x) ≤ µ(x)φ(x) + 4ε + c1ε.

2.4.2 Theε-neighborhood

In this section we analyze the cut function inside theε-neighborhood which contains the

reconstructed surface. Our prove that the reconstructed surfaceU is a smooth manifold that

converges to the sampled surface asε goes to zero. The reconstructed surfaceU is smooth

because the point functions and the weight functions used in computing the cut function are

all smooth. To prove thatU is a manifold. we show (Theorem2.17) that the cut function

has a non-zero gradient inside theε-neighborhood.

Inside theε-neighborhood we defineB2(x) as a ball centered atx whose radiusr0 is
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given by

r2
0 = (|φ(x)|+ ε)2 + 12ε2. (2.18)

In the following lemma we prove that sample points insideB2(x) are contained in a small

ball centered at the pointp closest tox onF .

Lemma 2.8.Letx be a point that is inside theε-neighborhood, and letp be the closest point

to x in F . All sample points insideB2(x) are contained in a ball of radius4ε centered atp.

Proof. Let t be the point at whichxp intersects the planeP1 which is parallel to the tangent

plane atp as shown in Figure2.7. The distance betweens andt can be written as

d2(s, t) = d2(s, p)− d2(p, t) = d2(x, s)− d2(x, t). (2.19)

As s is insideB2(x) d2(x, s) ≤ (|φ(x)|+ ε)2 + 12ε2. Substituting into Equation2.19

d2(s, p)− d2(p, t) ≤ (|φ(x)|+ ε)2 + 12ε2 − (|φ(x)| − d(p, t))2

d2(s, p) ≤ 13ε2 + 2|φ(x)|ε + 2|φ(x)|d(p, t)

< 15ε2 + 2ε d(p, t). (2.20)

Sincex is inside theε-neighborhood, any sample point insideB2(x) is clearly inside a

ball of radius5ε centered atp. By Lemma2.2s is between two planes at a distance(5ε +

ε2)/2+ε2 from p. Henced(p, t) ≤ (5ε+ε2)/2+ε2 < 14ε2. Substituting into Equation2.20

d2(s, p) < 15ε2 + 28ε3 < 16ε2.

In the following lemma we show that for a pointx whose closest point on the surface

is p, the point functions of sample points nearp have small error when evaluated atx.
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Lemma 2.9. Consider a pointx whose closest point on the surfaceF is p. Let~n be the

surface normal atp and letB be a ball of radiusr ≤ 1/4 at p. For each sample point

si ∈ B, the angle between the normal atsi and~n is less thanΘ(r) = r+ε2

1−3(r+ε2)
+ ε. For

each sample pointsi ∈ B, |ζi(x)| ≤ |φ(x)|Θ(r)2/2 + rΘ(r) + (r + ε2)2/2 + ε2.

Proof. Let pi be the point closest tosi onF . Then,d(p, pi) ≤ d(p, si)+ d(si, pi) ≤ r + ε2.

The angle between the normal atpi and the surface normal~n at p is less than r+ε2

1−3(r+ε2)
by

Theorem2.1.

Let ~ni be the normal associated withsi. From the sampling preconditions the angle

between the normal ofpi and~ni is at mostε. So the angle between~ni and~n is given by

Θ(r) < r+ε2

1−3(r+ε2)
+ ε. We can now write~ni = ~n + ~ρi, where‖~ρi‖ ≤ Θ(r).

ζi(x) = φ(x)− Pi(x)

= φ(x)− (x− si) · ~ni

= φ(x)− (x− p) · ~ni − (p− si) · (~n + ~ρi). (2.21)

Becausep is the closest point tox on the surface,(x − p) is parallel to~n and‖x − p‖ =

|φ(x)|.

|φ(x)− (x− p) · ~ni| ≤ |φ(x)|(1− cos Θ(r)) ≤ |φ(x)|Θ2(r)/2.

Since sample pointsi is insideB,

|(p− si) · ~ρi| ≤ rΘ(r).

From Lemma2.2, the distance from each sample point insideB to the tangent plane atp is

at most

|(p− si) · ~n| ≤ (r + ε2)2/2 + ε2.
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Substituting the upper bounds on the individual terms into Equation2.21

|ζi(x)| ≤ |φ(x)− (x− p) · ~ni|+ |(p− si) · ~ρi|+ |(p− si) · ~n|

≤ |φ(x)|Θ2(r)/2 + rΘ(r) + (r + ε2)2/2 + ε2.

All sample points insideB2(x) are contained in a small ball around the point closest to

x on F by Lemma2.8. So the result in Lemma2.9 gives us an upper bound on the error

functions of all sample points insideB2(x).

Lemma 2.10.For a pointx inside theε-neighborhood,|Ein| ≤ 30ε2.

Proof. Consider the error in the cut function due to samples insideB2(x).

|Ein(x)| = |ξin(x)|
W (x)

≤
∑

si∈B2(x)

|ζi(x)|Wi(x)

W (x)
≤ max{|ζi(x)| | si ∈ B2(x)}.

From Lemma2.8, we know that each sample pointsi ∈ B2(x) is inside a ball of radius4ε

aroundp the point closest tox onF . By Lemma2.9we have

|ζi(x)| ≤ |φ(x)|Θ2(4ε)/2 + 4εΘ(4ε) + (4ε + ε2)/2 + ε2 < 30ε2. (2.22)

In the following lemma we show that sample points outsideB2(x) have little effect on

the value of the cut function atx. The proof is similar to the proof of Lemma2.6 and is

given in the appendix.

Lemma 2.11.For a pointx inside theε-neighborhood,|Eout(x)| < 4ε2.

Proof. Given in the appendix.
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We will now prove a bound on the error in the cut-function inside theε-neighborhood

which shows that the Hausdorff distance betweenF and the reconstructed surfaceU is

O(ε2).

Theorem 2.12.For a pointx inside theε-neighborhood,|E(x)| < 34ε2.

Proof. Adding the bounds on|Ein(x)| and|Eout(x)| in Lemma2.10and Lemma2.11gives

the desired result.

|E(x)| ≤ |Ein(x)|+ |Eout(x)| < 30ε2 + 4ε2 = 34ε2.

Theorem 2.13.For a pointx ∈ U , let p be the closest point inF . Thend(x, p) < 34ε2.

Proof. Sincex ∈ U , I(x) = 0 and the result in Theorem2.7 tells us thatx is inside

the ε-neighborhood. Hence from Theorem2.12, |E(x)| < 34ε2. So,d(x, p) = |φ(x)| ≤

|I(x)|+ |E(x)| < 34ε2.

Theorem 2.14.For a pointp ∈ F , let q be the closest point inU . Then,d(p, q) ≤ 34ε2.

Proof. If I(p) = 0 we are done; assume without loss of generality thatI(p) < 0. Let t be

the point on the outside normal ofp at a distance of34ε2 from p.

From Theorem2.12, |I(t)| ≥ |φ(t)|− |E(x)| > d(p, t)− 34ε2 = 0. As the cut function

I is continuous, there is a points on pt at whichI(s) = 0 andd(p, s) < 34ε2. Sinceq is

the closest point top in U , d(p, q) ≤ d(p, s) < 34ε2.

Consider the gradient of the cut function∇I(x) = ∇φ(x)+∇E(x). Let p be the point

closest tox on the surfaceF , and let~n be the surface normal atp. The gradient of the

signed distance function is given by∇φ(x) = ~n The gradient of the error function can be

written as

∇E(x) =
∑
si∈S

(~n− ~ni)Wi(x)

W (x)
+
∑

si,sj∈S

2Wi(x)Wj(x)ζi(x)(si − sj)

ε2W 2(x)
.
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We separate the contributions of sample points inside and outsideB2(x) to the gradient of

the error function.

∇Ein(x) =
∑

si∈B2(x)

(~n− ~ni)Wi(x)

W (x)
+

∑
si,sj∈B2(x)

2Wi(x)Wj(x)ζi(x)(si − sj)

ε2W 2(x)
, (2.23)

and,

∇Eout(x) =
∑

si 6∈B2(x)

(~n− ~ni)Wi(x)

W (x)
+

∑
si 6∈B2(x)∨sj 6∈B2(x)

2Wi(x)Wj(x)ζi(x)(si − sj)

ε2W 2(x)
.(2.24)

Lemma 2.15. Let x be a point in theε-neighborhood ofF and letp be the point onF

closest tox. Let~n be the normal ofp. Then‖∇Ein(x)‖ < 486ε and,|~n·∇Ein(x)| < 1158ε2.

Proof. By Equation2.23we have

‖∇Ein(x)‖ ≤
∑
si∈S

‖~n− ~ni‖Wi(x)

W (x)
+

∑
si,sj∈B2(x)

2Wi(x)Wj(x)|ζi(x)| ‖si − sj‖
ε2W 2(x)

≤ max
si∈B2(x)

{‖~n− ~ni‖}+
2

ε2
max

si,sj∈B2(x)
{|ζi(x)|‖si − sj‖}. (2.25)

By Lemma2.9 ‖~n − ~ni‖ ≤ Θ(4ε) < 6ε. By Equation2.22 for each sample pointsi ∈

B2(x), |ζi(x)| < 30ε2. Since sample pointssi, sj are inside a ballB2(x) whose radius

r0 ≤ 4ε, ‖si − sj‖ ≤ 8ε. Substituting into Equation2.25

‖∇Ein(x)‖ < 6ε +
2

ε2
× 30ε2 × 8ε < 486ε.

Consider∇Ein(x) projected onto the normal vector~n.

~n · ∇Ein(x) ≤ max
si∈B2(x)

{|~n · (~n− ~ni)|}

+
2

ε2
max

si,sj∈B2(x)
{|ζi(x)~n · (si − sj)|} (2.26)
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Since the angle between~n and~ni is less thanΘ(4ε) ≤ 6ε, ~n · (~n−~ni) = 1− cos 6ε ≤ 18ε2.

By Lemma2.2, the distance from all sample points insideB2(x) to the tangent plane atp

is at most(4ε + ε2)2/2 + ε2. Hence|~n · (si − sj)| ≤ (4ε + ε2)2 + 2ε2 < 19ε2. Substituting

into Equation2.26

~n · ∇Ein(x) < 18ε2 + 1140ε2 < 1158ε2.

In the following lemma we show that the sample points outsideB2(x) do not affect the

gradient of the cut function. The proof is similar to the proof of Lemma2.11and is given

in the appendix.

Lemma 2.16. For each pointx inside theε-neighborhood,‖∇Eout(x)‖ < 146ε and |~n ·

∇Eout(x)| < 496ε2.

Proof. Given in the appendix.

Theorem 2.17.For a pointx inside theε-neighborhood, let~n be the surface normal ofp,

the point closest tox onF . Then,~n · ∇I(x) > 0.

Proof. From the definition of the error function,

~n · ∇I(x) = ~n · ∇φ(x) + ~n · ∇E(x) ≥ 1− |~n · ∇Ein(x)| − |~n · ∇Eout(x)|. (2.27)

By Lemma2.15 |~n · ∇Ein(x)| < 1158ε2, and by Lemma2.16 |~n · ∇Eout(x)| < 496ε2.

Substituting into Equation2.27

~n · ∇I(x) > 1− 1158ε2 − 496ε2 = 1− 1654ε2 > 0.

The result in Theorem2.17also proves that the gradient can never be zero inside the

ε-neighborhood. The zero set ofI is inside theε-neighborhood ofF by Theorem2.7.

Therefore from the implicit function theorem[17], zero is aregularvalue ofI and the zero

setU is a compact, two-dimensional manifold.
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The normal of the reconstructed surface at a pointu ∈ U is given by~nu = ∇I(u)
‖∇I(u)‖ . In

the following theorem we prove an upper bound on the angle between~nu and the normal~n

of the pointp closest tou in F . We show that~nu converges to~n asε goes to zero.

Theorem 2.18.Let u be a point on the reconstructed surfaceU whose closest point onF

is p. Let~nu be the normal ofU at u and let~n be the normal ofF at p. An upper bound on

the angleθ between~nu and~n is given by

cos θ >
1− 1654ε2

1 + 632ε
.

Proof. The angle between~n and~nu is given by

cos θ =
~n · ∇I(u)

‖∇I(u)‖
. (2.28)

By Theorem2.17we have

~n · ∇I(u) ≥ 1− 1654ε2.

Consider the following upper bound on the norm of the gradient of the cut function,

‖∇I(u)‖ ≤ ‖∇φ(u)‖+ ‖∇E(u)‖ ≤ 1 + ‖∇Ein(x)‖+ ‖∇Eout(u)‖.

By Lemma2.15‖∇Ein(x)‖ < 486ε, and by Lemma2.16‖∇Eout(x)‖ < 146ε. Substitut-

ing into Equation2.28

cos θ >
1− 1654ε2

1 + 632ε
.
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Figure 2.8: Points r, t are the closest points to p on the offset surfaces. The line
segment pipo intersects the zero set U at a unique point u.

2.5 Topological Properties

In this section we show that the reconstructed surfaceU has the same topology as the sam-

pled surfaceF . Our first topological result is thatU is homeomorphic toF . As surfaces

F andU are compact, a one-to-one, onto, and continuous function fromU to F defines a

homeomorphism.

Definition: Let Γ : IR3 → F map each pointq ∈ IR3 to the closest point ofF .

Theorem 2.19.The restriction ofΓ to U is a homeomorphism fromU to F .

Proof. The discontinuities ofΓ are the points on the medial axis ofF . AsU is constrained

to be inside theε-neighborhood ofF , the restriction ofΓ to U is continuous.

Now we show thatΓ is one-to-one. Letp be a point onF and let~n be the normal atp as

shown in Figure2.8. Consider the line segmentl parallel to~n that intersectsFout andFin

at po andpi respectively. At each pointy ∈ popi, ∇I(y) · ~n > 0 by Theorem2.17. So the

functionI(x) is monotonically decreasing fromr to t and there is a unique pointu onpopi

whereI(u) = 0. Assume there is another pointv ∈ U for which Γ(v) = x. The pointv

has to be outside the segmentpopi which means that the distance fromv to its closest point

onF is greater thanε. This contradicts Theorem2.13.

Finally we need to show thatΓ is onto. AsΓ maps closed components ofU onto closed

38



Chapter 2. Provably Good Moving Least Squares

components ofF in a continuous manner,Γ(U) should consist of a set of closed connected

components. Consider the pointp in Figure2.8. Assume thatq = Γ(u) is not in the same

component ofF asp. Sinceq is closest tou, d(u, q) ≤ d(u, p) ≤ ε. Let Bu be the ball

of radiusε centered atu that intersects two components ofF , one containing pointp and

one containing pointq. Boissonnat and Cazals[21] (Proposition 12) show that any ball

whose intersection withF is not a topological disc, contains a point of the medial axis of

F . Therefore pointp is inside the ballBu that contains a point of the medial axis. By the

definition of the functionlfs, lfs(p) ≤ 2ε. Recall that our sampling preconditions require

ε ≤ 1/50. Thereforelfs(p) ≤ 2ε ≤ 1/25. This violates our assumption thatlfs(p) ≥ 1.

Hence the functionΓ mapsU onto every closed component ofF .

Amenta, Peters, and Russell[9] have argued that a guarantee of homeomorphism is in-

sufficient for applications in graphics and simulations. They propose using ambient isotopy

to show topological equivalence. An isotopy fromU to F intuitively means thatU can be

continuously deformed intoF without any change in topology.

Definition: An isotopy between two compact orientable surfaces inIR3 is a continuous

mapΨ : U × [0, 1] → IR3 such thatΨ(., 0) is the identity ofU , Ψ(., 1) = F , and for each

t ∈ [0, 1], Ψ(., t) is homeomorphic toU .

Definition: An ambient isotopy between two compact orientable surfacesU andF is a

continuous mapΛ : IR3× [0, 1] → IR3, such thatΛ(., 0) is the identity ofIR3, Λ(U, 1) = F ,

and for eacht ∈ [0, 1], Λ(., t) is a homeomorphism ofIR3.

Theorem 2.20.The zero surfaceU is isotopic to the sampled surfaceF .

Proof. We will define an ambient isotopyΛ whose restriction toU will be an isotopy toF .

Outside theε-neighborhood, the ambient isotopy is the identityΛ(x, t) = x for t ∈ [0, 1].
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From the proof of Theorem2.19, a line segmentl normal to a pointp ∈ F intersectsU only

at one pointu inside theε-neighborhood. Letpi andpo be the end points ofl on the inside

and outsideε-offset surfaces respectively as shown in Figure2.8. We define the ambient

isotopy atu to beΛ(u, t) = tp + (1 − t)u. The line segmentpiu is linearly mapped to

piΛ(u, t). Similarly, the line segmentupo is mapped toΛ(u, t)po.

Recently, Chazal and Cohen-Steiner[27] proved a condition for isotopic approximation

that gives an alternate proof for Theorem2.20. They show that if two surfacesA and

B are homeomorphic, ifA is contained in a topological thickeningM of B, and if A

separates the sides ofM , thenA is isotopic toB. From Theorem2.19, we know thatU

is homeomorphic toF . The ε-neighborhood is a topological thickening of the sampled

surfaceF , and by Theorem2.7the zero setU of the cut function separates the two sides of

theε-neighborhood. ThereforeU is isotopic toF .

2.6 Discussion

Recall that the width of the Gaussian functions used in our algorithm depends on the small-

est local feature size. As a result, our sampling requirements and the noise preconditions

are determined by the smallest local feature size of a point onF . Ideally, we would like

to handle sampling proportional to the local feature size. When the width of the Gaussian

weight functions is fixed, spacing between sample points in areas of the surface with large

local feature size might be much larger than the width of the Gaussians. As a result, the

reconstructed surface will be noisy and might have the wrong topology. One solution is

to make the width of the Gaussian weight functions proportional to the spacing between

sample points. We present an adaptive version of the MLS algorithm based on this idea in

Chapter3.
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One disadvantage of our algorithm is that it requires sample point normals. However,

approximate sample point normals can be easily obtained for laser range data by triangu-

lating the range images. Each sample point normal can be oriented using the location of the

range scanner. When oriented normals are unavailable, the absolute distance to the tangent

plane at each sample point can be used instead of the signed distance as a point function to

define a new functionIu(x). The zero set of this function is hard to analyze as its gradient

is not smooth near the sample points. However, the results in this chapter can be easily

extended to show that theε-level set ofIu(x) consists of two components on each side of

the surface, each homeomorphic toF .

The zero set of the cut functionI only passes near the sample points, but we can con-

struct a surface that interpolates the sample points with weight functions such asWs(x) =

e−‖x−s‖2

‖x−s‖2 , that are infinite at the sample points. We can prove that the zero set is restricted

to theε-neighborhood when this weight function is used, but, we could not prove results

about the gradient approximations.

Our analysis of the MLS algorithm works in any dimension. The Lipschitz condition

in Theorem2.1, and our results which show that sample points outsideB2(x) have little

effect on the cut function at pointx can be easily extended to higher dimensions. The value

of ε required for the theoretical guarantees would decrease with increasing dimensionality.

It would be interesting to prove similar results for different weight functions and point

functions. Gaussian weight functions that have infinite support yield a cut function that

is defined everywhere. Our results show that we only pay a small penalty for the infinite

support; the cut function at pointx is mostly determined by sample points insideB2(x). It

might be easier to analyze other commonly used weight functions such as cubic B-splines

that have compact support. Of course, the cut function and the its analysis would be valid

only in areas covered by the support of the weight functions.

Here we have used point functions that are a first-order approximation to the neighbor-

hood of each sample. For a sample points that is near sharp features, the point function
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Figure 2.9: For point x inside the ε-neighborhood, all sample points inside Bmid(x)
are near p the point closest to x on F . As a result, the error in the point functions
of sample points inside Bmid(x), evaluated at x, is small.

of s is a poor representation of the local neighborhood ofs. Higher order approximations

such as quadric surface patches might be more robust to sharp features.

Appendix

Consider a ballBmid(x) of radiusrmid = 0.125 centered at pointx as shown in Figure2.9.

Note thatrmid is a fixed constant and does not depend onε. All sample points inside

Bmid(x) are near the pointp closest tox on F . Recall that for each sample pointsi, the

oversampling factorai is the number of sample points inside a ball of radiusε aroundsi.

In the following lemma we prove a bound on the oversampling factors of sample points in

a shellHk whenHk is contained insideBmid(x).

Lemma 2.21.For a pointx inside theε-neighborhood, letHk be a spherical shell centered

at x that is outsideB2(x), and insideBmid(x). Let the radii of the two spheres bounding

Hk berk andrk + ε. Then
∑

si∈Hk

1
ai

< 4
r3
k

ε3
.

Proof. Let p be the point closest tox on the surface. as shown in Figure2.10(a). As

x is inside theε-neighborhood, each sample points ∈ Hk is inside a ballB of radius

rk + 2ε ≤ rmid + 2ε < 1/4 centered atp. All sample points insideB are squeezed between

two parallel planesP1, P2 that are(rk + 2ε + ε2)2 + 2ε2 apart, by Lemma2.2.
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Figure 2.10: (a) Point x is inside the ε-neighborhood and p is the point closest to
x on F . Hk is a spherical shell of width ε contained inside Bmid. (b) The base of Ck

is a ring Rk whose width is w. The ring Rk is divided into sectors such that the arc
length of the outside circle within each sector is less than ε/

√
3.

The intersection ofHk and the space betweenP1, P2 is a cylindrical annulusCk whose

cross section is the shaded region shown in Figure2.10(a). The radius of the outer circle of

Ck is r + ε. To compute the inner radius, consider the distance fromx to P1, P2 given by

l = max{d(x, P1), d(x, P2)} ≤ (rk + 2ε + ε2)2/2 + ε2 + ε.

The radius of the smaller circle enclosingCk can be written asri =
√

r2
k − l2. Let w =

rk − ri be the width of the annulus.

Let Rk be the base of the cylindrical annulusCk as shown in Figure2.10(b). Divide the

ring Rk into sectors such that the length of the outer arc inside each sector isε/
√

3. Each

sector is contained in a rectangle of length at mostε/
√

3 as shown in Figure2.10(b). The

height of the rectangle ish ≤ δ + w ≤ ε2

24(r+ε)
+ w. Consider a covering of the rectangle

with squares of sizeε/sqrt3. Since the squares can extend out of the rectangle, we can

cover each rectangle with

t1 =

√
3

ε
× (h + ε/

√
3) ≤

√
3

ε

(
ε2

24(r + ε)
+ w + ε/

√
3

)
.
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squares of sizeε/
√

3. As each rectangle covers a sector of lengthε/
√

3, ring Rk can be

covered with,

t2 = t1 ×

⌈
2
√

3π

ε
(rk + ε)

⌉
≤ t1 ×

(
2
√

3π

ε
(rk + ε) + 1

)

squares.

We can now fill the cylindrical annulusCk by stacking cubes of sizeε/
√

3 on top of

these squares. The number of cubes required to coverCk is

t1 × t2 ×
√

3

ε
((rk + 2ε + ε2)2 + 2ε2 + ε/

√
3).

Each cube in this grid is covered by a sphere of radiusε/2. Forx inside theε-neighborhood,

ε ≤ r0/
√

12 ≤ rk/
√

12 by Equation2.18. Applying Lemma2.3 to each sphere, and

simplifying ∑
si∈H2

1

ai

< 6
r3
k

ε3
.

Proof of Lemma 2.11. We compute the desired upper bound by summing over the contri-

butions of sample points inside shellsHk starting atB2(x). Recall thatξout(x) is the sum of

the error functions associated with sample points outsideB2(x). Let ξ1(x) andξ2(x) be the

contributions toξout(x) by sample points insideBmid(x) and outsideBmid(x) respectively.

An upper bound for|ξ1(x)| is given by|ξ1(x)| ≤
∑

si∈Bmid(x) |ζi(x)|Wi(x). Consider shell

Hk insideBmid. The radius of the smaller sphere boundingHk is rk ≤ rmid. Let p be the

point closest tox onF . The distance fromp to each sample points insideHk is given by

d(p, s) ≤ d(p, x) + d(x, s) ≤ rk + 2ε ≤ rmid + 2ε < 1/4.

Recall that we proved an upper bound on the error in the point functions of sample points
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nearp in Lemma2.9. By the inequality
√

12ε ≤ r0 ≤ rk ≤ rmid,

Θ(rk + 2ε) ≤ rk + 2ε + ε2

1− 3(rk + 2ε + ε2)
≤ rk(1 + 2/

√
12 + ε/

√
12)

1− 3(rmid + 2/50 + 1/2500)
≈ 3.06rk, (2.29)

and,

|ζi(x)| ≤ |φ(x)|Θ2(rk + 2ε)/2 + (rk + 2ε)Θ(rk + 2ε) + (rk + 2ε + ε2)2/2 + ε2

≈ 6.25r2
k < 7r2

k. (2.30)

Substituting the upper bound on the weights of sample points in shellsHk contained in

Bmid(x) from Lemma2.21we have

|ξ1(x)| ≤ 42

ε3

rk≤rmid∑
k=0

r5
ke
−r2

k/ε2 <
42

ε3

∞∑
k=0

r5
ke
−r0rk/ε2 ≤ 63

ε3
r5
0e
−r2

0/ε2 . (2.31)

By the lower bound onW (x) in Equation2.11

|ξ1(x)|
W (x)

<
504

ε3
r5
0e
−(r2

0−(|φ(x)|+ε)2/ε2) <
504

ε3
r5
0e
−12. (2.32)

For sample points outsideBmid(x), we revert to the bound obtained in Lemma2.6 on the

error function associated with each sample. By Equation2.13we have

|ξ2(x)| ≤
∑

si 6∈Bmid(x)

|ζi(x)|Wi(x) ≤ 2
∑

si 6∈Bmid(x)

‖x− si‖Wi(x). (2.33)

The expression for|ξ2(x)| in Equation2.33 is the same as the expression for|ξout(x)| in

Equation2.13except that the summation begins atrmid instead ofrout. By Equation2.15

we have

|ξ2(x)|
W (x)

≤ 7200

ε2
r3
mide

−(r2
mid−(|φ(x)|+ε)2)/ε2 ≤ 7200e4

ε2
r3
mide

−r2
mid/ε2 . (2.34)
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Note that the expression in Equation2.34 is o(ε2) because of the exponential term. For

each pointx is inside theε-neighborhood ,r0 ≤
√

(ε + ε)2 + 12ε2 = 4ε. Adding the upper

bounds in Equation2.32and Equation2.34we have

|Eout(x)| ≤ 504

ε3
(4ε)5e−12 +

7200e4

ε2
r3
mide

−r2
mid/ε2 < 4ε2.

Proof of Lemma 2.16. Recall thatx is a point inside theε-neighborhood, andp is the

point closest tox onF . Let~n be the normal atp. The contribution of sample points outside

B2(x) to∇E(x) is given by,

∇Eout(x) =
∑

si 6∈B2(x)

(~n− ~ni)Wi(x)

W (x)
+

∑
si 6∈B2(x)∨sj 6∈B2(x)

2Wi(x)Wj(x)ζi(x)(si − sj)

ε2W 2(x)
. (2.35)

The first term in Equation2.35can be written as a summation over sample points inside

spherical shellHk outsideB2(x).

1

W (x)

∞∑
k=0

∑
si∈Hk

(~n− ~ni)Wi(x).

Assume without loss of generality that the indices of sample points are in the increasing

order of distance tox. We can write the second term in Equation2.35as

T =
∑

si 6∈B2(x),i>j

2Wi(x)Wj(x)(ζi(x)− ζj(x))(si − sj)

ε2W 2(x)
. (2.36)

For each spherical shellHk define a setSk containing pairs of sample points given by

Sk = {(si, sj) |i > j, si ∈ Hk}.

Intuitively, si is inside the shellHk andsj is inside the larger sphere that surroundsHk.
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The summation in Equation2.36can be written as,

T =
2

ε2W 2(x)

k=∞∑
k=0

∑
(si,sj)∈Sk

Wi(x)Wj(x)(ζi(x)− ζj(x))(si − sj). (2.37)

An upper bound on the norm ofT is given by

‖T‖ ≤ 2

ε2W 2(x)

k=∞∑
k=0

∑
(si,sj)∈Sk

Wi(x)Wj(x)|ζi(x)− ζj(x)|‖(si − sj)‖

<
2

ε2W (x)

k=∞∑
k=0

∑
si∈Sk

Wi(x) max
(si,sj)∈Sk

{|ζi(x)− ζj(x)|‖(si − sj)‖}.

So the expression for‖∇Eout(x)‖ can be written as,

‖∇Eout(x)‖ ≤ 1

W (x)

k=∞∑
k=0

∑
si∈Hk

Wi(x)(‖~n− ~ni‖

+
2

ε2
max{|ζi(x)− ζj(x)|‖si − sj‖ |(si, sj) ∈ Sk}) (2.38)

We split the summation in the above equation into‖∇E1(x)‖ containing the contributions

of all sample points in shellsHk ∈ Bmid(x), and‖∇E2(x)‖ containing the contributions

of sample points in shellsHk 6∈ Bmid(x).

As x is inside theε-neighborhood, for each sample pointsi inside shellHk, d(p, si) ≤

r+2ε. For each sample pointsi that is insideHk ∈ Bmid(x), ‖n−ni‖ ≤ Θ(rk +2ε) < 4rk

by Equation2.29, and|ζi(x)− ζj(x)| ≤ |ζi(x)|+ |ζj(x)| ≈ 12.5r2
k by Equation2.30. Since

si, sj are inside a ball of radiusrk + 2ε atp,

|ζi(x)− ζj(x)| × ‖si − sj‖ ≤ 12.5r2
k × 2(rk + 2ε) ≤ 12.5r2

k × 2(rk + 2rk/
√

12) < 40r3
k.
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Substituting the above upper bound into Equation2.38, ‖∇E1(x)‖ can be written as

‖∇E1(x)‖ <
1

W (x)

rk≤rmid∑
k=0

∑
si∈Hk

(4rk +
80r3

k

ε2
)
e−r2

k/ε2

ai

.

By the bound on the weights of sample points inside each shellHk ∈ Bmid(x) proved in

Lemma2.21we have

‖∇E1(x)‖ ≤ 6

W (x)ε3

rk≤rmid∑
k=0

(4rk +
80r3

k

ε2
)r3

ke
−r2

k/ε2

≤ 9

W (x)ε3
(4r0 +

80r3
0

ε2
)r3

0e
−r2

0/ε2

Substituting the lower bound forW (x) from Equation2.11

‖∇E1(x)‖ ≤ 72

ε3
(4r0 +

80r3
0

ε2
)r3

0e
−(r2

0−(|φ(x)|+ε2)2 =
72

ε3
(4r0 +

80r3
0

ε2
)r3

0e
−12.

For shellsHk such thatrk ≥ rmid, ‖n− ni‖ ≤ 2, and|ζi(x)− ζj(x)| ≤ |ζi(x)|+ |ζj(x)| ≤

4(rk + ε) by Equation2.13. Since,si, sj are insideHk,

|ζi(x)− ζj(x)| × ‖si − sj‖ ≤ 4(rk + ε)× 2(rk + ε) < 14r2
k.

By the upper bound on the weight of sample points insideHk from Lemma2.4we have

‖∇E2(x)‖ ≤ 300

W (x)ε2

∞∑
rk=rmid

(2 +
28r2

k

ε2
)r2

ke
−r2

k/ε2 ≤ 3600e4

ε2
(2 +

28r2
mid

ε2
)r2

mide
−r2

mid/ε2 .

Recall thatr0 ≤ 4ε for x inside theε-neighborhood. An upper bound on‖∇Eout(x)‖ is
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given by,

‖∇Eout(x)‖ ≤ ‖∇E1‖+ ‖∇E2(x)‖

≤ 72

ε3
(4r0 +

80r3
0

ε2
)r3

0e
−12 +

3600e4

ε2
(2 +

28r2
mid

ε2
)r2

mide
−r2

mid/ε2

< 146ε.

To derive an upper bound on|~n · ∇Eout(x)|, consider a sample pointsi inside shellHk ∈

Bmid(x). By Equation2.29we have

~n · (~n− ~ni) = 1− cos Θ(rk + 2ε) ≤ Θ2(rk + 2ε)/2 < 5r2.

Sample pointsi is between two planesP1, P2 orthogonal to~n that are at a distance(rk +

2ε + ε2)2 + 2ε2 apart, by Lemma2.2. Therefore

|(ζi(x)− ζj(x))× ~n · (si − sj)| ≤ 12.5r2
k × ((rk + 2ε + ε2)2 + 2ε2) < 34r4

k,

by Equation2.30. It is easy to show that

|~n · ∇E1(x)| ≤ 72

ε3
(5r2

0 +
68r4

0

ε2
)r3

0e
−12,

and,

|~n · ∇E2(x)| ≤ 3600e4

ε2
(2 +

28r2
mid

ε2
)r2

mide
−r2

mid/ε2 .

Adding the upper bounds on|~n.∇E1(x)|, and|~n.∇E2(x)| we have

|~n·∇Eout(x)| < 72

ε3
(5r2

0+
68r4

0

ε2
)r3

0e
−12+

3600e4

ε2
(2+

28r2
mid

ε2
)r2

mide
−r2

mid/ε2 < 496ε2.
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Chapter 3

Provably Better Moving Least Squares

In this chapter we generalize the MLS algorithm of Chapter2 to handle adaptively sampled

point clouds. Consider the curve shown in Figure3.1. Because of a portion of the curve

that has a small feature size, the sampling should be dense everywhere under the uniform

sampling conditions of Chapter2, as shown in Figure3.1(b). Moreover, the noise in the

sample points is required to be much smaller than the smallest feature size of the surface.

Ideally, we would like the algorithm to accommodate adaptive spacing in the input point

cloud as well as data noise proportional to the local feature size. Figure3.1(c) shows a

two-dimensional example.
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p

Figure 3.1: (a) Point p near the tip has the smallest local feature size of all the
points on the curve. (b) Uniform sampling means that the spacing between sample
points and the noise are, at most, proportional to lfs(p). (c) Adaptive sampling,
proportional to the local feature size of surface points. The noise in the sample
points can also vary with the local feature size.
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Before we describe the adaptive MLS algorithm, it is useful to understand why the

uniform MLS algorithm of Chapter2 breaks down under adaptive sampling conditions.

The width of Gaussian functions in the definition of the uniform MLS surface depends on

the smallest feature size of the sampled surface. When the spacing between the sample

points is adaptive, this width is much smaller than the sample point spacing near areas

of the surface with large feature size. The Gaussian weight functions no longer smoothly

blend the point functions of nearby sample points. As a result, both the gradient and the

topology of the reconstructed surface are unreliable.

The main idea of the adaptive MLS algorithm is to vary the widths of the Gaussian

weight functions to match the local sample point spacing. These widths are computed by

estimating the local feature size near each sample point.

3.1 Guarantees

Our theoretical guarantees are similar to the results in Chapter2. We prove that the cut

function defined by the adaptive MLS algorithm is non-zero outside a small neighborhood

N of the sampled surface. The width of the neighborhoodN is proportional to the local

feature size of the sampled surface. As the spacing between sample points in the input

point cloud goes to zero, the Hausdorff distance between the reconstructed surface and the

sampled surface goes to zero and the reconstructed surface normals converge to the true

surface normals. The reconstructed surface is guaranteed to be a smooth manifold that has

the same topology as the sampled surface.

3.2 Related Work

For adaptively sampled point cloud data, Delaunay-based surface reconstruction algorithms

such as thecrustproposed by Amenta and Bern[3] are the gold standard as they can easily
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adapt to changes in sample point spacing. However, MLS-based algorithms are better than

Delaunay-based algorithms at handling noisy data.

Varying the widths of the Gaussian weight functions that define MLS surfaces was first

proposed by Pauly, Gross, and Kobbelt[69]. They estimate the feature size of the surface

near each sample points as the radius of the smallest ball ats that containsk (≈ 20)

sample points. The widths of the Gaussian weight functions are computed by interpolating

the feature size estimates with radial basis functions.

Dey and Sun[32] analyze an adaptive MLS surface and prove certain reconstruction

guarantees. The width of the Gaussian weight function associated with sample points at a

given pointx is a function of the feature size ofs and the feature size of the point closest

to x on the sampled surface. Unlike our results which prove that the entire cut function

converges to the signed distance function, their analysis of the MLS surface is limited to a

small neighborhood of the sample points.

3.3 Sampling Preconditions

The sampling preconditions required to prove theoretical guarantees for the adaptive MLS

algorithm are a generalization of the sampling preconditions defined in Chapter2, and are

based on thelocal feature size(lfs) function proposed by Amenta and Bern[3]. Recall that

for point p ∈ F , lfs(p) is the distance fromp to the medial axis ofF . We require sample

point spacing nearp to be small compared tolfs(p).

Given a set of sample points on the surfaceF , computing the local feature size near

each sample point is impossible because the medial axis ofF is unknown. The best we can

hope for is an approximation to the functionlfs. The adaptive MLS algorithm builds the

weight functions from an approximation to the functionlfs given at each sample point. We

call this approximation thesample induced feature size(or sif).

The functionsif is a1-Lipschitz function whose value at each sample point is given as
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input to the adaptive MLS algorithm. This functionsif should satisfy the following two

conditions. First, the set of sample pointsS should be dense with respect to the function

sif. For each pointp ∈ F , the distance fromp to its closest sample points should be less

thanε sif(p). Second, the noise in each sample points should be small compared to the the

functionsif nears. The distance from each sample points to its closest surface pointp ∈ F

is less thanε2sif(p). Moreover, the angle between the normal~ns at s and the true normal

~np atp should be less thanε. The results in this chapter hold true for values ofε ≤ 1/150.

The two conditions force the value of the functionsif at each sample points to be larger

than a certain value that depends on the sample spacing nears. However, the functionsif

cannot be arbitrarily large. To prove our theoretical guarantees, we require the functionsif

to be less than the functionlfs on the surface. For each pointp ∈ F ,

sif(p) ≤ lfs(p). (3.1)

Unlike the functionlfs, the functionsif is defined everywhere because the sample points

might not lie onF . We assume that the values of the functionsif are known at each sample

point. Finally, we need one condition on the rate at which the sample spacing insideS

changes. Arbitrary oversampling in one region of the surface can distort the value of the

cut function in other parts of the surface. Our MLS algorithm estimates oversampling

near each sample points from the number of sample points that are inside a ball of radius

ε sif(s) arounds. This estimation only works if changes in sample point spacing nears

are bounded. Letαi, αj be the number of sample points inside two balls of radiiri ≤

rj ≤ 3ε sif(s) at a sample points including s. Then the ratio of the number of sample

points inside the two balls is bounded by the ratio of their volumes,αj/αi ≤ r3
j/r

3
i . In

Section3.4.2we discuss our method for estimating oversampling in the input point cloud.
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3.3.1 Sample Induced Feature Size

The MLS algorithm needs the the value of the functionsif only at each sample points ∈ S.

In the following lemma we show thatsif(s) is a good estimate of the sample induced feature

size of surface points nears.

Lemma 3.1. Lets be a sample point, and letp be the point closes tos onF . Then,

(1− ε2)sif(p) ≤ sif(s) ≤ (1 + ε2)sif(p).

Proof. Since the functionsif is 1-Lipschitz,

sif(s) ≤ sif(p) + d(s, p) ≤ (1 + ε2)sif(p),

by the sampling preconditions. Similarly

sif(s) ≥ sif(p)− d(s, q) ≥ (1− ε2)sif(p).

Since we require the functionsif to be a lower bound of the functionlfs on the surface

F (Equation3.1)

sif(s) ≤ (1 + ε2)sif(p) ≤ (1 + ε2)lfs(p), (3.2)

by Lemma3.1.

3.4 Formula for the Cut Function

Let the inputS be a set of sample points that lie near the surfaceF , and let~ni be an

approximate outside normal at sample pointsi ∈ S. For each sample pointsi we define a

point functionPi(x) whose value is the signed distance fromx to the tangent plane atsi,
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Pi(x) = (x− si) · ~ni. The cut functionI is a weighted average of the point functions.

I(x) =
1∑

sj∈S Wj(x)

∑
si∈S

Wi(x)((x− si) · ~ni).

For each sample pointsi let ai be the number of sample points inside a ball of radius

ε sif(si) centered atsi, includingsi itself. Define a normalization factor associated withsi

asε3sif3(si)/ai. We use Gaussian weight functions along with the normalization factor,

Wi(x) =
ε3 sif3(si)

ai

e−‖x−si‖2/σ2(x),

to weight the average of the point functions.

The functionσ(x) sets the width of the Gaussian weight functions. The value ofσ(s)

at each sample points should be set to the sample point spacing nears (≈ ε sif(s) from

the sampling preconditions) to smoothly interpolate between point functions. Since sudden

changes in the width of the Gaussian weight functions affect the gradient of the cut function,

the functionσ(x) should satisfy a Lipschitz condition. To compute such a function we

define a new function that we call theextended feature size(or efs). This functionefs is an

extension of thesif values at each sample point to all points. The value ofefs(x) is given

by

efs(x) = min
s∈S

{d(x, s) + sif(s)} − d(x, sn). (3.3)

Hered(x, sn) is the distance betweenx and the sample pointsn closest tox. The width of

the Gaussian weight functionsσ(x) is defined as

σ(x) = ε efs(x).
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sn
sn

B

x
)

F
sif(

sf

Figure 3.2: Sample points that influence the value of efs(x) are inside ball B.
Sample point sf has no effect on the value of efs(x) as it lies outside B.

3.4.1 Computing the Functionefs

The functionefs given by Equation3.3 can be naively computed by iterating over all the

sample points in the input point cloud. To derive a more efficient algorithm, consider a

sample pointsf at a distanced(x, sf ) > d(x, sn) + sif(sn) from x as shown in Figure3.2.

d(x, sf ) + sif(sf )− d(x, sn) > d(x, sn) + sif(sn) + sif(sf )− d(x, sn)

= sif(sf ) + sif(sn). (3.4)

Consider the following upper bound onefs(x).

efs(x) ≤ d(x, sn) + sif(sn)− d(x, sn)

≤ sif(sn)

< sif(sf ) + sif(sn)

< d(x, sf ) + sif(sf )− d(x, sn),

by Equation3.4. So the sample point that achieves the minimum in Equation3.3is guaran-

teed to be inside a ballB of radiusd(x, sn) + sif(sn) aroundx as shown in Figure3.2. The

nearest sample pointsn, and the sample points insideB can be efficiently estimated using

kd-trees[43].
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Figure 3.3: The sample points near q have large feature size and vote for the cut
function to have a positive value at x whereas the sample points inside Bp have a
small feature size and vote for the cut function to have a negative value at point x.
Under adaptive sampling, the number of sample points inside Bp can be arbitrarily
greater than the number of sample points near q.

3.4.2 The Normalization Factor

The curve shown in Figure3.3 illustrates the necessity of the normalization factor used

in our definition of the MLS surface. Consider the value of the cut function at the point

x, which is clearly outside the sampled surfaceF . Let S be a point cloud in which the

sampling is proportional to the feature size. Since the feature size is small nearp, there

can be an arbitrarily large number of sample points in a small ballBp aroundp, and each

sample point insideBp votes for the value of the cut functionI at x to be negative. The

sample points that vote for a positive value atx are near pointq which has a large fea-

ture size. Hence, regardless of the width of the Gaussian weight functions at pointx, the

sample points insideBp can force the value of the cut function atx to be negative if the

normalization factor is not used. For each sample pointsi ∈ Bp, the numeratorε3 sif3(si)

in the normalization factor of each sample pointsi ∈ Bp compensates for the large number

of sample points insideBp. With the normalization factor, we prove that sample points

insideBp have little effect on the value of the cut function at pointx. The denominator in

the normalization factor (which also appears in the definition of the uniform MLS surface)

accounts for oversampling in the input point cloud.

Note that the denominatorai in the normalization factor ofsi is the number of sample

points in a small ballB of radiusε sif(si) aroundsi. This means that we expect the number

of sample points insideB to be be a good estimate of sample spacing nearsi. Adding
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a large number of sample points outsideB, and arbitrarily close toB, would make the

normalization factor a poor estimate of the sample point spacing nearsi. This motivates

the local uniformity requirements in our sampling preconditions which limit the change in

sample point spacing inside a larger ball of radius3ε sif(si) aroundsi. The local uniformity

preconditions guarantee that the normalization factorai is a good estimate of the sample

point spacing nearsi.

3.5 Geometry of the Reconstructed Surface

In this section we study the geometric properties of the cut function. The main result is that

the distance between the reconstructed surfaceU andF goes to zero withε. We also prove

that the normals of the reconstructed surface converge to the normals ofF with ε.

The following three results are related to the Lipschitz conditions on the surface nor-

mals, and the feature sizes of the surface points. Recall that Amenta and Bern[3] proved

the following Lipschitz condition on the surface normal with respect to the functionlfs. We

replace the functionlfs with the functionsif as it is a lower bound onlfs for points on the

surfaceF .

Theorem 3.2 (Amenta and Bern[3]). For pointsp, q on the surfaceF with d(p, q) ≤

α min{sif(p), sif(q)}, for anyα < 1/3, the angle between the normals atp andq is at most

α/(1− 3α) radians.

The following lemma shows a useful relationship between the local feature sizes of two

surface points, and thesif values associated with two sample points.

Lemma 3.3. For pointsp, q on the surfaceF with d(p, q) ≤ α lfs(p) + β lfs(q), for β < 1,

(1− β)lfs(q) ≤ (1 + α)lfs(p). For sample pointss, t ∈ S with d(s, t) ≤ α sif(s) + β sif(t),

for β < 1, (1− β)sif(s) ≤ (1 + α)sif(t).
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Proof. Since the functionlfs is 1-Lipschitz,

lfs(q) ≤ lfs(p) + d(p, q)

≤ lfs(p) + α lfs(p) + β lfs(q)

(1− β)lfs(q) ≤ (1 + α)lfs(p).

Since the functionsif is 1-Lipschitz like the functionlfs, the same argument shows that

(1− β)sif(s) ≤ (1 + α)sif(t) for sample pointss, t.

In the following lemma we prove that the functionefs is 2-Lipschitz.

Lemma 3.4. The functionefs is 2-Lipschitz.

Proof. For two pointsx andy, and letsx, sy be the sample points closest tox, y respec-

tively. By the definition of the functionefs in Equation3.3we have

efs(x) + 2d(x, y) ≤ min
s∈S

{d(x, s) + sif(s)} − d(x, sx) + 2d(x, y)

≤ min
s∈S

{d(x, s) + d(x, y) + sif(s)} − d(x, sx) + d(x, y)

≤ min
s∈S

{d(y, s) + sif(s)} − (d(x, sx)− d(x, y))

≤ min
s∈S

{d(y, s) + sif(s)} − d(y, sx). (3.5)

Sincesy is sample point closest toy, d(y, sx) ≥ d(y, sy). By Equation3.5we have

efs(x) + 2d(x, y) ≤ min
s∈S

{d(y, s) + sif(s)} − d(y, sy) = efs(y).

Let Fout be the outside3ε-offset surface ofF that is obtained by moving each pointp

onF along the normal atp by a distance3ε sif(p). Similarly, letFin be the inside3ε-offset

surface ofF . Figure3.4(a) shows a two-dimensional example. Dey and Goswami[34]

(Lemma 3) prove that the3ε-offset surfaces have the same topology asF .
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(a) (b)
q

p
x

Fin Fin

F F

Figure 3.4: (a) An inside offset curve Fin whose distance to F varies with the
feature size of points on F . (b) The dashed lines form the medial axis of the
square. For a point p ∈ F , its closest point x on the offset curve Fin might not lie
along the normal at p.

The 3ε-neighborhood is the region bounded by the inside and the outside offset sur-

faces. Note that unlike the neighborhood defined for the uniform case in Chapter2, the

neighborhood defined here adapts to the feature size. It is large near areas of large feature

size and small when the surface feature size is small. The offset surface is always contin-

uous, but might not be smooth as shown in Figure3.4(b). The following result proves a

lower bound on the distance from a pointp ∈ F to the offset surfaces.

Lemma 3.5. Letp be a point on the surfaceF and letx be the point on theα-offset surface

closest top. For α ≤ 1/2, d(x, p) ≥ α(1− 2α)sif(p).

Proof. Assumed(x, p) < α sif(p). Let q be the point onF closest tox as shown in

Figure3.4(b); thend(x, q) ≤ d(x, p) < α sif(p). The distance fromp to q can be written as

d(p, q) ≤ d(x, p) + d(x, q) ≤ 2α sif(p). By Lemma3.3we have

sif(q) ≥ (1− 2α)sif(p). (3.6)

Sinceq is the point closest tox on the surface,xq is parallel to the normal ofq. From the
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Figure 3.5: Point x is outside the 3ε-neighborhood and sn is the sample point
closest to x.

definition of theα-offset surface,d(x, q) = α sif(q). By Equation3.6we have

d(x, p) ≥ d(x, q) = α sif(q) ≥ α(1− 2α)sif(p).

Consider a pointx whose closest sample point inS is sn. Let B1(x), B2(x) be two

balls centered at pointx as shown in Figure3.5. The radius ofB1(x) is d(x, sn); aB2(x) is

a slightly larger ball whose radius isr0 = d(x, sn) + 3ε efs(x). Just like the analysis of the

uniform MLS algorithm, our analysis of the adaptive MLS algorithm has two main ideas.

First, the exponential decay of the Gaussian weight functions means that the cut function

is mostly determined by sample points insideB2(x). Second, the cut function converges to

the signed distance functionφ(x). asε goes to zero, because the point functions associated

with sample points insideB2(x) converge toφ(x).

In Section3.5.1, we study the properties of the cut function for points outside the3ε-

neighborhood, and prove that the cut function is non-zero outside the3ε-neighborhood of

F (Theorem3.11). This means that the reconstructed surfaceU is restricted to the3ε-

neighborhood ofF . To prove that the surfaceU is a manifold, we analyze the gradient of

the cut function for points inside the3ε-neighborhood in Section3.5.2. These geometric

results are used in Section3.6to show thatU is isotopic toF .
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3.5.1 Outside the3ε-neighborhood

Consider a pointx outside the3ε-neighborhood. Letp be the point closest tox on F . Let

sn be the sample point closest tox, and letpn be the point onF closest tosn. Sincex is

outside the3ε-neighborhood,d(x, pn) ≥ 3ε(1− 6ε)efs(pn) from Lemma3.5.

From the sampling preconditionsd(sn, pn) ≤ ε2efs(pn), andefs(pn) ≥ efs(sn)/(1+ε2).

Therefore

d(x, sn) ≥ d(x, pn)− d(sn, pn) ≥ (3ε− 19ε2)efs(pn) ≥ 3− 19ε

1 + ε2
ε efs(sn).

The definition of the functionefs guarantees thatefs(x) ≤ efs(sn), which gives the follow-

ing lower bound ond(x, sn) when pointx outside the3ε-neighborhood.

d(x, sn) ≥ 3− 19ε

1 + ε2
ε efs(x). (3.7)

Recall thatφ(x) is the signed distance fromx to F . To prove our geometric results it is con-

venient to define two functions. Forx outside the3ε-neighborhood letµ(x) = φ(x)/|φ(x)|

be the sign function ofF . Whenx is outsideFout, µ(x) = 1, and whenx is insideFin

µ(x) = −1. Let E(x) be an error function that measures the difference between the cut

function computed by the MLS algorithm and the signed distance to the nearest sample.

This functionE(x) is given by

E(x) = I(x)− µ(x)d(x, sn)

=
∑
si∈S

Wi(x)∑
sj∈S Wj(x)

(Pi(x)− µ(x)d(x, sn))

≡
∑
si∈S

Wi(x)∑
sj∈S Wj(x)

ζi(x). (3.8)

The functionζi(x) defined in Equation3.8 measures the error in the point function of
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sample pointsi. As theε parameter in our sampling preconditions decreases, the sam-

pling is more dense, and has less noise. So the signed distance to the closest sample point

µ(x)d(x, sn) will converge to the signed distance toF asε goes to zero. The error func-

tion E(x) indirectly measures the difference betweenI(x) and the signed distance function

φ(x). Recall that we used a similar error function to analyze the uniform MLS algorithm

in Chapter2.

Define functionξ(x) =
∑

si∈S ζi(x)Wi(x) to be the weighted combination of sample

point error functions, and let the weight functionW (x) =
∑

si∈S Wi(x) be the sum of all

weight functions atx. Consider the contributions of sample points insideB2(x) and outside

B2(x) to these two functions separately. Letξin(x) andξout(x) be the contributions toξ(x)

by sample points inside and outsideB2(x). Similarly, letWin(x) be the sum of weights of

all sample points insideB2(x), and letWout(x) be the sum of weights of all sample points

outsideB2(x).

The following lemma proves an upper bound and a lower bound on the error in the point

functions of sample points insideB2(x). The result is similar to the result in Lemma2.5in

Chapter2. The main difference is that there is no lower bound on the feature size of sample

points insideB2(x).

Lemma 3.6. Let x be a point outside the3ε-neighborhood and letsn be the sample point

closest tox. Letsi be a sample point insideB2(x) whose closest point on the surface isq.

Then,

µ(x)ζi(x) ≤ 3ε efs(x),

and,

µ(x)ζi(x) ≥ −6ε d(x, sn)− ε2 sif(q)− 8ε2 efs(x).

Proof. Proving the upper bound is easy; sincesi is insideB2(x), µ(x)Pi(x) ≤ d(x, si) ≤

d(x, sn) + 3ε efs(x) which meansµ(x)ζi(x) = µ(x)(Pi(x)− µ(x)d(x, si)) ≤ 3ε efs(x).

To prove the lower bound consider pointq which is closest to sample pointsi on the
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Figure 3.6: (a) Sample point si is inside B2(x) and q is the point closest to si on
F . Bm is a ball of radius lfs(q) touching q on the side of F opposite x. (b) The
medial ball Bm centered at point c can only intersect B1(x) at an angle α given by
4 sin2(α/2) = ε.

surfaceF as shown in Figure3.6(a). Letθ be the angle betweenxsi and the normal

vecnq at q. The vectorqsi is parallel to~nq becauseq is the point closest tosi onF . By the

sampling preconditions the angle between~nq and the sample point normal~ni atsi is at most

ε. Therefore the point function associated withsi, Pi(x) = (x−si)·~ni ≥ d(x, si) cos(θ+ε).

We first show a lower bound ond(x, si) cos θ and then prove the desired lower bound on

µ(x)ζi(x).

Let Bm be a medial ball of radiusr ≥ lfs(q) ≥ sif(q) touchingq on the side ofF

oppositex. For two intersecting spheres, the angle of intersection is defined as the angle

between the tangent planes of the two spheres at any point of intersection.

To prove a contradiction, assume thatBm intersectsB1(x) at an angle larger thanα

given by4 sin2(α/2) = ε, as shown in Figure3.6(b). Since pointsc andx are on opposite

sides of the surface, the line segmentcx intersectsF at a pointp. Without any loss of

generality, we can assume thatp is onBm. Observe thatB1(x) does not contain any sample

points becausesn is the sample point closest tox. The medial ballBm does not contain any

surface points, but there might sample points insideBm. Therefore the distance fromp to
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its closest sample point is greater than the widthl of the lune formed whenBm andB1(x)

intersect. Consider the anglesβ, γ shown in Figure3.6(b). By the definition of the angle

of intersection,β + γ = α. So the width of the lune

l = 2r(1− cos β) ≥ 2r(1− cos α) = 4r sin2(α/2).

Sincec is a point on the medial axis,sif(p) ≤ lfs(p) ≤ d(p, c) = r. When4 sin2(α/2) > ε,

the distance fromp to its closest sample point is greater thanε r ≥ ε sif(p), which violates

our sampling preconditions. Therefore

sin2(α/2) ≤ ε/4. (3.9)

The angle of intersectionα of two intersecting spheresBm, B1(x) of radii r, d(x, sn) is

given by

cos α =
d2(c, x)− r2 − d2(x, sn)

2rd(x, sn)
. (3.10)

The distanced(c, x) can be written as

d2(c, x) = (d(x, si) cos θ + d(si, q) + r)2 + d2(x, si) sin θ.

By our sampling preconditions,d(si, q) ≤ ε2sif(q). Substituting into Equation3.10 we

have

r2 + d2(x, sn) + 2rd(x, sn) cos α ≤ (d(x, si) cos θ + ε2sif(q) + r))2 + d2(x, si) sin2 θ.

d(x, si) cos θ ≥ rd(x, sn) cos α

ε2sif(q) + r
− d2(x, si)− d2(x, sn)

2(ε2sif(q) + r)

−ε2 sif(q)(ε2sif(q) + 2r)

2(ε2sif(q) + r)
. (3.11)

Sincesi is insideB2(x) d(x, si) ≤ d(x, sn)+3ε efs(x), and sinceBm is medial ball touching
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q, r ≥ lfs(q) ≥ sif(q). Using standard trigonometric formulas, it is easy to showcos(θ +

ε) ≥ cos θ − ε. Substituting into Equation3.11we have

µ(x)Pi(x) ≥ d(x, si)(cos θ − ε)

≥ d(x, sn) cos α

1 + ε2
− 3ε efs(x)(2d(x, sn) + 3ε efs(x))

2(ε2sif(q) + r)

−ε2sif(q)− ε(d(x, sn) + 3ε efs(x)). (3.12)

To prove a lower bound onsif(q) in terms ofefs(x) consider the definition of the function

efs.

efs(x) ≤ sif(si) + d(x, si)− d(x, sn). (3.13)

Since sample pointsi is insideB2(x), d(x, si) − d(x, sn) ≤ 3ε efs(x). Substituting into

Equation3.13

sif(si) ≥ (1− 3ε)efs(x). (3.14)

Recall that in Lemma3.1we showed thatsif(si) is a good approximation tosif(q).

sif(q) ≥ sif(si)

1 + ε2
≥ (1− 3ε)efs(x)

1 + ε2
,

by Equation3.14. Substituting into Equation3.12

µ(x)ζi(x) = µ(x)(Pi(x)− µ(x)d(x, sn))

≥ −d(x, sn)(1− cos α + 5ε)

1 + ε2
− ε2 sif(q)− 8ε2 efs(x)

=
−d(x, sn)(sin2(α/2) + 5ε)

1 + ε2
− ε2 sif(q)− 8ε2 efs(x).

Substituting the upper bound onsin2(α/2) from Equation3.9 and simplifying usingε ≤

1/150 we have

µ(x)ζi(x) > −6ε d(x, sn)− ε2 sif(q)− 8ε2 efs(x).
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Figure 3.7: For point x, the closest sample point is sn, and B2(x) is a ball of
radius d(x, sn) + 3ε efs(x) at x. The ball Bσ of radius ε efs(x) at point x is completely
contained inside B2(x).

Since the signed distance to the nearest sample pointµ(x)d(x, sn) converges toφ(x)

asε goes to zero, the result in Lemma3.6 shows that for each sample pointsi ∈ B2(x),

Pi(x) converges toφ(x) asε approaches zero. Unlike sample points insideB2(x), the error

functions of sample points outsideB2(x) can be arbitrarily large. In the remainder of this

section, we show that the error in the sample points outsideB2(x) does not adversely affect

the cut function.

In Lemma3.7 we derive a lower bound on the weight of sample points insideB2(x).

Lemma3.7 is the only result which depends on the local uniformity requirements in out

sampling preconditions.

Lemma 3.7. Let x be a point outside the3ε-neighborhood, and letWin(x) be the sum of

the weights of all sample points insideB2(x). Then

Win(x) ≥ 1

10
σ3(x)e−(d(x,sn)+σ(x))2/σ2(x).

Proof. Let Bσ be a ball of radiusσ(x) = ε efs(x) centered at the sample pointsn closest

to x as shown in Figure3.7(a). Let α be the number of sample points insideBσ, and
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let β be the number of sample points inside a ballBε of radiusε sif(sn) at sn. Since

efs(x) ≤ sif(sn), the ballBσ is contained insideBε.

Consider a sample pointsi insideBσ as shown in Figure3.7. Recall thatai is the

number of sample points inside a ballBi of radiusε sif(si) aroundsi. Sinced(sn, si) ≤

ε efs(x) ≤ ε sif(sn), sif(si) ≤ (1 + ε)sif(sn) by Lemma3.3. Therefore all sample points

insideBi are inside a ballB of radiusε(2 + ε) sif(sn) aroundsn as shown in Figure3.7(b).

Let γ be the number of samples insideB. Recall that in our sampling preconditions, we

required the sampling nearsn to be uniform. So the ratio of the number of sample points

insideB to the number of sample points insideBε is less than the ratio of their volumes.

ai

β
≤ γ

β
≤ ε3(2 + ε)3sif3(sn)

ε3sif3(sn)
= (2 + ε)3. (3.15)

As the weight of all sample points insideBσ is a lower bound forWin(x) we have

Win(x) ≥
∑

si∈Bσ

ε3sif3(si)

ai

e−(d(x,sn)+σ(x))2/σ2(x). (3.16)

Sinced(si, sn) ≤ ε sif(sn), sif(si) ≥ (1 − ε)sif(sn) by Lemma3.3. Substituting into

Equation3.16we have

Win(x) ≥ ε3(1− ε)3sif3(sn)e−(d(x,sn)+σ(x))2/σ2(x)
∑

si∈Bσ

1

ai

≥ ε3(1− ε)3sif3(sn)e−(d(x,sn)+σ(x))2/σ2(x)
∑

si∈Bσ

1

(2 + ε)3β
,

by Equation3.15. Recall thatBσ containsα sample points. Therefore

Win(x) ≥ αε3(1− ε)3sif3(sn)

(2 + ε)3β
e−(d(x,sn)+σ(x))2/σ2(x). (3.17)

Again from the uniformity conditions in our sampling requirements, the ratio of the number
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Figure 3.8: (a)Sample point si contributes to the density functions inside the
shaded region Ω(si). Each point inside Ω(si) is closer than si to the point x. (b)
Each sample point that contributes to the density function at y is contained in ball
around y and is farther from x than y.

of sample points insideBε to the number of sample points inside a smaller ballBσ is

less than the ratio of their volumes,β
α

< sif3(sn)

efs3(x)
. Substituting into Equation3.17, and

simplifying using the inequalityε ≤ 1/150 we have

W (x) > Win(x) >
ε3(x)efs3(x)

10
e−(d(x,sn)+σ(x))2/σ2(x) =

σ3(x)

10
e−(d(x,sn)+σ(x))2/σ2(x).

To prove an upper bound onWout(x) we define radial density functionsλk(x, r) such

that ∫
IR3

λk(x, r)dr ≥
∑

si 6∈B2(x)

dk(x, si)Wi(x),

for k = 0, 1, . . . 4. The integral ofλ0(x, r) is an upper bound onWout(x). Functions that

involve higher values ofk appear later in the analysis of the cut function and its gradi-

ent. With each sample pointsi we associate a region of spaceΩ(si) inside whichsi will

contribute to the density functions. This regionΩ(x, si) is defined as the lune formed by

intersecting a ball of radius2ε sif(si)/5 centered atsi, and a ball of radiusd(x, si) centered
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atx as shown in Figure3.8(a). In the following lemma we prove thatx is outsideΩ(si).

Lemma 3.8. Letsi be a sample point outsideB2(x). Thend(x, si) > 2ε sif(si)/5.

Proof. To prove a contradiction assume thatd(x, si) ≤ 2ε sif(si)/5. By the definition

of the functionefs, efs(si) = sif(si) at each sample pointsi. Since the functionefs is

2-Lipschitz

sif(si) = efs(si)

≤ efs(x) + 4ε sif(si)/5.

sif(si) ≤ efs(x)

1− 4ε
5

. (3.18)

Therefore the distance fromx to si is given by

d(x, si) ≤
2ε

5
sif(si) ≤

4ε

5(1− 4ε
5
)
efs(x).

For values ofε ≤ 1/150, 4ε
5(1− 4ε

5
)
efs(x) < 3ε efs(x). This is clearly a contradiction because

for si outsideB2(x), d(x, si) ≥ r0 ≥ 3ε efs(x).

For sample pointsi define a density functionγi
k whose value insideΩ(x, si) is given

by dividing ofdk(x, si)e
−d2(x,si)/σ2(x) by the volume ofΩ(x, si). It is easy to show that the

volume ofΩ(x, si) is greater thanε3 sif3(si)/12 sincex is outsideΩ(x, si) by Lemma3.8.

Thereforeγi
k(x, y) ≤ 12dk(x, si)e

−d(x,si)
2/σ2(x)/ai. Fory 6∈ Ω(si), γi

k(x, y) = 0.

From the definition ofγi
k,
∫

IR3 γi
k(x, y)dy ≥ dk(x, y)Wi(x). The density functionγk

that accounts for the contributions of all sample points outsideB2(x) is given by

γk(x, y) =
∑
si

γi
k(x, y). (3.19)

In the following lemma we prove an upper bound on the value of the density functionsγk.
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Lemma 3.9. Let r0 is the radius ofB2(x). For a pointy 6∈ B2(x)

γk(x, y) ≤ 12dk(x, y)e−d2(x,y)/σ2(x),

and fory ∈ B2(x),

γk(x, y) ≤ 12rk
0e

−r2
0/σ2(x).

Proof. Let y be outsideB2(x) and letSy be the set of sample pointssi such thaty ∈

Ω(x, si). Assume that the setSy it not empty. By the definition ofΩ(x, si), each sample

point si ∈ Sy is farther fromx thany, and is contained in a small ball aroundy a shown in

Figure3.8(b). By Equation3.19the density function at pointy is given by

γk(x, y) ≤
∑
si∈Sy

12

ai

dk(x, si)e
−d2(x,si)/σ2(x). (3.20)

Sincesi is outsideB2(x), d(x, si) ≥ d(x, sn) + 3σ(x) > 3σ(x). For values ofr >

3σ(x), the functionrke−r2/σ2(x) (0 ≤ k ≤ 4) is a monotonically decreasing function ofr.

Thereforedk(x, si)e
−d2(x,si)/σ2(x) ≤ dk(x, y)e−d2(x,y)/σ2(x). Substituting into Equation3.20

we have

γk(x, y) ≤
∑
si∈Sy

12

ai

dk(x, y)e−d2(x,y)/σ2(x).

Consider sample pointssi, sj ∈ Sy as shown in Figure3.8(b). By the definition of the re-

gionsΩ(x, si) andΩ(x, sj), d(si, y) ≤ 2ε sif(si)/5, andd(sj, y) ≤ 2ε sif(sj)/5. Therefore
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the distance betweensi andsj can be written as

d(si, sj) ≤ d(si, y) + d(y, sj)

≤ 2

5
ε sif(si) +

2

5
ε sif(sj). (3.21)

By Lemma3.3 we havesif(sj) ≤ (1 + 2ε/5)sif(si)/(1 − 2ε/5). Substituting into Equa-

tion 3.21we have

d(si, sj) ≤
(

2

5
+

2(1 + 2ε/5)

5(1− 2ε/5)

)
ε sif(si) < ε sif(si).

Hence every sample pointsj ∈ Sy is inside a ball of radiusε sif(si) centered atsi. Recall

thatai is the number of sample points in a ball of radiusε sif(si) aroundsi. which means

ai ≥ |Sy| for eachsi ∈ Sy. The density functionγk(x, y) can be written as

γk(x, y) ≤ dk(x, y)e−d2(x,y)/σ2(x)
∑
si∈Sy

12

|Sy|
≤ 12dk(x, y)e−d2(x,y)/σ2(x). (3.22)

Consider pointy ∈ B2(x). The sample points that contribute to the density functionsλk

are all outsideB2(x), which means,d(x, si) ≥ r0 for all si ∈ Sy. The proof for sample

points outsideB2(x) can be easily adapted to show thatγk(x, y) ≤ 12rk
0e

−r2
0/σ2(x).

For a pointx, define radial density functionλk(x, r) as

λk(x, r) = 12rke−r2/σ2(x). (3.23)

From the result in Lemma3.9,

∫ ∞

0

4πr2λk(x, r)dr ≥
∫

IR3

γk(x, y)dy ≥
∑

si 6∈B2(x)

dk(x, si)

ai

e−d2(x,si)/σ2(x). (3.24)
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In the following lemma we prove thatWout(x) � W (x), and that the error in the cut

function is small.

Lemma 3.10. Let x be a point outside the3ε-neighborhood. LetWout(x) be the sum of

weights of sample points outsideB2(x), andEout(x) be the error in the cut function due

to sample points outsideB2(x). For a small constantc1 = 0.002, Wout(x)
W (x)

< c1, and

|Eout(x)| < c1ε.

Proof. Integrating the density functionλ0 over IR3 gives an upper bound onWout(x). By

the definition ofλ0 in Equation3.23we have

Wout(x) ≤
∫ r=∞

r=0

4πr2λ0(x, r)dr

=

∫ r=r0

r=0

4πr2λ0(x, r)dr +

∫ r=∞

r=r0

4πr2λ0(x, r)dr

≤ 48π

(
r3
0

3
e−r2

0/σ2(x) +

∫ ∞

r0

r2e−r2/σ2(x)dr

)
< 48π

(
r3
0

3
e−r2

0/σ2(x) +

∫ ∞

r0

r2e−r0r/σ2(x)dr

)
.

Substituting the lower bound onW (x) in Lemma3.7 into the above integral

Wout(x)

W (x)
≤ 480π

σ3(x)

(
r3
0

3
+ r0σ

2(x) +
2

r0

σ4(x) +
2

r3
0

σ6(x)

)
e−2(2r0−2σ(x))/σ(x).

From Equation3.7 d(x, sn) ≥ (3 − 19ε)ε efs(x)/(1 + ε2) > 2.5σ(x), which meansr0 >

5.5σ(x). For r0 > 5.5σ(x), the ratioWout(x)/W (x) is a decreasing function ofr that is

maximized whenr0 = 5.5σ(x).

Wout(x)

W (x)
≤ 480π

σ3(x)

(
(5.5σ(x))3

3
+ (5.5σ(x))σ2(x) +

2σ4(x)

5.5σ(x)
+

2σ6(x)

(5.5σ(x))3

)
e−18

< c1. (3.25)

To prove the desired upper bound on the error function, consider the contribution of sample
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points outsideB2(x) to the error functionEout(x). Recall thatξout(x) is the sum of the

error functions of sample points outsideB2(x). For sample pointsi, |Pi(x)| ≤ d(x, s),

andd(x, sn) ≤ d(x, si). Therefore the magnitude of the error function associated with

samplesi, |ζi(x)| ≤ 2d(x, si). The contribution of sample pointsi to ξout(x) is less than

2d(x, si)Wi(x). By Equation3.24, the integral of the radial density functionλ1 overIR3 is

an upper bound on|ξout(x)|.

|ξout(x)| ≤ 2

∫ r=∞

r=0

4πr2λ1(x, r)dr

≤ 96π

(
r3
0

3
+ r2

0σ
2(x) + 3σ4(x) +

6

r2
0

σ6(x) +
6

r4
0

σ8(x)

)
e−r2

0/σ2(x).

Substituting the lower bound onW (x) from Lemma3.7

|Eout(x)| =
|ξout(x)|
W (x)

≤ 960π

σ3(x)

(
r4
0

3
+ r2

0σ
2(x) + 3σ4(x) +

6

r2
0

σ6(x)

+
6

r4
0

σ8(x)

)
e−2(2r0−2σ(x))/σ(x). (3.26)

The error|Eout(x)| is maximized whenr0 = 5.5σ(x). Substitutingr0 = 5.5σ(x) into the

above inequality it is easy to verify that|Eout(x)| ≤ c1ε.

We now have all the tools required to prove the main geometric result for points outside

the3ε-neighborhood: the cut functionI(x) is non-zero outside the3ε-neighborhood.

Theorem 3.11.For each pointx outsideFout, I(x) > 0 and for each pointy insideFin,

I(y) < 0.

Proof. Consider pointx outsideFout. The value of the cut function at pointx is

I(x) = d(x, sn) + Ein(x) + Eout(x) > d(x, sn) + Ein(x)− c1ε, (3.27)
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by Lemma3.10. Lemma3.6gives us a bound onEin(x).

Ein(x) =
1

W (x)

∑
si∈B2(x)

|ζi(x)|Wi(x) (3.28)

≥ min{Pi(x)|si ∈ B2(x)}
∑

si∈B2(x) Wi(x)

W (x)

> min{−6ε d(x, sn)− ε2sif(q)− 8ε2efs(x) |si ∈ B2(x)}. (3.29)

Recall thatq is the point onF closest tosi. To prove an upper bound onε2 sif(q) in terms

of σ(x) consider the distance from pointx outside the3ε-neighborhood to pointq on the

surface.

d(x, q) ≥ 3ε(1− 6ε) sif(q), (3.30)

by Lemma3.5. Sinceq is at a distance less thanε2 sif(q) from sample pointsi insideB2(x),

d(x, q) ≤ d(x, si)+ ε2sif(q) ≤ d(x, sn)+3σ(x)+ ε2sif(q). Substituting into Equation3.30

we have

d(x, sn) + 3ε efs(x) + ε2sif(q) ≥ 3ε(1− 6ε)sif(q).

ε2 sif(q) ≤ ε

3− 19ε
(d(x, sn) + 3σ(x)).

Substituting the above upper bound onε2sif(q) into Equation3.29we have

Ein(x) > −
(

d(x, sn)

(
6ε +

ε

3− 19ε

)
− 3ε2

1− 19ε
− 8ε2

)
efs(x).

Substituting the lower bound ond(x, sn) from Equation3.7, and the above lower bound
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into Equation3.27

I(x) > d(x, sn)− |Ein(x)| − c1ε efs(x)

≥
(

3− 19ε

1 + ε2

(
1− 6ε− ε

3− 19ε

)
− 3ε

1− 19ε
− 8ε− c1

)
ε efs(x)

> 0,

for ε ≤ 1/150. A similar argument proves that the cut function is negative at any pointy

insideFin.

Theorem3.11proves that the cut functionI does not have any spurious zero crossings

far away from the sample points, and shows that the Hausdorff distance betweenF andU

converges to zero withε. In Section3.5.2we derive tighter bounds and show that the rate

of convergence of the Hausdorff distance betweenU andF is O(ε2).

3.5.2 The3ε-neighborhood

In this section we analyze the cut function inside the3ε-neighborhood. The main result is

that the reconstructed surfaceU is a manifold that converges to the sampled surface asε

goes to zero. We study the of the gradient of the cut function to prove thatU is a manifold.

The gradient analysis also shows that the normals of the reconstructed surface converge to

the normals ofF asε goes to zero.

For x inside the3ε-neighborhood, all sample points that have a large influence on the

value of the cut function atx have approximately the same feature size. These sample

points are also sampled uniformly. As a result, all the proofs in this section are an easy

extension of the proofs in Section2.4.2in Chapter2. The main difference is in proving that

samples far away fromx have little effect on the value of the cut function atx.

Inside the3ε-neighborhood we modify the error functionE(x) and define it to be the

difference between the cut function and the signed distance functionφ(x). Similarly, the
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pn

sn

sp

x

p
F

Figure 3.9: Point x is inside the 3ε-neighborhood and p is the point closest to x on
the surface F . The sample point closest to x is sn and pn is the point on F closest
to sn.

error functionζi associated with sample pointsi measures the difference betweenPi(x)

andφ(x).

E(x) = I(x)− φ(x) =
1

W (x)

∑
si∈S

(Pi(x)− φ(x))Wi(x) ≡ 1

W (x)

∑
si∈S

ζi(x)Wi(x).

Consider a pointx inside the3ε-neighborhood whose closest point on the surface isp. The

following lemma proves an upper bound and a lower bound onefs(x) in terms ofsif(p).

Lemma 3.12. Let x be a point inside the3ε-neighborhood whose closest point on the

surface isp. Then

(1− 16ε)sif(p) ≤ efs(x) ≤ (1 + 8ε)sif(p).

Proof. Let sn be the sample point closest tox and letpn be the surface point closest tosn

as shown in Figure3.9. By the sampling preconditionsefs(sn) ≤ (1 + ε2)sif(pn), and by

the definition of the functionefs, efs(x) ≤ efs(sn). Therefore

efs(x) ≤ efs(sn) ≤ (1 + ε2)sif(pn). (3.31)

By the sampling preconditions, there is a sample pointsp within a distanceε sif(p) from p.
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Sincesn is the sample point closest tox

d(x, sn) ≤ d(x, p) + ε sif(p) ≤ 4ε sif(p). (3.32)

The distance betweenp, pn is given by

d(p, pn) ≤ d(p, x) + d(x, sn) + d(sn, pn)

≤ 3ε sif(p) + 4ε sif(p) + ε2sif(pn)

≤ 7ε sif(p) + ε2sif(pn).

Applying Lemma3.3

1− 7ε

1 + ε2
sif(p) ≤ sif(pn) ≤ 1 + 7ε

1− ε2
sif(p). (3.33)

Substituting the upper bound onsif(pn) into Equation3.31we have

efs(x) ≤ (1 + 7ε)(1 + ε2)

1− ε2
sif(p) < (1 + 8ε)sif(p).

To prove the lower bound onefs(x) recall that the functionefs is 2-Lipschitz.

efs(x) ≥ efs(sn)− 2d(x, sn) ≥ efs(sn)− 8ε sif(p), (3.34)

by Equation3.32, and from the sampling requirements,efs(sn) ≥ (1− ε2)sif(pn). Substi-

tuting the lower bound onsif(pn) in Equation3.33into Equation3.34we have

efs(x) ≥ (1− ε2)(1− 7ε)

1 + ε2
− 8ε sif(p) > (1− 16ε)sif(p).
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Forx inside the3ε-neighborhood, we defineB2(x) as a ball of radius

r2
0 = ((d(x, sn) + σ(x))2 + 17σ2(x), (3.35)

centered atx. We modify the definition mainly to improve the upper bound onε in our

sampling preconditions. Consider pointp closest tox on the surface. From the sampling

requirements, there is always a sample point within a distance ofε sif(p) from p. Therefore,

r2
0 = ((d(x, sn) + σ(x))2 + 17σ2(x)

≤ (4ε sif(p) + ε efs(x))2 + 17ε2(x)efs2(x)

≤
(

4ε

1− 16ε
efs(x) + ε efs(x)

)2

+ 17ε2(x)efs2(x)

r0 < 6.83 ε efs(x), (3.36)

and,

r2
0 ≤ (4ε sif(p) + ε efs(x))2 + 17ε2(x)efs2(x)

≤ (4ε sif(p) + ε(1 + 8ε)sif(p))2 + 17ε2(x)(1 + 8ε)2sif2(p)

r0 < 6.67 ε sif(p). (3.37)

Forx inside3ε-neighborhood, all sample points insideB2(x) are near the pointp closest to

x on F . In the following lemma we prove that the sample points nearp are constrained to

lie between two planes close to the tangent plane ofp. This result is later used to show that

the error in the sample points nearp is small.

Lemma 3.13. For a point p ∈ F , let B be a ball of radiusα sif(p) centered atp for

α ≤ 1/4. The sample points insideB lie between two planesP1, P2 parallel to the tangent

plane atp. The distance fromp to P1, P2 is less thanD(α) =
(

(α+ε2)2

2(1−ε2)2
+ ε2(1+α)

1−ε2

)
sif(p).

Proof. Consider sample points ∈ B whose closest point onF is q. From the sampling
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Figure 3.10: The surface inside a ball B of radius r has to be outside the medial
balls Bin and Bout. As a result, all sample points in B are between two planes P1

and P2.

requirementsd(s, q) ≤ ε2sif(q). Without loss of generality assume thats is above the

tangent plane atp as shown in Figure3.10.

d(p, q) ≤ d(p, s) + d(s, q) ≤ α sif(p) + ε2 sif(q). (3.38)

Let c be the center of the medial ballBout, and let the angle betweencq andcp be2θ. As

point q is on the surface, it has to be on or outside the medial ballBout whose radius is

l ≥ lfs(p) ≥ sif(p). Hence the distance fromp to the plane passing throughq and parallel

to the tangent plane atP is at mostl(1− cos 2θ) = 2l sin2 θ ≤ d2(p,q)
2l

. The distance fromp

to the tangent planeP2 passing throughs is given by

D(α) ≤ d2(p, q)

2l
+ ε2 sif(q) ≤ (α sif(p) + ε2 sif(q))2

2sif(p)
+ ε2 sif(q), (3.39)

by Equation3.38.

The upper bound in Equation3.38 shows thatd(p, q) is small relative tosif(p) and

sif(q). Hence we can apply the result in Lemma3.3 to get an upper bound onsif(q),
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Figure 3.11: For x in the 3ε-neighborhood, the sample points inside balls B2(x)
are contained in a ball of radius 6ε sif(p) centered at p.

sif(q) ≤ 1+α
1−ε2

sif(p). Substituting into Equation3.39we have

D(α) ≤ 1

2sif(p)

(
α +

ε2(1 + α)

1− ε2

)2

sif2(p) +
ε2(1 + α)

1− ε2
sif(p)

=
(α + ε2)2

2(1− ε2)2
sif(p) +

ε2(1 + α)

1− ε2
sif(p)

The following lemma proves that the sample points insideB2(x) are contained in a

small ball centered atp as shown in Figure3.11.

Lemma 3.14.Letx be a point that is inside the3ε-neighborhood as shown in Figure3.11.

Letp be the closest point tox onF . All sample points insideB2(x) are contained in a ball

of radius6ε sif(p) centered atp.

Proof. Without loss of generality assume thatx is on or outsideF , and lets be a sample

point insideB2(x). Let t be the point at whichxp intersects the planeP1 that containss

and is parallel to the tangent plane atp.

d2(s, t) = d2(s, p)− d2(p, t) = d2(x, s)− d2(x, t). (3.40)
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As s is insideB2(x), d2(x, s) ≤ (d(x, sn) + σ(x))2 + 17σ2(x) by Equation3.35. The

distance fromx to its closest sample pointd(x, sn) ≤ φ(x) + ε sif(p) by the sampling

preconditions. Substituting into Equation3.40

d2(s, p)− d2(p, t) ≤ (|φ(x)|+ ε sif(p) + σ(x))2 + 17σ2(x)− (|φ(x)| − d(p, t))2

d2(s, p) ≤ 2|φ(x)|(ε sif(p) + σ(x))

+(ε sif(p) + σ(x))2 + 17ε2efs2(x) + 2|φ(x)|d(p, t). (3.41)

The expression on the right hand side is maximized when|φ(x)| is maximized. Sincex is

inside3ε-neighborhood|φ(x)| ≤ 3ε sif(p). The distance betweenx and any sample point

insideB2(x) is less than

d(x, p) + d(p, s) < 3ε sif(p) + 6.67ε sif(p) < 9.67ε sif(p),

by Equation3.37). Sample points is between two planes at a distanceD(9.67ε) from

p by Lemma3.13. Therefored(p, t) ≤ D(9.67ε). Substituting into Equation3.41, and

simplifying using the upper bound onσ(x) = ε efs(x) in Lemma3.12,

d2(s, p) < 6ε sif(p)(ε sif(p) + ε efs(x)) + (ε sif(p) + σ(x))2

+17σ2(x) + 6ε sif(p)D(9.67ε)

< 36ε2sif2(p).

In Lemma3.14we showed that all sample points insideB2(x) are near pointp closest

to x onF . In the following lemma we show that the point functions of these sample points

have a small error when evaluated atx.
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Lemma 3.15. Consider a pointx whose closest point on the surfaceF is p. Let~n be the

surface normal atp. For α ≤ 0.25 let B be a ball of radiusα sif(p) at p. For each sample

point si ∈ B, the angle between the normal atsi and~n is less thanΘ(α) = α+ε2

1−4α−4ε2
+ ε.

For each sample pointsi ∈ B, |ζi(x)| ≤ |φ(x)|Θ(α)2/2 + α sif(p)Θ(α) + D(α).

Proof. Let pi be the point closest tosi onF . Then,

d(p, pi) ≤ d(p, si) + d(si, pi) ≤ α efs(p) + ε2 sif(pi).

Applying the result in Lemma3.3d(p, pi) ≤ α+ε2

1−ε2
sif(p), andd(p, pi) ≤ α+ε2

1−α
sif(pi). Com-

bining these two resultsd(p, pi) ≤ α+ε2

1−α−ε2
min{sif(p), sif(pi)}. By the Lipschitz condition

on surface normals in Theorem3.2, the angle between the normal atpi and the normal atp

is less than
α+ε2

1−ε2−α

1− 3 α+ε2

1−ε2−α

=
α + ε2

1− 4α− 4ε2
. (3.42)

Let~ni be the normal associated withsi. From the sampling preconditions we know that the

angle between the normal ofpi and~ni is at mostε. By Equation3.42the angle between~ni

and~n is

Θ(α) <
α + ε2

1− 4α− 4ε2
+ ε.

We can therefore write the normal of sample pointsi as~ni = ~n + ~ρi, where‖~ρi‖ ≤ Θ(α).

The error function of sample pointsi when evaluated atx is given by

ζi(x) = φ(x)− Pi(x)

= φ(x)− (x− si) · ~ni

= φ(x)− (x− p) · ~ni − (p− si) · (~n + ~ρi).

Becausep is the closest point tox on the surface,(x − p) is parallel to~n and‖x − p‖ =
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|φ(x)|.

|φ(x)− (x− p) · ~ni| ≤ |φ(x)|(1− cos Θ(α))

= 2|φ(x)| sin2(Θ(α)/2)

≤ |φ(x)|Θ2(α)/2. (3.43)

Since sample pointsi is insideB,

|(p− si) · ~ρi| ≤ αlfs(p) Θ(α). (3.44)

From Lemma3.13, the distance from sample pointsi insideB to the tangent plane atp is

at mostD(α). Therefore

|(p− si) · ~n| ≤ D(α). (3.45)

Adding the upper bounds on the individual terms in Equations3.43, 3.44, and 3.45gives

the desired result.

In the following lemma we prove a result similar to Lemma3.6 for points inside the

3ε-neighborhood. We show that the error functions of all sample points insideB2(x) have

a small value atx.

Lemma 3.16.For a pointx inside the3ε-neighborhood,|Ein| ≤ 69ε2sif(p).

Proof. Combining the results in Lemma3.14and Lemma3.15gives the desired bound.

|Ein(x)| ≤
∑

si∈B2(x)

|ζi(x)|Wi(x)

W (x)
≤ max{|ζi(x)| | si ∈ B2(x)}.

By Lemma3.14, each sample pointsi ∈ B2(x) is inside a ball of radius6ε sif(p) aroundp,
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the point closest tox onF . By Lemma3.15we have

|ζi(x)| ≤ 3ε sif(p)Θ2(6ε)/2 + 6ε sif(p)Θ(6ε) + D(6ε) < 69ε2sif(p). (3.46)

In the following lemma we prove an upper bound on the contribution of samples outside

B2(x) to the error function. The proof is similar to the proof of Lemma2.6, and is given in

the appendix.

Lemma 3.17.For a pointx inside the3ε-neighborhood,|Eout(x)| < 3ε2sif(p).

Proof. Given in the appendix.

In the following three theorems we prove that the reconstructed surface is inside the

72ε2-neighborhood of the sampled surfaceF .

Theorem 3.18.For a pointx inside the3ε-neighborhood whose closest point onF is p,

|E(x)| < 72ε2sif(p).

Proof. Adding the bounds on|Ein(x)| and|Eout(x)| in Lemma3.16and Lemma3.17gives

the desired result.

|E(x)| ≤ |Ein(x)|+ |Eout(x)| < 69ε2sif(p) + 3ε2sif(p) = 72ε2sif(p).

Theorem 3.19. For a point x ∈ U , let p be the closest point inF . Thend(x, p) <

72ε2sif(p).

Proof. For x ∈ U I(x) = 0. Hencex is inside the3ε-neighborhood by Theorem2.7.x

Applying the result in Theorem3.18we have|E(x)| < 72ε2sif(p). Therefored(x, p) =

|φ(x)| ≤ |I(x)|+ |E(x)| < 72ε2sif(p).
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Theorem 3.20. For a point p ∈ F , let q be the closest point inU . Then,d(p, q) ≤

72ε2sif(p).

Proof. If I(p) = 0 we are done; assume without loss of generality thatI(p) < 0. Let t be

the point on the outside normal ofp at a distance of72ε2sif(p) from p. From Theorem3.18

we have

|I(t)| ≥ |φ(t)| − |E(x)| > d(p, t)− 72ε2sif(p) = 0.

As the cut functionI is continuous, there is a points onpt at whichI(s) = 0 andd(p, s) <

72ε2sif(p). Sinceq is the point closest top onU , d(p, q) ≤ d(p, s) < 72ε2sif(p).

The above two results prove that the distance betweenU andF is small. In the remain-

der of this section, we analyze the gradient of the cut function to show that the normals of

the reconstructed surfaceU are close to the normals of the sampled surfaceF . The gradient

of the cut function∇I(x) can be written as

∇I(x) = ∇φ(x) +∇E(x).

Let p be the point closest tox on F , and let~n be the surface normal atp. The gradient of

the signed distance function atx is given by∇φ(x) = ~n. The expression for the gradient

of the error function can be simplified to

∇E(x) =
∑
si∈S

(~n− ~ni)Wi(x)

W (x)
+
∑

si,sj∈S

2Wi(x)Wj(x)ζi(x)(si − sj)

σ2(x)W 2(x)

+
∑

si,sj∈S

2Wi(x)Wj(x)ζi(x)(‖x− sj‖2 − ‖x− si‖2)∇efs(x)

σ2(x)W 2(x)efs(x)
(3.47)

We separate the contributions of sample points inside and outsideB2(x) to the gradient of
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the error function as

∇Ein(x) =
∑

si∈B2(x)

(~n− ~ni)Wi(x)

W (x)
+

∑
si,sj∈B2(x)

2Wi(x)Wj(x)ζi(x)(si − sj)

σ2(x)W 2(x)

+
∑

si,sj∈B2(x)

2Wi(x)Wj(x)ζi(x)(‖x− sj‖2 − ‖x− si‖2)∇efs(x)

σ2(x)W 2(x)efs(x)
, (3.48)

and,

∇Eout(x) =
∑

si 6∈B2(x)

(~n− ~ni)Wi(x)

W (x)
+

∑
si 6∈B2(x)∨sj 6∈B2(x)

2Wi(x)Wj(x)ζi(x)(si − sj)

σ2(x)W 2(x)

+
∑

si 6∈B2(x)∨sj 6∈B2(x)

2Wi(x)Wj(x)ζi(x)(‖x− sj‖2 − ‖x− si‖2)∇efs(x)

σ2(x)W 2(x)efs(x)
.(3.49)

In the following lemma we prove that∇Ein(x) has a small norm.

Lemma 3.21. Let x be a point in the3ε-neighborhood ofF and letp be the point onF

closest tox. Let ~n be the normal ofp. Then‖∇Ein(x)‖ < 2096ε, and |~n · ∇Ein(x)| <

19250ε2.

Proof. By Equation3.48

‖∇Ein(x)‖ ≤ max
si∈B2(x)

{‖~n− ~ni‖}

+
2

σ2(x)
max

si,sj∈B2(x)
{|ζi(x)|‖si − sj‖}

+
2‖∇efs(x)‖
σ2(x)efs(x)

max
si,sj∈B2(x)

{|ζi(x)|(‖x− sj‖2 − ‖x− si‖2)}. (3.50)

Consider sample pointsi inside B2(x). By Lemma3.14 d(si, p) ≤ 6ε sif(p), and by

Lemma3.15the angle between~n, and the normal~ni of si is less thanΘ(6ε). Therefore

‖~n− ~ni‖ ≤ Θ(6ε). (3.51)
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Consider the error functionζi associated with sample pointsi. By Equation3.46|ζi(x)| <

69ε2 sif(p). Substituting the upper bound onsif(p) Lemma3.12we have

|ζi(x)| < 69ε2 sif(p) <
69ε2

(1− 16ε)
efs(x) < 77ε2efs(x),

Since sample points are inside a ballB2(x) whose radius isr0, ‖si − sj‖ ≤ 2r0, and

(‖x− sj‖2 − ‖x− si‖2) ≤ r2
0. By Equation3.36r0 ≤ 6.83ε efs(x). Since the functionsif

is 2-Lipschitz,‖∇efs(x)‖ ≤ 2. Substituting into Equation3.50we have

‖∇Ein(x)‖ < 2096ε.

Consider∇Ein(x) projected onto the normal vector~n. By Equation3.48we have

|~n · ∇Ein(x)| ≤ max
si∈B2(x)

{|~n · (~n− ~ni)|}

+
2

σ2(x)
max

si,sj∈B2(x)
{|ζi(x)|~n · (si − sj)}

2|~n · ∇efs(x)|
σ2(x)efs(x)

max
si,sj∈B2(x)

{ζi(x)(‖x− sj‖2 − ‖x− si‖2)}. (3.52)

Since the angle between~n and~ni is less thanΘ(6ε),

~n · (~n− ~ni) = 1− cos Θ(6ε) = sin2(Θ(6ε)) ≤ Θ2(6ε)/2.

The distance from each sample pointsi insideB2(x) to the tangent plane atp is at most

D(6ε) by From Lemma3.13. Hence|~n · (si − sj)| ≤ 2D(6ε). Substituting these upper

bounds into Equation3.52we have

~n · ∇Ein(x) < 19250ε2.
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In the following lemma we show that samples outsideB2(x) have little effect on∇I(x)

by proving that∇Eout(x) has a small norm.

Lemma 3.22. For each pointx inside the3ε-neighborhood,‖∇Eout(x)‖ < 137ε, and

|~n · ∇Eout(x)| < 2958ε2.

Proof. Given in the appendix.

In the following lemma we prove that the gradient of the cut function is non-zero inside

the3ε-neighborhood. This result is later used in Section3.6to prove thatU is topologically

equivalent toF .

Theorem 3.23.For a pointx inside the3ε-neighborhood, letp be the point closest tox on

the surfaceF . Let~n be the surface normal ofp. Then,~n · ∇I(x) > 0.

Proof. By the definition of the error function

~n · ∇I(x) = ~n · ∇φ(x) + ~n · ∇E(x) ≥ 1− |~n · ∇Ein(x)| − |~n · ∇Eout(x)|. (3.53)

By Lemma3.21 we have|~n · ∇Ein(x)| < 18752ε2, and by Lemma3.22 we have|~n ·

∇Eout(x)| < 2620ε2. Substituting into Equation3.53

~n · ∇I(x) > 1− 19250ε2 − 2958ε2 = 1− 22208ε2 > 0,

for ε ≤ 1/150.

The result in Theorem3.23also proves that the gradient can never be zero inside the

3ε-neighborhood. The zero set ofI is inside the3ε-neighborhood ofF by Theorem2.7.

Hence by the implicit function theorem[17], zero is aregularvalue ofI and the zero setU

is a compact, two-dimensional manifold.
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The gradient of the cut function at a pointu ∈ U determines the normal of the recon-

structed surface atu, ~nu = ∇I(u)
‖∇I(u)‖ . In the following lemma we prove that~nu converges to

~n with ε.

Theorem 3.24.Let u be a point on the reconstructed surfaceU whose closest point onF

is p. Let~nu be the normal ofU at pointu and let~n be the normal ofF at pointp. An upper

bound on the angleθ between~nu and~n is given by

cos θ >
1− 22208ε2

1 + 2233ε
.

Proof. The angle between~nu and~n is given by

cos θ =
~n · ∇I(u)

‖∇I(u)‖
. (3.54)

From Theorem3.23,

~n · ∇I(u) ≥ 1− 22208ε2.

Consider the following upper bound for‖∇I(x)‖,

‖∇I(u)‖ ≤ ‖∇φ(u)‖+ ‖∇E(u)‖ ≤ 1 + ‖∇Ein(x)‖+ ‖∇Eout(u)‖.

From Lemma3.21 ‖∇Ein(x)‖ < 2096ε, and from Lemma3.22 ‖∇Eout(x)‖ < 137ε.

Substituting into Equation3.54

cos θ >
1− 22208ε2

1 + 2233ε
.

90



Chapter 3. Provably Better Moving Least Squares

�������
�

�������
�

���
�

�������
�

F

F

F

n

p
u

out

in

p

p

i

o

l

Figure 3.12: Points r, t are the closest points to p on the offset surfaces. The line
segment pipo intersects the zero set U at a unique point u.

3.6 Topology of the Reconstructed Surface

We now use the geometric results in Section3.5 to show that the reconstructed surfaceU

has the same topology as the sampled surfaceF . The proof of correct topology is identical

to the proof in Section2.5.

Definition: Let Γ : IR3 → F map each pointq ∈ IR3 to the closest point ofF .

Theorem 3.25.The restriction ofΓ to U is a homeomorphism fromU to F .

Proof. The discontinuities ofΓ are the points on the medial axis ofF . AsU is constrained

to be inside the3ε-neighborhood ofF , the restriction ofΓ to U is continuous.

Now we show thatΓ is one-to-one. Letp be a point onF and let~n be the normal atp

as shown in Figure3.12. Without any loss of generality, assumesif(p) = 1. Consider the

line segmentl parallel to~n that intersectsFout andFin at po andpi respectively. At each

point y ∈ popi, ∇I(y) · ~n > 0 from Theorem3.23. So the functionI(x) is monotonically

decreasing fromr to t and there is a unique pointu onpopi whereI(u) = 0. Assume there

is another pointv ∈ U for which Γ(v) = x. The pointv has to be outside the segment

popi and the distance fromv to its closest point onF is greater than3ε. This contradicts

Theorem3.19.

Finally we need to show thatΓ is onto. AsΓ maps closed components ofU onto closed
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components ofF in a continuous manner,Γ(U) should consist of a set of closed connected

components. Consider the pointp in Figure3.12. Assume thatq = Γ(u) is not in the

same component ofF asp. Let Bu be the ball of radius3ε centered atu that intersects

two components ofF , one containing pointp and one containing pointq. Boissonnat

and Cazals[21] (Proposition 12) show that any ball whose intersection withF is not a

topological disc contains a point of the medial axis ofF . Since pointp is inside the ballBu

that contains a point of the medial axis,sif(p) ≤ 6ε. Recall that our sampling conditions

requireε ≤ 1/150. Hence,sif(p) ≤ 6ε ≤ 1/25. This violates our assumption thatsif(p) =

1.

We will now prove a stronger topological result which shows that the reconstructed

surfaceU can be continuously deformed into the sampled surfaceF without any change in

topology. Recall the definitions of isotopy and ambient isotopy from Chapter2.

Definition: An isotopy between two compact orientable surfaces inIR3 is a continuous

mapΨ : U × [0, 1] → IR3 such thatΨ(., 0) is the identity ofU , Ψ(., 1) = F , and for each

t ∈ [0, 1], Ψ(., t) is homeomorphic toU .

Definition: An ambient isotopy between two compact orientable surfacesU andF is a

continuous mapΨ : IR3× [0, 1] → IR3, such thatΨ(., 0) is the identity ofIR3, Ψ(U, 1) = F ,

and for eacht ∈ [0, 1], Ψ(., t) is a homeomorphism ofIR3.

Theorem 3.26.The zero surfaceU is isotopic to the sampled surfaceF .

Proof. We will define an ambient isotopyΨ whose restriction toU will be an isotopy toF .

Outside the3ε-neighborhood, the ambient isotopy is the identityΨ(x, t) = x for t ∈ [0, 1].

From the proof of Theorem3.25we know that a line segmentl normal to a pointp ∈ F

intersectsU only at one pointu inside the3ε-neighborhood. Letpi andpo be the end points
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of l on the inside and outside3ε-offset surfaces respectively as shown in Figure3.12. We

define the ambient isotopy to beΨ(u, t) = tp + (1− t)u. The line segmentpiu is linearly

mapped topiΨ(u, t). Similarly, the line segmentupo is mapped toΨ(u, t)po.

Appendix

Recall that for points inside the3ε-neighborhood the radiusr0 of the ballB2(x) is given by

r2
0 = (d(x, sn) + ε efs(x))2 + 17ε2efs2(x).

With this new definition ofB2(x), it is easy to prove that Lemma3.8is true forx inside the

3ε-neighborhood. Therefore the density functions defined in Lemma3.9 are valid inside

the3ε-neighborhood.

Observation 1. Let x be a point inside the3ε-neighborhood, and letB(x) be a ball of

radius rmin ≥ r0 aroundx. Let λk (0 ≤ k ≤ 4) be radial density functions given by

λk(x, r) = 12rk
mine

−r2
min/σ2(x) for r ≤ rmin, andλk(x, r) = 12rke−r2/σ2(x) for r ≥ rmin.

Then ∫ ∞

0

4πr2λk(x, r) ≥
∑
si 6∈B

dk(x, si)

ai

e−d2(x,si)/σ2(x).

Let αmid = 0.06 be a small constant. Sinceε ≤ 1/150, αmid ≥ 9ε. Consider a ball

Bmid(x) of radiusαmidefs(x) centered at pointx as shown in Figure3.13. All sample points

insideBmid(x) are nearp, the point closest tox on F . This definition ofBmid(x) is used

in the following two results in which we prove that samples outsideB2(x) have little effect

on the cut function forx inside the3ε-neighborhood.

Proof of Lemma 3.17. Recall thatξout(x) that is the sum of the error in all sample points

outsideB2(x). Sinceαmid ≥ 9ε, Bmid is clearly larger thanB2(x) as shown in Fig-
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Figure 3.13: The normal of each sample point s ∈ Bmid is close to the surface
normal at p. As a result, the point function of s when evaluated at x is close to φ(x).

ure 3.13. Let ξ1(x) and ξ2(x) be the contribution of sample points insideBmid(x) and

outsideBmid(x) to ξout(x) respectively. We compute the desired upper bound by integrat-

ing over density functions defined in Observation1.

Consider a sample pointsi in the spherical shell betweenB2(x) andBmid(x) at a dis-

tanceα efs(x) ≤ αmid efs(x) from x. By the upper bound onefs(x) in Lemma3.12

d(p, si) ≤ α efs(x) + 3ε sif(p) < (α′ + 3ε)sif(p),

whereα′ = (1+8ε)α/(1−ε2). Sincesi is outsideB2(x), α is clearly larger than4ε. Recall

that we defined a functionΘ in Lemma3.15such thatΘ(α) is an upper bound on the angle

between the normal ofp and the approximate normal of a sample point that is at a distance

of α sif(p) from p. We can simplify the expression for the angle between the normal ofsi

and the normal~n of p to

Θ(α′ + 3ε) =
α′ + 3ε + ε2

1− 4α′ − 12ε− 4ε2
<

α′ + 3α/4 + (1/150)α/4

1− 4α′mid − 12(1/150)− 5(1/150)2
≈ 2.85α.

(3.55)

Recall that in Lemma3.13we proved that the distance fromsi to the tangent plane atp is

given byD(α′ + 3ε) ≈ 1.62α2sif(p).

By the upper bound on the error function associated withsi derived in Lemma3.15we
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have

ζi(x) ≤ 3εΘ2(α′ + 3ε)/2 + Θ(α′ + 3ε)(α′ + 3ε)sif(p) + D(α′ + 3ε)

< 7α2sif(p)

< 8α2efs(x). (3.56)

Consider sample pointsi insideBmid(x) at a distanceα efs(x) from x. The contribution of

sample pointsi to the functionξ1(x) is given by

8α2efs(x)Wi(x) = 8d2(x, si)Wi(x)/efs(x).

The integral of the density functionλ2 defined in Observation1 is useful in proving an

upper bound for such a function.

|ξ1(x)| <
8

efs(x)

∫ ∞

r=0

4πr2λ2(x, r)dr

<
384π

efs(x)
(r5

0e
−r2

0/σ2(x) +

∫ ∞

r=r0

r4e−r0r/σ2(x)dr)

≤ 384π

efs(x)

(
r5
0

3
+ r3

0σ
2(x) + 4r0σ

4(x) +
12σ6(x)

r0

+
24σ8(x)

r3
0

+ 24σ10(x)r5
0

)
e−r2

0/σ2(x).

For x inside the3ε-neighborhoodr0 ≤ 6.83εefs(x) by Equation3.36. Substituting the

lower bound onW (x) from Lemma3.7

|E1(x)| ≤ 3840πe−17

efs(x)σ3(x)

(
r5
0

3
+ r3

0σ
2(x) + 4r0σ

4(x) +
12σ6(x)

r0

+
24σ8(x)

r3
0

+
24σ10(x)

r5
0

)
< 2.46ε2efs(x). (3.57)
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For sample points outsideBmid(x), we revert to the bound obtained in Lemma3.10 on

the error function associated with each sample. Forsi 6∈ Bmid(x) at a distancer from

x, ζi(x) ≤ 2r. The expression for|ξ2(x)| is the same as the expression for|ξout(x)| in

the proof of Lemma3.10except that the sample points are outsidermid instead ofr0. By

Equation3.26we have

|E2(x)| ≤ 960π

efs(x)σ3(x)

(
r4
mid

3
+ r2

midσ
2(x) + 3σ4(x) +

6

r2
mid

σ6(x)

+
6

r4
mid

σ8(x))e−(r2
mid−(d(x,sn)+σ(x))2)/σ2(x)

)
. (3.58)

When ε = 1/150, |E2(x)| ≤ 10−15ε2efs(x), and because of the exponential term in its

expression,|E2(x)| remains less than10−14ε2efs(x) for ε < 1/150. By Equation3.57and

Equation3.58we have

Eout(x) ≤ |E1(x)|+ |E2(x)| < 2.42ε2efs(p) < 3ε2sif(p),

by Lemma3.12.

Proof of Lemma 3.22. Recall thatx is a point inside the3ε-neighborhood, andp is the

point closest tox on F . Assume without loss of generality that the indices of sample

points are in the increasing order of distance tox. Let ~n be the surface normal atp. The

contribution of sample points outsideB2(x) to∇E(x) is given by

∇Eout(x) =
∑

si 6∈B2(x)

(~n− ~ni)Wi(x)

W (x)
(3.59)

+
∑

si 6∈B2(x),i>j

2Wi(x)Wj(x)

σ2(x)W 2(x)
((ζi(x)− ζj(x)) (si − sj)

+
1

efs(x)
(ζi(x)− ζj(x)) (‖x− sj‖2 − ‖x− si‖2.∇efs(x).) (3.60)
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Let ∇E1(x) and∇E2(x) be the contributions of sample points inside and outside

Bmid(x) to the gradient of the error function.

Consider a sample pointsi insideBmid(x) at a distanceri = α efs(x) from x. From

Equation3.55, ‖n − ni‖ ≈ 2.84α < 3α, and from Equation3.56, |ζi(x)|, |ζj(x)| ≤

8α2efs(x). So the expression for‖∇E1(x)‖ can be simplified to

‖∇E1(x)‖ ≤
∑

si∈Bmid(x)−B2(x)

3riWi(x)

efs(x)W (x)
+

∑
si∈Bmid(x)−B2(x),i>j

2Wi(x)Wj(x)

σ2(x)W 2(x)

(
(16r2

i )(2ri)

efs(x)
+

(16r2
i )(r

2
i )‖∇efs(x)|

sif2(x)

)

≤ 1

efs(x)W (x)

∑
si∈Bmid(x)−B2(x)

(
3ri +

64r3
i

σ2(x)
+

64r4
i

σ2(x)efs(x)

)
Wi(x).

The density functionsλk are useful in proving an upper bound of the above summation.

‖∇E1(x)‖ ≤ 1

efs(x)W (x)

(
48π

(
1

3

(
3r4

0 +
64r6

0

σ2(x)
+

64r7
0

σ2(x)efs(x)

)
e−r2

0/σ2(x)

+

∫ ∞

r0

3r3 +
64r5

σ2(x)
+

64r6

σ2(x)efs(x)
e−r0r/σ2(x)dr

))
.

Evaluating the integral and substituting the lower bound onW (x) from Lemma3.7, we

have

‖∇E1(x)‖ ≈ 131.5ε.

To compute an upper bound on‖∇E2(x)‖ note that‖~n − ~ni‖ ≤ 2, and |ζi|, |ζj(x)| ≤

2‖x− si‖ outsideB2(x). So the expression for‖E2(x)‖ can be simplified to

‖∇E2(x)‖ ≤ 1

W (x)efs(x)

∫ ∞

rmid

(
2 +

16r2

ε2
+

16r3

ε2

)
dr.
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Simplifying the integral, it is easy to show

‖∇E2(x)‖ < 10−7ε

whenε ≤ 1/150. Adding the upper bounds on‖E1(x)‖ and‖E2(x)‖, ‖∇E(x)‖ ≤ 132ε.

Consider the gradient of the error function projected onto the normal ofp. Let si be

a sample point insideBmid(x) at a distanceri = α efs(x) from x. From Equation3.55,

~n · (~n− ~ni) ≤ Θ2(α′ + 3ε)/2 < 5α2, and~n · (si − sj) ≤ 2D(α′ + 3ε) ≤ 4α2efs(x). So the

error due to all sample points insideBmid(x) is given by

|~n · E1(x)| =
1

sif2(x)W (x)

(
48π

(
1

3

(
5r5

0 +
128r7

0

σ2(x)
+

64r7
0

σ2(x)

)
e−r2

0/σ2(x)

+

∫ ∞

r0

5r4 +
128r6

σ2(x)
+

64r6

σ2(x)
e−r0r/σ2(x)dr

))
.

Evaluating the integral and substituting the lower bound onW (x) from Lemma3.7 we

have

|~n · ∇E1(x)| ≤ 2619.9ε2.

Since‖n‖ ≤ 1, |~n · ∇E2(x)| ≤ ‖∇E2(x)‖ < 10−5ε2 for ε ≤ 1/150. Adding the upper

bounds on|~n · ∇E1(x)| and|~n · ∇E2(x)|, we have|~n · ∇E(x)| ≤ 2620ε.
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Chapter 4

An Implementation of Moving Least

Squares

In this chapter we move from theory to practice and describe our implementation of the

MLS algorithm analyzed in Chapter2. The input to the MLS implementation is a set of

sample points obtained from a scanning device or from passive techniques. We assume

that the range images have been aligned into a single coordinate system by the automatic

registration algorithm described in Chapter6.

Sample points in the range images might not exactly lie on the sampled surface after

registration. Instead, they typically form a thick cloud of points near the sampled surface.

Figure4.1 shows a two-dimensional point cloud with added noise, and the zero set of the

cut function defined by the MLS algorithm. Notice that even when the point cloud is noisy,

the reconstructed implicit surface is smooth. However, the cut function Let might contain

spurious zero crossings due to outliers and areas of undersampling in the range images.

An isosurface triangulation algorithm such as Marching Cubes[63] cannot reconstruct the

right surface from cut functions containing zero crossings far from the sampled surface.

Our approach is to project the sample points onto the zero set of the cut function, and
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Figure 4.1: (a) A two-dimensional data set with added noise. (b) Cut function
defined by the uniform MLS algorithm. (c) Zero set of the cut function.

reconstruct a surface mesh from the projected sample points using the Eigencrust algorithm

described in Chapter5. The Eigencrust algorithm is robust against outliers and undersam-

pling. Projecting the sample points onto the zero set of the cut function reduces scanner

measurement noise, and errors introduced due to poor alignment of scans.

4.1 Implementation

Let S be the set of sample points in the aligned range images and for each sample point

si ∈ S let ~ni be the approximate outside normal of the sampled surface atsi. We smooth

the noisy point cloud by projecting each sample point onto the zero setF of the cut function

I defined by all the sample points inS. In our implementation we use the uniform MLS

algorithm analyzed in Chapter2. Recall the definition of the uniform-MLS surface given

by Equation2.1.

I(x) =
∑
si∈S

Wi(x)∑
sj∈S Wj(x)

((x− si) · ~ni) .
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The weight functions are Gaussian functions,Wi(x) = e−‖x−si‖2/ε2/ai, with a normaliza-

tion factorai which is set to the number of sample points inside a ball of radiusε centered

atsi, includingsi itself.

4.1.1 Estimating Normals and Parameters

Range scanners sample points on a square grid (as viewed from the scanner), which forms

a natural triangulation. We treat the triangulation as a piecewise linear surface embedded in

three-dimensional space. This triangulation might contain long triangles where the scanner

crosses a silhouette of the object being scanned as shown in Figure4.2(a). We compute a

grid spacing` equal to the median length of the diagonal edges of the triangulated grid,

and we discard any triangle whose greatest edge length exceeds4`. Figure4.2(b) shows

the triangulation of after triangles with long edges are removed.

The normal at each sample points ∈ S is given by an average of the normals of all faces

incident ons. These normals are oriented along the outside direction using the location of

range scanner. We discard sample points that have no incident triangles. We set theε

parameter of the Gaussian weight functions to4` so that the Gaussian functions associated

with adjacent sample points in the range images overlap significantly.

4.1.2 Projection

A simple Newton iteration procedure projects the sample points onto the zero set of the cut

function. Letpi be the position of the sample points after ith iteration. At each iteration

we compute the value and the gradient of the cut function atpi, and projectpi to the point

pi+1 given by

pi+1 = pi −
I(pi)

‖∇I(x)‖
∇I(x).
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(a) (b)
Figure 4.2: (a)Triangulation of a range image in the Stanford Happy Buddha data
set. (b) The triangulation after removing triangles with long edges.
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The iterative procedure stops when the absolute value of the cut function at the projected

point is below a threshold. If the iterative procedure does not converge after a user specified

number of iterations (10 in our implementation) we leave the sample point to its original

position.

Let B(x) be a ball of radiusd(x, sn) + 5ε centered atx, wheresn is the nearest sample

point to x. In Lemma2.6 in Chapter2 we proved that sample points outsideB(x) have

little effect on the value of the cut function atx. Let Win(x) be the sum of the weights of

sample points insideB(x). We ignore sample points outsideB(x) when evaluating the cut

function. An approximatioñI(x) to the cut function is given by

Ĩ(x) =

∑
si∈B(x) Pi(x)Wi(x)

Win(x)
.

The projection step also requires the gradient of the cut function. In our analysis of the cut

function given in Chapter2, we wrote the expression for∇I(x) as a double summation

over the sample points (Equation2.4.2). We can rewrite the expression for the gradient so

that the double summation is not required,

∇I(x) =

∑
si∈S(~ni − Pi(x)(x− si)/ε

2)

W (x)
+ I(x)

∑
si∈S(x− si)/ε

2

W (x)
.

Just as with the approximation of the cut function value, we approximate the gradient by

ignoring sample points outsideB(x):

∇I(x) ≈
∑

si∈B(x)(~ni − Pi(x)(x− si)/ε
2)

Win(x)
+ Ĩ(x)

∑
si∈B(x)(x− si)/ε

2

Win(x)
.

Since the number of sample points insideB(x) is much smaller than the number of sample

points inS for most point clouds, the approximate gradient is much faster to compute than

the exact gradient. We use kd-trees[43] to efficiently find the sample point closest tox and

the set of sample points insideB(x).
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Chapter 4. An Implementation of Moving Least Squares

(a) (b)

Figure 4.3: (a) The cut function defined by the MLS algorithm for a point cloud
with undersampling. (b) Adding outliers to the point cloud introduces a zero set far
away from the real sample points.

4.1.3 Limitations

Although the MLS algorithm effectively removes scanner and registration noise, it can-

not handle undersampling and outliers in the input point cloud. Figure4.3 shows a two-

dimensional example. In Figure4.3(a), removing some of the sample points causes the

zero set of the cut function to appear far away from the sample points. This is a problem

for point-based modeling algorithms that rely on projecting random points onto the zero

set of the cut function. Similarly, the MLS algorithm cannot differentiate between sample

points that lie on the true surface and outliers that are far away from the sampled surface as

it relies on purely local information. Outliers introduce spurious zero crossings into the cut

function as shown in Figure4.3(b).

We deal with undersampling and outliers when we mesh the zero set using theEigen-

crustalgorithm, which we describe in Chapter5. While projecting sample points, we have

to be careful not to move sample points that are near the true surface onto zero set compo-

nents far away from the surface. We move the sample point to its projection on the zero set

only if the projected point is less than a given threshold away (10 ε in our implementation)

from its original position.
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Model Points Iterations Average number Time
of iterations (Seconds)

Bunny 362272 748563 2.07 42.34
Dragon 1769513 4850420 2.74 435.34

Armadillo 1706919 2735165 1.60 234.12
Buddha 2643108 6626532 2.50 559.164
Angel 9449840 35106984 3.71 2808.95

Table 4.1: Running times for projecting sample points on to the zero set of the
MLS cut function.

4.2 Results

Figure4.4(a) shows the Eigencrust reconstruction of the bunny model with and without

MLS smoothing. Notice that the surface reconstructed without MLS smoothing is bumpy

because of noise and poor alignment of scans. After MLS smoothing the reconstructed

surface is smooth. However, MLS smoothing does not remove outliers in the input, as

Figure4.4(b) shows.

Table4.1shows the running time of MLS smoothing on a few data sets. The projection

procedure converges very quickly, typically in 2–4 steps. The quick convergence confirms

our gradient results in Chapter2, where we showed that the gradient of the cut function

approximates the sample point normals inside a small neighborhood of the sampled surface.

The Eigencrust reconstructions of all the point clouds in Table4.1 are given at the end of

Chapter5.

4.3 Discussion

Our implementation of the uniform MLS algorithm is effective for building a smooth con-

sensus surface when the range data is obtained from a single range scanner. In cases when

data from multiple sources is being combined, the adaptive MLS algorithm is necessary.

We estimate theε parameter from the sample point spacing in the input point cloud.
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(b)

(a)

Figure 4.4: (a) Eigencrust reconstructions of the bunny model without (left) and
with (right) MLS smoothing. (b) Sample points in the dragon model after MLS
smoothing.
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This method only works when the magnitude of the noise in the point cloud is comparable

to the sample point spacing. When noise in the point cloud is much larger than the sample

point spacing, the width of the Gaussian weight functions should be determined by the

noise characteristics of the scanner. Noise in the sample points can either be estimated

from confidence values associated with sample points by some range scanners, or from the

error in the alignment of scans during fine registration.
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Eigencrust

5.1 Introduction

There are two kinds of errors that cannot be handled by the MLS algorithm: outliers, which

are spurious points far from the true surface, and, unsampled regions that are not accessible

to scanning. A data set that suffers from both of these errors is shown in Figure5.1. When

these problems are severe, data arise for which no algorithm can construct an accurate,

consistent, watertight model of an object’s surface solely by examining local regions of a

point cloud independently. A successful algorithm must take a global view. We propose

a Delaunay-based reconstruction algorithm to handle outliers and undersampled regions.

The general technique we use to produce a surface from a point cloud is well known:

compute the Delaunay tetrahedralization of the points, then label each tetrahedroninside

or outside. (Recent advances in Delaunay software make it possible to tetrahedralize sets

of tens of millions of points.) The output is a triangulated surface, composed of every

triangular face where aninside tetrahedron meets anoutside tetrahedron. This procedure

guarantees that the output surface iswatertight—it bounds a volume, and there is no route

from the inside to the outside of the volume that does not pass through the surface.
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Figure 5.1: A watertight manifold surface triangulation reconstructed by our algo-
rithm; a photograph of the source object; the point cloud input to the algorithm, with
4,000 artificial random outliers; and the sorted components of the two eigenvectors
used for the reconstruction. 2,008,414 points; 12,926,063 tetrahedra; 3,605,096
output triangles; genus 14; 437 minutes reconstruction time, including 13.5 minutes
to tetrahedralize the point cloud, and 157 minutes and 265 minutes to compute the
first and second eigenvectors, respectively.
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Our innovation is to introduce the techniques of spectral partitioning and normalized

cuts into surface reconstruction. These techniques are used heavily for tasks such as image

segmentation and parallel sparse matrix arithmetic, where partitioning decisions based on

a global view of an image or a matrix can outperform local optimization algorithms. Al-

though the global optimization step makes our algorithm slower than some competitors, it

reconstructs many models that other methods cannot.

We create a graph that represents the tetrahedra. A spectral partitioner slices it into two

subgraphs, aninside subgraph and anoutside subgraph. Because the spectral partitioner

has a global view of the point set, it is effective at identifying the triangular faces that are

most likely to lie at the interface between an object and the space around it. Although the

global optimization step makes our algorithm slower than some competitors, it reconstructs

many models that other methods cannot.

5.2 Related work

5.2.1 Delaunay-based surface reconstruction

There has been much work on reconstructing surfaces from point clouds using the Delaunay

tetrahedralization of the sample points. The idea of labeling each Delaunay tetrahedron

inside or outside, then extracting a surface using the labels, appears in an early paper of

Boissonat[18].

Theα-shape proposed by Edelsbrunner, Kirkpatrick, and Seidel[37] is a parameterized

construction that associates a subset of the Delaunay tetrahedralization with an unorganized

point set. A simplex is in theα-shape if it has an circumsphere of radius at mostα that does

not contain any sample points. Edelsbrunner and Mücke[38] use theα-shape spectrum of

the sample points for surface reconstruction. Bajaj, Bernardini, and Xu[11] use weighted

α-shapes as the first step in a reconstruction pipeline.
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The crust algorithm of Amenta and Bern[3] was the first surface reconstruction al-

gorithm with theoretical guarantees. The cocone algorithm of Amenta, Choi, Dey, and

Leekha[5] simplified the crust algorithm and also proved that the reconstructed surface

is homeomorphic to the sampled surface. The idea of labeling Delaunay tetrahedra also

appears in the Tight Cocone algorithm of Dey and Goswami[33] and in the Powercrust al-

gorithm of Amenta, Choi, and Kolluri[6] (with cells of a power diagram replacing tetrahe-

dra). Both Tight Cocone and Powercrust avoid the manifold extraction step that is required

by the crust and cocone algorithms.

A recent advance is the Robust Cocone algorithm of Dey and Goswami[34], a Delau-

nay reconstruction algorithm that is provably robust against small coordinate errors. Their

algorithm is not robust against undersampling or outliers, and in fact is easily defeated by

undersampling. We observe that a variant of our spectral algorithm could be used to help

the Robust Cocone algorithm to label tetrahedra when the sample set is not dense enough

for the Robust Cocone’s original labeling algorithm to succeed.

Different branches of algorithms have different advantages. The main advantages of

the Delaunay algorithms are the ease with which they exactly interpolate the sample points

(except the samples judged to be erroneous outliers); the effortlessness with which they

obtain watertight surfaces; the ease with which they adapt the density of the triangles to

match the density of the points (unlike marching cubes), for models whose point density

varies greatly from region to region; and the theoretical apparatus that makes it possible to

prove the correctness of some reconstruction algorithms on well-sampled smooth surfaces.

5.2.2 Spectral Partitioning

Spectral methods for partitioning graphs were introduced by Hall[47] and Fiedler[39]

and popularized by Pothen, Simon, and Liou[72]. They are used for tasks such as image

segmentation, circuit layout, document clustering, and sparse matrix arithmetic on parallel
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computers. The goal of graph partitioning is to cut a graph into two subgraphs, each roughly

half the size of the original graph, so that the number of cut edges is small, or so that the

total weight of the cut edges is small (if each edge is assigned a numerical weight). There

are many ways to formulate the graph partitioning problem, which differ in how they trade

off the weight of the cut against the balance between the two subgraphs. Most formulations

are NP-hard, so practical partitioning algorithms (including spectral methods) are heuristics

that try to find an approximate solution.

One of the most effective formulations of spectral partitioning is thenormalized cuts

criterion of Shi and Malik[80], which is particularly effective at trading off subgraph

balance against cut weight. We make a simple modification to the Shi–Malik algorithm

(closely related to a technique of Yu and Shi[85]) that greatly improves our surface re-

construction algorithm’s speed and the quality of the surfaces it produces. Ng, Jordan, and

Weiss[66] analyze the normalized cut algorithm and also present a spectral clustering pro-

cedure to divide a graph intok(≥ 2) components. When the weight of the inter-cluster

edges is much smaller compared to the weight of edges inside each cluster, they prove that

that spectral clustering algorithm will recover the correct clusters.

5.3 Spectral Surface Reconstruction

5.3.1 Delaunay triangulation

The Delaunay triangulation is a fundamental geometric construction that has been well

studied in computational geometry. See Fortune[42] for a nice survey of the properties

of the Delaunay triangulation and its geometric dual, the Voronoi diagram. Although De-

launay triangulations and Voronoi diagrams are defined in any dimension, we are mainly

interested in three-dimensional Delaunay triangulations. In three-dimensions, geometric

duality maps each Delaunay tetrahedron to a Voronoi vertex and each Delaunay face to a
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Figure 5.2: The Delaunay triangulation (black) and Voronoi diagram (red) of a set
of points sampled from a closed curve.

Voronoi edge.

Our algorithm begins with a setS of sample points in space. LetS+ be the setS

augmented with eight bounding box vertices, the corners of a large cube that encloses the

sample points. (The width of the cube should be much greater than the diameter ofS, so

that no sample point lies near any side of the cube). LetT be the Delaunay tetrahedraliza-

tion of S+. Figure5.2 shows a two-dimensional example. LetQ be the Voronoi diagram

of S+. For each tetrahedront in the tetrahedralizationT , there is a dual vertexv of the

Voronoi diagramQ, andv is the center of the sphere that circumscribest. By construction,

the circumscribing sphere oft does not contain any of the sample points inS.

5.3.2 Overview of the reconstruction algorithm

The goal is to label each tetrahedron—or equivalently, each Voronoi vertex—inside or

outside. Our algorithm labels the Voronoi vertices in two stages. Each stage forms a graph

and partitions it.
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Figure 5.3: Left: the negatively weighted edges of the pole graph G (green), before
the bounding box triangles are collapsed into a single supernode. Yellow triangles
are the duals of poles labeled inside by the first stage of spectral partitioning. The
black triangle does not dualize to a pole; it is labeled inside by the second parti-
tioning stage. Right: the positively weighted edges of G.

In the first stage, our algorithm labels a subset of the Voronoi vertices called thepoles,

following Amenta and Bern[3]. We form a graphG, called thepole graph, whose nodes

represent the poles. See Figure5.3 for a two-dimensional example. The edges ofG are

assigned numerical weights that reflect the likelihood that certain pairs of poles are on the

same side of the unknown surface that we wish to reconstruct.

The graphG is represented by apole matrixL. We partition the poles ofG by finding

the eigenvectorx that corresponds to the smallest eigenvalue of a generalized eigensystem

Lx = λDx, and using that eigenvector to cut the graph into two pieces, theinside and

outside subgraphs. Thus we label each poleinside or outside.

In the second stage, we form another graphH whose nodes represent the Voronoi

vertices that arenotpoles, and partitionH to label all the Voronoi vertices (equivalently, the

tetrahedra) that were not labeled in the first stage. The goal of the second stage is different

from the goal of the first: the non-poles are somewhat ambiguous—most of them could

arguably be eitherinside or outside—so the partitioner tries to assign them labels that will

yield a relatively smooth surface with low genus.

Now all the Voronoi vertices have labels, so all the tetrahedra ofT have labels. The
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algorithm outputs a surface triangulation consisting of every triangular face ofT where an

inside tetrahedron meets anoutside tetrahedron. If the points inS are sampled densely

enough from a simple closed surface, then the triangulation approximates the surface well.

If all the tetrahedra adjoining a sample point are labeledoutside (or all inside), the

point does not appear in the reconstructed surface triangulation. In Section5.4, we see that

this effect provides our algorithm with effective and automatic outlier removal. No other

effort to identify outliers is required.

Why are the Voronoi vertices labeled in two separate stages? Because the non-poles are

ambiguous, they tend to “glue” the inside and outside tetrahedra together. If they are in-

cluded in the first partitioning stage, the graph partitioner is much less successful at choos-

ing the right labels, and runs more slowly too. A two-stage procedure produces notably

better and faster results.

We have chosen the graphs’ edge weights (by trial and error) so the algorithm tries to

emulate the provably correct Cocone algorithm of Amenta et al.[5] when there is neither

noise nor outliers, and the sampling requirements of the Cocone algorithm are met. Our

algorithm usually returns significantly different results only under conditions where the

Cocone algorithm has no guarantee of success.

Our algorithm includes three optional steps. After the first partitioning stage, we can

identify some tetrahedra that may be mislabeled due to noise, and remove their labels (so

new labels are assigned during the second stage). This step improves the resilience of our

algorithm to measurement errors. After the second partitioning stage, we can convert the

surface to a manifold (if it is not one already) by relabeling someinside tetrahedraoutside.

After the final surface recovery step, we can smooth the surface to make it more useful for

rendering and simulation.

115



Chapter 5. Eigencrust
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Figure 5.4: (a) No matter how finely a surface is sampled, tetrahedra (yellow) can
appear whose circumscribing spheres are centered on or near the surface (green)
being recovered. (b) The Voronoi cell (pink) of a sample point s. The poles of s—
the Voronoi vertices u and v—typically lie on opposite sides of the surface being
recovered, especially if the cell is long and thin.

5.3.3 The Pole Graph

Imagine that we form a graph whose nodes represent the vertices of the Voronoi diagramQ

(and their dual tetrahedra inT ), and whose edges are the edges ofQ (omitting the edges that

are infinite rays). Suppose we then assign appropriate weights to the edges, and partition

the graph intoinside andoutside subgraphs.

Unfortunately, this choice leads to poor results. The main difficulty is that the Delaunay

tetrahedralizationT invariably includes flat tetrahedra that lie in the surface we are trying

to recover, as Figure5.4(a) illustrates. These tetrahedra are not eliminated by sampling

a surface extremely finely; they are a natural occurrence in Delaunay tetrahedralizations.

Many of them could be labeledinside or outside equally well. They cause trouble because

they can form strong links with both the tetrahedra inside an object and the tetrahedra

outside an object, and thus prevent a graph partitioner from finding an effective cut between

the inside and outside tetrahedra.

To solve this problem, Amenta and Bern[3] identify special Voronoi vertices called
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poles. Poles are Voronoi vertices that are likely to lie near the medial axis of the surface

being recovered. The Voronoi vertices whose duals are the troublesome flat tetrahedra are

rarely poles, as the problem tetrahedra lie near the object surface, not near the medial axis.

Each sample points in S can have two poles. Letc be the Voronoi cell ofs in Q (i.e.

the region of space composed of all points that are as close or closer tos than to any other

sample point inS+). See Figure5.4(b) for an example. The Voronoi cellc is a convex

polyhedron whose vertices are Voronoi vertices. It is easy to compute the vertices ofc,

because they are the centers of the circumscribing spheres of the tetrahedra ofT that have

s for a vertex.

Let u be the vertex ofc furthest froms; u is considered a pole ofs. Let v be the vertex

of c furthest froms for which the angle∠usv exceeds90◦; v is also considered a pole of

s. Figure5.4(b) illustrates the two poles of a typical sample point. The eight bounding box

vertices inS+ are not considered to have poles. LetV be the set of all the poles of all the

samples inS.

Amenta and Bern show that in the absence of noise, the tetrahedra that are the duals of

the poles are likely to extend well into the interior or exterior of the object whose surface

is being recovered. The tetrahedra whose duals are not poles often lie entirely near the

surface, as Figure5.4(a) shows, so it is ambiguous whether they are inside or outside the

object.

Our algorithm identifies the setV of all poles, then constructs a sparsepole graph

G = (V, E). The setE of edges is defined as follows. For each samples with polesu and

v, (u, v) is an edge inE as shown in Figure5.5. For each pair of samplesp, s such that

(p, s) is an edge of the Delaunay tetrahedralizationT , let u andv be the poles ofs, and let

r andt be the poles ofp; then the edges(r, u), (r, v), (t, u), and(t, v) are all edges ofE as

shown in Figure5.5. Every pole is the dual of a tetrahedron, so tetrahedra that adjoin each

other are often linked together inG, whereas tetrahedra that are not close to each other are

not linked.
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Figure 5.5: (a) For each pair of samples p, s that share an edge in the Delaunay
triangulation, we add edges with positive weights between the poles of s and the
poles of p to the pole graph. (b) The poles of sample s—the Voronoi vertices u and
v—typically lie on opposite sides of the surface being recovered. We therefore add
a negative edge between them in the pole graph.

We assign edge weights in a heuristic manner based on several observations of Amenta

and Kolluri [8]. If S is sampled sufficiently densely from a smooth surface, the Voronoi

cells are long and thin, and the longest dimension of each cell is oriented roughly perpen-

dicular to the surface, as Figure5.4(b) depicts. Of course, point sets that arise in practice

are often not sampled densely enough, but if a samples has a long, thin Voronoi cellc, the

likelihood is high that its polesu andv are on opposite sides of the surface. Therefore, we

assign the edge(u, v) a negative weight, to indicate that if one ofu or v is labeledinside,

the other should probably be labeledoutside.

Let tu andtv be the tetrahedra inT whose duals areu andv. Let Cu andCv be the

circumscribing spheres oftu andtv. The spheresCu andCv intersect at an angleφ. Amenta

and Kolluri show that ifφ is small, as illustrated in Figure5.6(a), thenc is quite long and

thin, and the likelihood is high thattu andtv lie on opposite sides of the surface. Ifφ is close
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Figure 5.6: (a) Small angles of intersection between circumscribing spheres may
indicate that two tetrahedra are on opposite sides of the surface being recovered.
(b) Large angles of intersection usually indicate that two tetrahedra are on the
same side of the surface.

to 180◦, thenc is relatively round, and it is unsafe to conclude thattu andtv lie on opposite

sides. We assign(u, v) a weight ofwu,v = −e4+4 cos φ, so thatwu,v is most negative whenφ

is closest to zero. For two spheres that intersect at an angleφ, we can computecos φ using

the forumla,

cos φ =
1

2rurv

(d2(u, v)− r2
u − r2

v).

Here, d(u, v) is the distance between the pointsu, v and ru, rv are the radii of the two

spheresCu, Cv respectively.

We assign positive weights to the other edges inE. These weights are the glue that

hold proximal tetrahedra together and ensure thatG is likely to be cut only near the original

surface, where the glue is weakest. Let(u, v) be an edge ofE that is not assigned a negative

weight—thus, there is a Delaunay edge(s, p) for whichu is a pole ofs andv is a pole ofp,

but there is no sample pointt whose poles areu andv. Again, lettu andtv be the tetrahedra

that are dual tou andv, and letCu andCv be their circumscribing spheres, which intersect
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at an angleφ. We assign(u, v) a weight ofwu,v = e4−4 cos φ. Amenta and Kolluri show that

if φ is close to180◦, as illustrated in Figure5.6(b), thenu andv are likely to lie on the same

side of the surface, so we use a large, positive edge weight. Ifφ is close to0◦, we choose

a small edge weight, so thatu andv are not strongly glued together. It may occur that the

spheresCu andCv do not intersect at all, in which case we remove the edge(u, v) from E.

We could partition the graphG directly, but we knowa priori that certain tetrahedra

must be labeledoutside, and it is advantageous to fix their labels prior to the partitioning

step. LetO be the set of poles whose dual tetrahedra are known to be outside the object

being reconstructed. We take advantage of this information by forming a new graphG′

that is similar toG, but the poles inO are collapsed into a singlesupernodez. If u and

u′ are poles inO, and(u, u′) is an edge ofG, the edge is eliminated (not present inG′).

If v is a pole inG that is not inO, then in the new graphG′, the edge(z, v) has weight

wz,v =
∑

u∈O wu,v. Collapsingoutside poles into a single supernode makes the spectral

partitioner faster and more accurate.

What poles doesO contain? There are several types of tetrahedra that can be labeled

outside prior to the partitioning step.

• Any tetrahedron with a vertex of the cubical bounding box must beoutside.

• If the point samples were acquired by a laser range finder, the tetrahedra that lie be-

tween the laser source and any sample point it recorded must beoutside. Of course,

there may be measurement errors in the positions of the sample points and the laser

source, so we recommend only labeling those tetrahedra that the laser penetrated

more deeply than some tolerance depth, multiple times.

• For particularly difficult reconstructions, a user may visually identify specific points

in space that are outside the object. The tetrahedra containing these points are labeled

outside. Collapsing just one such tetrahedron into theoutside supernode can change
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the labeling of many other tetrahedra, so this is occasionally a practical option. (No

example in this paper takes advantage of this possibility.)

Optionally, the algorithm may create aninside supernode as well, with a large negative

weight connecting theoutside and inside supernodes. This is particularly useful for re-

constructing one-sided building facades or other sets of sample points that do not represent

closed volumes. For this purpose, the tetrahedra adjoining the front face of the bounding

box are labeledoutside, and the tetrahedra adjoining the back face areinside.

5.3.4 Spectral Partitioning

From the modified pole graphG′, we construct apole matrixL. (L is often called theLapla-

cian matrix, but our use of negative weights makes that name a misnomer.)L is sparse and

symmetric, and has one row and one column for each node of the graphG′. For each edge

(vi, vj) of G′ with weightwvi,vj
, the pole matrixL has the componentsLij = Lji = −wvi,vj

.

(Positive, “attractive” weights become negative matrix components, and negative, “repul-

sive” weights become positive matrix components.) The diagonal components ofL are the

row sumsLii =
∑

j 6=i |Lij|. The remaining components ofL (the off-diagonal components

not represented by an edge ofG′) are zero. IfG′ is connected (which is always true in our

application) and includes at least one edge with a negative weight,L is guaranteed to be

positive definite.

The spectral analysis of a Laplacian matrix or pole matrix can be intuitively understood

by analogy to the vibrational behavior of a system of masses and springs. Imagine that

each node ofG′ represents a mass located in space, and that each edge represents a spring

connecting two masses. Positive edge weights imply attractive forces, and negative edge

weights imply repulsive forces. The eigensystem ofL represents the transverse modes of

vibration of the mass-and-spring system. The lowest-frequency modes give clues as to

where the graph can be cut most effectively: theinside masses are usually found vibrating
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Figure 5.7: Watertight skeleton surface, and the sorted components of the eigen-
vectors computed during the two partitioning stages. The points are densely sam-
pled from a smooth surface, so the eigenvectors are polarized. 327,323 input
points; 2,334,597 tetrahedra; 654,596 output triangles; genus zero; 12.3 minutes
reconstruction time, including 2.8 minutes for the tetrahedralization, and 5.1 min-
utes and 4.2 minutes for the eigenvectors.
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out of phase with theoutside masses.

We take advantage of this observation by finding the eigenvectorx associated with the

smallest eigenvalueλ of the generalized eigensystemLx = λDx, whereD is a diagonal

matrix whose diagonal is identical to that ofL. BecauseL is sparse, we compute the eigen-

vectorx using the iterative Lanczos algorithm[59; 72]. Each component of the eigenvector

x corresponds to one column ofL, and therefore to one node ofG′, to one pole ofQ, and

to one tetrahedron ofT . (The exception is the component ofx that corresponds to the

supernodez.)

Figure5.7 shows a reconstruction of a skeletal hand and the eigenvectors computed

during the two partitioning stages. The components of the eigenvectors are sorted in in-

creasing order. When our method is applied to smooth, well-sampled surfaces, we find

that the eigenvectorx is relatively polarized: most of its components are clearly negative

or clearly positive, with few components near zero. However, noisy models produce more

ambiguous labels—see Figures5.1, 5.11, and5.13. One of the components ofx corre-

sponds to theoutside supernodez. Suppose this component is positive; then the nodes of

G′ whose components are positive are labeledoutside, and the nodes whose components

are negative are labeledinside. (If the component corresponding toz is negative, reverse

this labeling.)

This procedure differs from the usual formulation of normalized cuts[80] in one crit-

ical way. The standard normalized cuts algorithm does not use negative weights, so its

Laplacian matrixL is positive indefinite—it has one eigenvalue of zero, with an associ-

ated eigenvector whose components are all1. Therefore, the standard formulation uses

the eigenvector associated with the second-smallest eigenvalue (called theFiedler vector)

to dictate the partition. Our pole graph has negative weights, our pole matrix is positive

definite, and we use the eigenvector associated with the smallest eigenvalue to dictate the

partition. Because the negative weights encode information about tetrahedra that are likely

to be on opposite sides of a surface, we find that this formulation reconstructs better sur-
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faces, and permits us to calculate the eigenvector much more quickly than normalized cuts

in their standard form.

Spectral partitioning solves a real valued approximation to the normalized-cut problem,

which is NP-complete[80]. It is interesting to note that the first eigenvectorx of the pole

matrix minimizes the following summation:

1∑
i x

2(i)D(i)

 ∑
wvivj >0

(x(i)− x(j))2wvi,vj
+

∑
wvivj <0

(x(i) + x(j))2wvi,vj

 . (5.1)

Consider an ideal pole graph in which all theinside poles (andoutside poles) form a

connected subgraph ofG, there is no positive weight edge between aninside pole and an

outside pole, and there is at least one negative weight edge between aninside pole and

anoutside pole. In the first eigenvectorx of this ideal pole graph, the components of the

inside poles and theoutside poles will have the same value with opposite sign. The eigen-

vector of the skeletal hand shown in Figure5.7 illustrates the clean separation ofinside

poles andoutside poles. When there are no negative weight edges, all the components in

x will have the same value.

The Lanczos algorithm is an iterative solver which typically takes aboutO(
√

n) iter-

ations to converge, wheren is the number of nodes inG′. (L is ann × n matrix.) The

running time also depends on the distribution of eigenvalues of the generalized eigensys-

tem, in a manner that is not simple to characterize and is not related to the condition number.

The most expensive operation in a Lanczos iteration is matrix-vector multiplication, which

takesO(n) time becauseL is sparse.

For noisy models, theO(n
√

n) running time is justified. Because spectral partitioning

searches for a cut that is “good” from a global point of view, it elegantly patches regions

that are undersampled or not sampled at all (see Figure5.9). Measurement errors may

muddy up the edge weights, but a good deal of noise must accumulate globally before
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the reconstruction is harmed (see Section5.4). Many other algorithms are faster, and they

are preferable for clean models. But most surface reconstruction algorithms are fooled by

outliers and noise, and many leave holes in the reconstructed surface or make serious errors

in deciding how to patch the holes.

5.3.5 Correcting Questionable Poles

An optional step, strongly recommended for noisy models, removes labels whose accuracy

is questionable, so that some poles will be relabeled during the second step. Most poles lie

near the medial axis of the original object, and dualize to tetrahedra that extend deeply into

the object’s interior. However, random measurement errors in the sample point coordinates

can create spurious poles that are closer to the surface than the medial axis. Fortunately, a

spurious pole is usually easy to recognize: it dualizes to a small tetrahedron that is entirely

near the object surface.

Laser range finders typically sample points on a square grid. Using the coordinates of

those samples, we compute a grid spacing` equal to the median length of the diagonals of

the grid squares. Any labeled tetrahedron whose longest edge is less than4` is suspicious,

so we remove its label. The grid resolution is typically small compared to the object’s

features, so poles near the medial axis are unaffected.

We find that this step consistently leads to more accurate labeling of noisy models. It is

unnecessary for smooth, noise-free models.

5.3.6 Labeling the Remaining Tetrahedra

The first partitioning stage labels each tetrahedron whose dual Voronoi vertex is a pole, and

labels some of the other tetrahedra too (such as those touching the bounding box). Many

tetrahedra with more ambiguous identities remain unlabeled. To label them, we construct

and partition a second graphH. The goal of the second partitioning stage is to label the
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Figure 5.8: Left: the spectral reconstruction of the bunny (with no added noise)
patches two unsampled holes in the bottom of the bunny. 362,272 input points;
2,283,480 tetrahedra; 679,360 output triangles; genus zero; 19.1 minutes recon-
struction time, of which 17.5 minutes is spent computing the eigenvectors.

ambiguous tetrahedra in a manner that produces a relatively smooth surface of low genus.

The graphH has two supernodes, representing all the tetrahedra that were labeledin-

side andoutside, respectively, during the first stage.H also has one node for each unla-

beled tetrahedron. If two unlabeled tetrahedra share a triangular face, they are connected

by an edge ofH. If an unlabeled tetrahedron shares a face with a labeled tetrahedron, the

former is connected by an edge to one of the supernodes.

We have tried a variety of ways of assigning weights to the edges ofH. We obtained
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Figure 5.9: Spectral reconstruction of a point cloud with a large unsampled region,
and its first partitioning eigenvector. 23,767 input points; 47,536 output triangles;
80 seconds reconstruction time.

our best results (surfaces with the fewest handles) by choosing each weight to be the aspect

ratio of the corresponding triangular face, defined as the face’s longest edge length divided

by its shortest edge length. These weights encourage the use of “nicely shaped” triangles

in the final surface, and discourage the appearance of “skinny” triangles (whose large edge

weights resist cutting).

H has just one negative edge weight: an edge connecting theinside andoutside su-

pernodes, whose weight is the negation of the sum of all the other edge weights adjoining

the supernodes. The negative edge ensures that the supernodes are assigned opposite signs

in the eigenvector.

We partitionH as described in Section5.3.4. A tetrahedron is labeledinside if the

corresponding value in the eigenvector has the same sign as theinside supernode, and vice

versa.

As an alternative to this stage, we can label power cells of the poles instead of labeling
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Delaunay tetrahedra—in other words, we replace the Powercrust’s pole labeling algorithm

with our spectral pole labeling algorithm. In the Powercrust algorithm,everypower cell is

the dual of a pole, so there is nothing left to label after the first partitioning stage.

Figure5.10shows that spectral tetrahedron labeling is poor at capturing sharp corners,

and the Powercrust algorithm is much better, but the hybrid algorithm is even more effec-

tive. Spectral partitioning labels power cells better than the original Powercrust. The hybrid

spectral Powercrust algorithm shares the Powercrust’s advantage of recovering sharp cor-

ners well, but it also shares its disadvantage of increasing the number of vertices many-fold.

The number of vertices in each model is 4,100, 52,078, and 51,069, respectively.

5.3.7 Constructing Manifolds

An optional step searches for local topological irregularities that prevent the reconstructed

surface from being a manifold, and makes the surface a manifold by relabeling selected

tetrahedra frominside to outside.

These irregularities come in two types. First, consider any edgee of the Delaunay

tetrahedralizationT . The tetrahedra that havee for an edge form a ring arounde. If the

reconstructed surface is a manifold, there are three possibilities: the tetrahedra in the ring

are alloutside, they are allinside, or the ring can be divided into a contiguous strand of

inside tetrahedra and a contiguous strand ofoutside tetrahedra. If the ring of tetrahedra

arounde do not follow any of these patterns—if there are two or more contiguous strands

of inside tetrahedra in the ring—then we fix the irregularities by relabeling some of the

tetrahedra frominside to outside so that only one contiguous strand ofinside tetrahedra

survives. The surviving strand is chosen so that it contains theinside tetrahedron that was

assigned the largest absolute eigenvector component during the second partitioning stage.

The second type of irregularity involves any point samples in S. If the reconstructed

surface is a manifold, then the tetrahedra that haves for a vertex are either alloutside,
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Spectral Powercrust Hybrid

Figure 5.10: Reconstructions of a mechanical part by three algorithms. The hybrid
algorithm uses only the first eigenvector, whereas the spectral tetrahedron labeling
algorithm uses both.
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all inside, or divided into one face-connected block ofoutside tetrahedra and one face-

connected block ofinside tetrahedra. A topological irregularity ats may take the form of

two inside tetrahedra that haves for a vertex, but are not connected to each other through

a path of face-connectedinside tetrahedra all havings for a vertex. In this case, theinside

tetrahedra adjoinings can be divided into two or more face-connected components. Only

one of theseinside components survives; we relabel the othersoutside. The surviving

component is the one that contains a pole ofs. (In the unlikely case that there are two such

components, choose one arbitrarily.)

It is also possible to have two or more face-connected components ofoutside tetrahedra

(and just one component ofinside tetrahedra). LetW andX be two of them. We compute

the shortest face-connected path fromW to X, where the length of a path is defined to be

the sum of the absolute eigenvector components of theinside tetrahedra on the path. The

tetrahedra on the shortest path are relabeledoutside.

These operations are repeated until no irregularity remains. The final surface is guaran-

teed to be a manifold. One can imagine that for a pathological model this procedure might

whittle down the object to a few tetrahedra, but in practice it rarely takes an unjustifiably

large bite out of an object.

5.3.8 Smoothing

Triangulated surfaces extracted from noisy models are bumpy. The final optional step is

to use standard Laplacian smoothing[49] to remove the artifacts created by measurement

errors in laser range finding, and to make the model more amenable to rendering and sim-

ulation. Laplacian smoothing visits each vertex in the triangulation in turn, and moves it to

the centroid of its neighboring vertices. We performed five iterations of smoothing on the

smoothed dragon and bunny in Figures5.11and5.8.
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5.4 Results

Our implementation uses our own Delaunay tetrahedralization software, and TRLAN1, an

implementation of the Lanczos algorithm by Kesheng Wu and Horst Simon of the National

Energy Research Scientific Computing Center.

Figure5.11illustrates the performance of the spectral algorithm on the Stanford dragon.

The raw data exhibit random measurement errors and include natural outliers. Spectral

reconstruction yields a watertight manifold surface, and removes all the outliers.

The model is too large for the Powercrust implementation, so we have applied the Pow-

ercrust labeling algorithm to the Delaunay tetrahedra. (We use our algorithm discussed in

Section5.3.6to label the tetrahedra that are not poles, just like with our spectral algorithm.)

The Powercrust labeling algorithm mislabels tetrahedra because of bad local decisions that

the spectral algorithm averts.

Figure5.13shows how several algorithms degrade as randomly generated outliers are

added to the input data. Even 1,200 random outliers have no influence on the spectral recon-

struction except to affect how a hole at the base of the hand is patched. The Tight Cocone

and Powercrust algorithms correctly reconstruct clean models, but they are incapacitated

by relatively few outliers.

The fourth row of Figure5.13shows the degradation of several algorithms as increas-

ing amounts of random Gaussian noise are added to the point coordinates of the Stanford

bunny, which already includes measurement errors. The expression under each reconstruc-

tion is the variance of the Gaussian distribution used to produce additional noise, expressed

in terms of the grid spacing̀defined in Section5.3.5. The spectral reconstruction remains

a genus zero manifold when the added noise has variance2`, but begins to disintegrate as

the measurement errors become notably larger than the resolution of the range data. With

added noise of variancè, the Powercrust algorithm succeeds, but with variance2` the

1 http://www.nersc.gov/research/SIMON/trlan.html
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Figure 5.11: Reconstruction of the Stanford dragon model from raw data. The
point cloud (upper left) has many outliers, which are automatically omitted from
the spectrally recovered surface (upper right). The eigenvectors are less polarized
than the eigenvectors in Figure 5.7, reflecting the labeling ambiguities due to mea-
surement errors. The surface produced using Powercrust’s labeling (middle right)
fails to handle the outliers correctly. 1,769,513 input points; 11,660,147 tetrahedra;
2,599,114 surface triangles; genus 1; 197 minutes reconstruction time.
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structure is full of holes. (It is a watertight surface, but what it bounds is Swiss cheese.)

The Tight Cocone algorithm can only cope with noise of less than0.8` variance.

Figure5.12illustrates the three algorithms on a set of points densely sampled from the

smooth splines of the Utah Teapot. The difficulties here are more subtle. The teapot’s spout

penetrates the body deeply enough to create an ambiguity that neither the Powercrust nor

Tight Cocone algorithms solve correctly. The spectral reconstruction algorithm treats the

interior spout sample points as outliers, and correctly omits them from the surface.

The eigencrust algorithm is effective on sparse point clouds. Figure5.15 shows the

eigencrust reconstruction of the schale data set which contains some thin regions that are

sparsely sampled. Figure5.16 shows how different algorithms degrade as sampling be-

comes more and more sparse. The first column is a uniformly sparse point cloud. In this

case the Spectral and the powercrust algorithms correctly reconstruct the knot. In the sec-

ond and third columns we linearly increase the sampling density from left to right. As

shown on the right, both Powercrust and Tight cocone reconstructions begin to degrade

before the spectral reconstruction.

5.4.1 Effect of MLS smoothing

The bunny model in Figure5.8, and the dragon model in Figure5.11were reconstructed

directly from the laser range data. Notice that the measurement noise and the errors in

alignment make the eigenvectors ambiguous. Smoothing the point sampled by the MLS

algorithm described in Chapter2 reduces this ambiguity in the eigenvectors as shown in

Figure5.17. Computing the eigenvectors is faster, and the reconstructed models have less

topological noise. Figures5.18, 5.19, 5.20and 5.21show spectral reconstructions of the

models lsited in Table4.1after MLS smoothing.
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Model Points Tetrahedra Delaunay Eigenvector genus
(Seconds) (Seconds)

Bunny 362272 2711705 53 487 0
Dragon 1769513 13159466 478 5263 1

Armadillo 1541522 11454212 235 2735 6
Buddha 1849576 12571346 306 5257 7
Angel 1889131 13346501 338 4625 9

Table 5.1: Eigencrust reconstruction times for the data sets in Table 4.1.

5.5 Discussion

Our modification to the normalized cut algorithm that adds negative weight edges into the

pole graph works well only when the pole graph has two components that repel each other

with negative weight edges. The spectral clustering algorithm proposed by Ng, Jordan, and

Weiss[66] to partition a graph intok(≥ 2) components does not handle negative weight

edges.

The spectral algorithm is not infallible. It occasionally creates unwanted handles—

fourteen on the angel. The global eigenvector computation is slow. Tetrahedron-labeling

algorithms do not reconstruct sharp corners well—observe how the teapot adjoins its spout.

This problem can be overcome by labeling power cells rather than tetrahedra, at the cost

of much larger model complexity. Either way, however, spectral surface reconstruction is

remarkably robust against noise, outliers, and undersampling.
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Spectral Tight Cocone

Spectral Powercrust

Figure 5.12: Reconstructions from 253,859 points sampled on the Utah Teapot.
The spout’s splines penetrate into the body of the teapot, causing difficulties for
both the Powercrust and Tight Cocone algorithms. A cutaway view shows that
Powercrust mislabels as outside a cluster of cells where the spout enters the body.
The spectral algorithm correctly identifies the same poles as inside.
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200 outliers 1,200 outliers 1,800 outliers 6,000 outliers 10,000 outliers

200 outliers 1,200 outliers 200 outliers 1,200 outliers

C Tight Cocone
PowercrustB

Figure 5.13: Top row: 25,626 noise-free points plus randomly generated outliers.
Second row: spectral reconstructions of this model maintain their integrity to 1,200
outliers, then begin to degrade. Third row: other Delaunay-based algorithms de-
grade much earlier.
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Spectral,+2` Spectral,+3`

Spectral,+5` Tight Cocone,+0.8`

— Powercrust,+2` —

Figure 5.14: Stanford bunny reconstructions from raw data (with no outliers), some
with added random Gaussian noise.
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Figure 5.15: Eigencrust reconstruction of a sparse point cloud; 2714 points; 48727
tetrahedra; 5 seconds reconstruction time.
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1513 Points 3472 Points 2896 Points

Tight Cocone

Eigencrust

Powercrust

Figure 5.16: Reconstructions of a sparse point cloud with adaptive sample spac-
ing.
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Figure 5.17: Eigencrust reconstruction of the Stanford dragon model after MLS
smoothing.
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Figure 5.18: Eigencrust reconstructions of the Stanford bunny after MLS smooth-
ing.
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Figure 5.19: Eigencrust reconstructions of the armadillo model after MLS smooth-
ing.
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Figure 5.20: Eigencrust reconstructions of the armadillo model after MLS smooth-
ing.
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Figure 5.21: Eigencrust reconstructions of the happy buddha model after MLS
smoothing.
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Registration

6.1 Introduction

Laser range scanners cannot scan an entire object at once because the whole surface is not

visible from a single point of view. In this chapter we describe our implementation of a

registration algorithm that aligns range images into a common coordinate system.

Automatic surface registration is typically done in two stages.Coarse registrationpro-

vides a rough positioning of the surfaces, andfine registrationbrings the scans into tight

alignment. The difference between the two is akin to the difference between global and

local optimization: coarse registration is concerned primarily with determining which gen-

eral region of one scan represents the same portion of an object as a selected region of

another scan, while fine registration is concerned with minimizing the disparity between

“overlapping” regions of different scans.

We present here a coarse registration algorithm that usessignaturesthat we callhar-

monic shape contextsto match similarly shaped regions of different surfaces. A signature

encodes the surroundings of a particular point in a particular surface in a manner that makes

it easy to find similar regions in different surfaces while discriminating between dissimilar
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regions. Our signatures are computed by forming ashape context—a rough model of the

shape of the surface that a scan represents—and computing the spherical harmonics of the

shape context. Shape contexts began life as successful two-dimensional signatures in the

computer vision literature; we generalize them to three dimensions. We choose spherical

harmonics because they allow us to define signatures that are invariant to rotation as well

as translation, yet retain most of the geometric information in the shape context.

Given two surfaces with similarly shaped regions, we register the surfaces relative to

each other throughcorrespondences—pairs of approximately matching signatures taken

from the two surfaces. For the scan registration application, we expect the overlapping

regions of the two scans to be similarly shaped throughout the region of overlap. The

quality of a match might depend on the area of overlap. Our method is fully automatic and

works consistently without manual assistance. Because translation- and rotation-invariance

are built into our signatures, we achieve excellent accuracy and competitive speed.

6.2 Related Work

Computer vision researchers have extensively studied the problem of object recognition

and matching, in two and three dimensions. Campbell and Flynn[25] offer a survey of

three-dimensional shape representations used for object recognition.

Most shape signatures are one of two types.Object signaturesattempt to summa-

rize the shape of an entire object, and are a fast way to find similar shapes in a database.

Point signatures[29] attempt to summarize the shape around a specific point, a neces-

sary task for registering two scans. (The termssignatureanddescriptorappear to be used

interchangeably.) Many object signatures have been proposed, including superquadrics,

parabolic curves[82], medial axis representations, and spherical harmonic representations.

Our point signatures are inspired by the spherical harmonic object signatures of Kazhdan,

Funkhouser, and Rusinkiewicz[56]. Vranic [84] presents object signatures similar to har-
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monic shape contexts for searching in shape databases. Object signatures provide a fast

way to identify similar shapes, but are rarely suitable for finding small similarities (e.g. a

shared part) between objects that are otherwise different.

Point signatures can be either “local” or “global” in nature, depending on how much

of the object’s shape is encoded. The curvature of a surface is an example of a purely

local point signature. Unfortunately, purely local signatures are not descriptive enough

to disambiguate many shapes. Global point signatures can perform better, but they are

sensitive to occlusion (i.e. the deletion of a large part of a surface) and positional noise.

We use point signatures that characterize an object’s shape in a region surrounding

a point of interest. The most successful three-dimensional point signatures to date are the

spin images of Johnson and Hebert[54]. At the end of Section6.4, we describe spin images

and compare them with harmonic shape contexts. See Frome, Huber, Kolluri, Bulow and

Malik [44] for a comparison of the performance of several point signatures on the task of

object recognition in range images.

Fine registration has been well studied. Most authors use some variant of the Iterated

Closest Point (ICP) approach for aligning a pair of scans, which was introduced indepen-

dently by Chen and Medioni[28] and Besl and Mckay[16]. In the ICP method, each scan

is approximated by a continuous surface. Typically, a pair of scans partly “overlap” each

other, and each scan also has sample points that are not near the surface covered by the

other scan. The goal of ICP is to ensure that each sample point in one scan (excepting

points not in the overlap region) is as close as possible to some surface that represents the

other scan. The ICP method iteratively minimizes an energy function that estimates how

well two scans are aligned in their region of overlap. Several variants of the ICP algorithm

have been proposed, such as the fast algorithm that Rusinkiewicz and Levoy[75] developed

for real-time scanning.

Of course, there are usually more than two scans to align. Algorithms are available

that simultaneously align several scans. For coarse multiview registration, Huber and
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Hebert[52; 53] present an aggressive alignment algorithm that uses a consistency crite-

rion to combine pairs of scans that have been aligned using spin images. Pulli[73] offers

a notable fine multiview registration algorithm, which is well-suited for large models that

cannot fit in memory. We use Pulli’s algorithm in our registration software.

6.3 Overview of Our Algorithm

Our software for scan registration executes two stages, solving global and local optimiza-

tion problems. First, the software aligns pairs of range scans using point signatures called

harmonic shape contexts. The aligned pairs are combined into a single model by placing

the scans in a shared coordinate system. Second, a multiview ICP algorithm refines the

registration and improves its accuracy.

Our signatures are based on theshape contextsproposed by Belongie, Malik, and

Puzicha[12] for problems arising in computer vision. Shape contexts appear to perform

better than most of their competitors, as they are able to make finer discriminations of shape

while omitting irrelevant detail. To make shape contexts invariant to rotation, we use spher-

ical harmonics. The idea of using spherical harmonics to make object signatures rotation-

invariant was introduced by Kazhdan, Funkhouser, and Rusinkiewicz[56] (in the context

of querying databases of shapes). Spherical harmonics are a strong approach because they

maintain nearly all rotation-invariant information. Our use of spherical harmonics differs

from Kazhdan’s in several important ways, described in Section6.5.

The coarse registration stage itself consists of four steps. First, our algorithm computes

harmonic shape contexts at a random subset of sample points on each surface. Second,

pairs of signatures from different surfaces are tested to findcorrespondences—pairs of

points that are likely to come from the same spot on a physical object or part. Correspon-

dences are indicated by highly correlated signature pairs. Candidateposes—transforms

(translation and rotation) that align one scan with another—are computed from pairs of
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correspondences. Poses are evaluated by determining how close each point in one scan is

to its nearest neighbor in the other, transformed scan. We select the best candidate pose for

each pair of surfaces.

Third, for each pair of surfaces, our algorithm improves the pose (which is computed

from a single correspondence) by simultaneously considering all the “good” correspon-

dences between the two surfaces, and optimizing the least-squares distance between corre-

spondence pairs.

Fourth, we register all the scans in a single global coordinate system by choosing the

most reliable pairwise poses.

6.4 Shape Contexts as Signatures

A signature is a local description of the shape of a scan around a chosen sample point in the

scan. Signatures are used to find correspondences between different scans. Ideal signatures

should be insensitive to any rotation or translation of a scan, because a single spot on an

object may be scanned from many different directions.

Our signatures begin with the notion ofshape contexts, suggested by Belongie, Malik,

and Puzicha[12] for finding correspondences among two-dimensional images. Their idea

is to divide space into a collection of bins centered at a chosen sample point. Space is

subdivided by radial lines passing through the sample point, and also by concentric spheres

centered at the sample point. The concentric spheres have exponentially increasing radii,

making the signature more sensitive to nearby sample points than faraway ones. Theshape

contextis a histogram listing how many sample points fall into each bin.

A three-dimensional shape context is based on a division of space into bins by choosing

a sample point and independently partitioning the radial, azimuthal, and polar dimensions

around the point.

There are several reasons why shape contexts in their original form are not suitable for
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scan registration. First, they are not invariant to rotation. Second, the number of sample

points in each bin is not a reliable measure for finding correspondences between scans.

Different scans may be taken from different distances, and therefore each scan samples

a different density of points on an object’s surface. A surface is typically scanned from

several different angles, so the spacing of sample points on the surface is often anisotropic,

and the anisotropy differs from scan to scan, influencing the number of sample points that

fall in each bucket. The remainder of this section discusses how we build signatures that

are invariant to sampling density and sampling anisotropy. Rotation invariance is discussed

in Section6.5.

Suppose we have a scan and a sample pointp in that scan. Discretize the space around

p into u radial divisions between the radiir0 = 0, r1, . . . , ru; v polar divisions between the

anglesθ0 = 0, θ1, . . . , θv = π, as measured from the normal vectorn; andw azimuthal

divisions between the anglesφ0 = 0, φ1, . . . , φw = 2π. The largest radiusru is chosen

slightly larger than the diameter (i.e. the greatest inter-sample distance) of any scan, and

the smallest radiusr1 is chosen to be somewhat greater than the resolution of the scans,

so that the innermost bins are not overly vulnerable to aliasing effects. The polar and

azimuthal divisions are equiangular, but the radii are geometrically spaced, with

ri = exp

{
ln r1 +

i− 1

u− 1
ln

ru

r1

}
.

Let bjkl be the value assigned to the bin covering the points(r, θ, φ) satisfyingrj ≤

r < rj+1, θk ≤ θ < θk+1, andφl ≤ φ < φl+1. As we have observed, it is a poor idea to

setbjkl to be the number of sample points that fall into the corresponding bin. However,

range scanners sample points on a square grid (as viewed from the scanner), which forms

a natural triangulation. We treat the triangulation as a piecewise linear surface embedded

in three-dimensional space, and assign to each bin the amount of surface area lying in the

bin. This insulates the bin values against the effects of sampling density or anisotropic
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Figure 6.1: The bins of a three-dimensional shape context.

sampling.

In our implementation, we modify this idea in two ways. First, very long triangles ap-

pear where the scanner crosses a silhouette of the object being scanned, and these triangles

are rarely representative of the object’s shape. We compute agrid spacing` equal to the

median length of the diagonal edges of the triangulated grid, and we discard any triangle

whose greatest edge length exceeds4`.

Second, it is unnecessarily expensive to compute the area of intersection of a triangle

with a bin. As a heuristic, we compute the area of each triangle (that is not too long), and

assign its area once to each of the three bins containing the triangle’s vertices. Frequently,

all three vertices of a triangle are in one bin, so the bin is assigned thrice the triangle’s

area. In the end, the bin valuebjkl is a reasonable approximation to thrice the amount of

triangulation surface area that falls in the bin.

Spin images[54] are similar to shape contexts, but they use cylindrical coordinates

instead of spherical coordinates, their radial divisions are uniformly spaced, and most im-

portantly, they obtain rotation-invariance by not using divisions of the azimuthal coordinate

(i.e. each bin is ring-shaped). For this last reason, our harmonic shape contexts are more

descriptive than spin images.
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6.5 Coarse Registration, Step 1:

Harmonic Shape Contexts

In two dimensions, computing discrete Fourier transforms over a two-dimensional shape

context yields a rotation-invariant signature. For a ring of bins at a fixed radius interval, let

b be a vector whose components are the values of the bins in the ring. Letf be a vector

whose components are the complex coefficients of the discrete Fourier expansion ofb. The

magnitude of each component off reflects the predominance of a particular frequency in

the ring of bins, whereas the phase (angle in the complex plane) of a component reflects

the phase of that frequency. If the scan is rotated, the phase of each component changes

accordingly, but (if the number of bins is large enough) the magnitude of each component

is virtually unaffected.

In three dimensions, we can build a rotation-invariant signature using normal estimation

and either Fourier expansions or spherical harmonics. We call these signaturesFourier

shape contextsandharmonic shape contexts, respectively, and evaluate both of them in

Section6.9. Both signatures use normal estimation to provide rotation invariance in the

polar direction. Rotation invariance in the azimuthal direction is provided by the Fourier or

harmonic basis.

To compute a signature at a pointp, we begin by estimating a normaln to the surface

atp. These normals are computed from the triangulation of each range image. The normal

at each sample points is given by an average of the normals of all faces incident ons. We

then compute a shape context usingn to specify the north pole of our coordinate system, so

the polar angleθ is measured fromn, as illustrated in Figure6.5. Thus our signatures are

rotation invariant in the polar direction (except in the few parts of a scan where an accurate

normal computation is difficult).

Three-dimensional Fourier shape contexts confer azimuthal rotation invariance in the

same manner as their two-dimensional kin. The subset of bins covering a fixed radial
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P

θ
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n

��

Figure 6.2: The polar angle θ of a point p is determined by the approximate nor-
mal n at a sample point s. The coordinate axes along the azimuth angle φ are
ambiguous.

interval and polar interval forms an azimuthal ring aroundn. We compute a discrete Fourier

transform of the azimuthal bin values, and store the absolute magnitudes of the Fourier

coefficients.

Alternatively, spherical harmonics also confer rotational invariance. Spherical harmon-

ics are analogous to the Fourier basis functions, defined on the sphere. Whereas the Fourier

bases are univariate sine and cosine functions, spherical harmonics are inherently bivariate.

Our signatures treat each of the concentric spheres independently—spherical harmonics are

computed separately for each fixed radius. For a radiusr, let f(θ, φ) be a function defined

over the sphere. In particular, we choosef(θ, φ) to be the value assigned to the bin holding

the point(r, θ, φ); but the following comments apply to any choice off .

Any square-integrable complex function on the sphere can be expressed as a linear

combination of spherical harmonic basis functionsY n
m, with m ≥ 0 and−m ≤ n ≤ m.
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The basis functions are orthonormal; that is,

∫
S

Y n
mY n′

m′ =

 1 m = m′ and n = n′,

0 otherwise,
(6.1)

whereS is the unit sphere andY n′
m′ is the complex conjugate ofY n′

m′ . The basis functions

are

Y n
m = cmnP

n
m(θ)einφ,

wherei =
√
−1, e is the base of the natural logarithm, theP n

m are the Legendre polyno-

mials, and thecmn are normalization constants chosen so that (6.1) holds. See Arfken[10]

for the details of both Legendre polynomials and spherical harmonics.

We thus writef(θ, φ) in terms of spherical harmonics,

f(θ, φ) =
∞∑

m=0

n=m∑
n=−m

an
mY n

m(θ, φ),

where thean
m are complex coefficients. Intuitively, the subscriptm is roughly a specifier of

the “frequency” of a basis functionY n
m, whereas the superscriptn specifies a mode within

a particular “frequency.”

An important property of the spherical harmonic basis is that if a functionf is “rotated”

in the azimuthal coordinateφ, the magnitude of the coefficientsan
m do not change, but their

phase (angle in the complex plane) changes to reflect the rotation off . Therefore, if we

build a signature using the coefficientsan
m, we can make the signature invariant to rotations

in the azimuthal coordinate by storing only the absolute value|an
m| of each coefficient.

Practically, we need to transform not a continuous function, but a functionb defined at

a discrete number of points, and we wish to compute only a finite number of coefficients.

The standard discretization is to assume that there is a continuous functionf(θ, φ) such
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Figure 6.3: Plots of |Y n
m|2 for small values of m. Observe that the magnitudes of

the basis functions do not depend on the azimuth angle φ.

that the bin values are the values off at the center of each bin:

bjkl = f

(
θk + θk+1

2
,
φl + φl+1

2

)

(for a fixedj), and there is a maximum bandwidthz so thatf has no “high-frequency”

components withm ≥ z.

Given this assumption, the coefficientsan
m (for 0 ≤ m < z, −m ≤ n ≤ m) can

be computed from the bin values alone by a combination of discrete Fourier transforms

and discrete Legendre transforms, for which we use the publicly available SpharmonicKit

software[48].

We define a signature to be a vectorã, whereãjmn = |an
m|, with an

m being the complex

coefficients of the spherical harmonics for the shellj. A property of spherical harmonics is

that if the functionf is real-valued (as it is in our application), thenan
m = a−n

m , so there is
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no need to separately store the coefficients for whichn is negative.

An important difference between our signatures and those used by Kazhdan et al.[56]

is that they obtain rotation invariance in the polar direction by summing the energies of

the modes within each frequency. Thus, Kazhdan’s signatures are the values
∑m

n=−m ã2
jmn

for every0 ≤ j < u and0 ≤ m < z. In our application, we are able to obtain rotation

invariance by estimating surface normals, so our signatures maintain all the valuesãjmn

separately. Therefore, our signatures can make much finer discriminations between shapes.

The representation of a function in the spherical harmonic basis is more expensive to

compute than the Fourier transform, but in Section6.9 we see that signatures based on

spherical harmonics are more descriptive. We believe the difference in descriptive power

arises because the Fourier shape context does not change if one of its azimuthal rings is

rotated relative to another, whereas a harmonic shape context does.

6.6 Coarse Registration, Step 2:

Computing Correspondences and Poses

Here, we describe our method for determining a pose (translation and rotation) that attempts

to bring one scan into coarse alignment with another. The method usually succeeds if the

scans have a significant area of overlap (say, at least 20% of the surface area of each scan).

Because scan pairs sometimes yield very few correspondences, the coarse-grained stage is

designed to find a pose even if only two good correspondences exist. A pose improvement

step, described in Section6.7, uses multiple correspondences to improve a pose if more

than two are available.

If the scans are large (collectively, hundreds of thousands of points or more), we sub-

sample the scans with a coarser rectangular grid. For our results in Section6.9, we use

every second column and every second row of each scan, thereby reducing the data to a
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quarter. The grid spacing̀discussed in Section6.4 is computed from this coarser grid.

To further reduce the running time, we compute signatures for only 20% of the points

in each scan; these points are selected randomly.

Each point signature is a histogram, and theχ2 histogram difference operator[74] de-

fines a distance measure for the signature vectors. Theχ2 distance between each pairx, y

of signature vectors is given by

χ2(x, y) =
∑

xi+yi>0

(xi − yi)
2

2(xi + yi)
,

wherexi andyi are the components of the harmonic shape contextsx andy. (We tried

several different scoring methods; this distance measure proved best.)

In one scan, we randomly choose 100 points (from the 20% whose signatures were

computed). For each of these points, we find the best matching signature in the other

scan. We treat each match as a correspondence. Typically, some of these correspondences

are good, some are erroneous, and the quality of most of them depends on how much the

two scans overlap. Of course, if the two scans do not overlap, all the correspondences are

poor. Unfortunately, it is difficult to recognize this circumstance from the correlation scores

alone. Occasionally, incorrect correspondences give the appearance of being excellent, and

the mistake is not realized until the global scan registration stage.

We use these candidate correspondences to compute a set of candidate poses, and we

test the quality of the candidate poses. LetS1 andS2 be two (subsampled) scans, and letT

be a transform (rotation and translation) that defines a pose ofS2. To judge the quality of

T , we assign it an overlap score of

O(T ) =
∑
p∈S1

exp−d(p, nn(p, T (S2)))
2

`2
, (6.2)

wherenn(p, T (S2)) is the nearest neighbor top in the transformed scanT (S2), andd(p, q)
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denotes the Euclidean distance betweenp andq. Note that the sum is over all points inS1,

and not just those for which signatures were computed. We use ak-d tree to efficiently find

the nearest neighbor of a point in a scan.

Observe that the overlap scoreO(T ) is credited mainly by points that have very close

neighbors, and receives little credit from points that do not. IfS1 hasn points, the maximum

possible value ofO(T ) is n, achieved if every point inS1 is matched by a point inS2 with

the same coordinates.

How do we obtain candidate poses from the candidate correspondences? Pairs of scans

occasionally yield few good correspondences, so we choose a method that will find one

good pose even if there are only two good correspondences. Let(p1, p2) and(q1, q2) be two

candidate correspondences, wherepi andqi are points in scanSi. As a sanity check, we

do not compute a pose if the distances|p1q1| and|p2q2| differ by more than 10%. (We find

that this check saves us 25–50% of the pose computations when the scans overlap well,

and 80–90% when there is little overlap.) To compute a transformT , we first translateS2

so thatp2 has the same coordinates asp1. We then rotateS2 aroundp2 so that the normal

vectors top1 andp2 are parallel. Finally, we perform an azimuthal rotation ofS2 (through

theφ coordinate, leaving the normal vector unchanged) so that the vectorp1q1 is aligned

(azimuthally) with the vectorp2q2.

Of course, a normal vector can point in either of two directions, so this procedure can

determine two different transformsT , T ′. We disambiguate by ensuring that every normal

points toward the range scanner. If this information were not available, we would test both

possibilities and calculate the overlap score of each.

For a pair of scans, we calculate 100 candidate correspondences, yielding 4,950 candi-

date transforms. We compute the score of all these transforms and choose the best—except

that if we find a transformT for which O(T ) ≥ 0.75n (i.e. three-quarters the maximum

possible score), we stop early and chooseT . (This is usually the case, except whenS1 and

S2 barely overlap at all.)
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There is a strong probabilistic justification for using a method that requires only two

good correspondences to yield a good pose, even though we could obtain much more ac-

curate poses using three. Assume a hypothetical model in which a pose is satisfactory if

and only if the correspondences used to calculate it are all good. For example, suppose

that for two scans with little overlap, the probability of any correspondence being good is

1%. Given 100 randomly generated correspondences, the probability of two being good

is about 26%, whereas the probability of three being good is less than 8%. Because it is

very difficult to determine whether a correspondence is good (correlation scores are an un-

reliable method of doing so), we might need to test 161,700 poses to find if each pose is

computed from three correspondences, as opposed to 4,950 poses that are computed from

two correspondences.

Thus, we follow the pose computations with a pose improvement step.

6.7 Coarse Registration, Step 3: Pose Improvement

The pose produced by the coarse-grained stage is sensitive to small misalignments in the

original correspondences, especially in the estimated normal vectors. To improve the pose,

we test the 100 original correspondence pairs to see which pairs have been brought together

by the coarse pose. If the distance between a pair of correspondence pointsp1 and p2

does not exceed8` (where` is the grid spacing discussed in Section6.4), we call the

correspondence “good”; otherwise we call it “bad.”

We compute an improved pose that minimizes the sum of the squares of the separa-

tions of the good correspondence pairs, using the standard method of Horn[51]. The pose

improvement step takes little time compared to the other steps.
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6.8 Coarse Registration, Step 4:

Global Scan Registration

We use standard methods to register all the scans within a single coordinate system. Let

G be a graph whose nodes represent the scans. For each pair of scans, we find a pairwise

registration using the methods of Sections6.6 and6.7, and we connect the corresponding

nodes ofG with an edge holding two pieces of information: the relative pose produced by

our pairwise registration algorithm, and the overlap score (6.2) for that pose.

Next, we compute a spanning treeT of G, and use the relative poses on the edges of

T to register all the scans in a global coordinate system. To computeT , we recommend

the sophisticated global registration algorithm of Huber and Hebert[53] (Section 6). For

our implementation and results in Section6.9, however, we simply used Prim’s maximum

spanning tree algorithm to find the spanning treeT that maximizes the sum of overlap

scores.

Figure 6.9 shows the global coarse registration of several scans in each of four dif-

ferent models. It also shows the same scans after fine multiview registration by Pulli’s

algorithm[73].

6.9 Signature Comparison and Results

We use precision-recall curves—popular in computational learning theory— to compare

signatures. The distance measure defined by a signature is a classifier that classifies each

correspondence as correct or wrong, depending on whether the distance measure is under

or over some threshold. To test this classifier, we give it two types of correspondences:

those we know to be correct (nearest neighbor points from correctly registered pairs of

scans), and pairs of points selected at random from two different scans. The histogram

in Figure6.4shows distances between pairs of harmonic shape contexts obtained in these
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Matching pairs
Random pairs

Figure 6.4: A histogram showing the distances between harmonic shape contexts
for random pairs (right distribution) and correctly matched pairs (left distribution)
in scans from the Happy Buddha model. The dashed line represents the decision
boundary of a likelihood ratio classifier.

two ways from the Happy Buddha model. Observe that the distance measure is typically

smaller for true correspondences than for randomly chosen pair of points, but it is not a

perfect classifier.

Theprecisionof a classifier is the fraction of signature pairs labeled as matches (below

threshold) by the classifier that are true correspondences (i.e. 1 minus the number of false

positives). Therecall value is the fraction of true correspondences that were labeled as

matches by the classifier. Clearly, the precision and recall of a classifier depend on what

threshold the classifier chooses. We plot the precision and recall of signatures for different

values of the threshold. A good signature yields a classifier that has high precision for

increasing values of recall. For each signature, correct and random correspondences were

obtained from1000 pairs of scans in the Bunny, Dragon, Happy Buddha and Armadillo

models. We chose pairs of scans that overlap by at least50%.

In Figure6.5(a) we plot precision-recall curves for spin images of different sizes. No-

tice that spin images with16 planar divisions and16 cylindrical divisions have the best
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Figure 6.5: (a) Precision-recall curves for spin images of different sizes. In the
legend we show the number of planar divisions, the number of cylindrical divisions,
and the percentage of sample points with signatures. (b) Precision-recall curves
for spin images of same size but with increasing percentage of sample points with
signatures.

performance. Increasing the number of divisions makes the signature less effective as small

bins introduce aliasing effects. In Figure6.5(b) we plot precision-recall curves for spin im-

ages of fixed size and increase the number of sample points with signatures. Increasing the

number of sample points with signatures has little effect on the precision of the classifier.

In Figure 6.6(a) and Figure6.6(b) we plot precision-recall curves for fourier shape

contexts of different sizes. Fourier shape contexts with8 radial divisions,8 polar divisions

and8 azimuthal divisions have the best precision-recall curves.

In Figure6.7(a) and Figure6.7(b) we plot precision-recall curves of harmonic shape

contexts of different sizes. Harmonic shape contexts with8 radial divisions,16 polar divi-

sions and16 azimuthal divisions have the best precision-recall curves.

The running time to register many scans is dominated by the cost of comparing sig-

natures, which is linear in the size of the signature. Therefore, we compare signatures of
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Fourier Shape Context

Figure 6.6: Precision-recall curves for fourier shape contexts of different sizes. In
the legend of each plot we show the number of radial divisions, the number of polar
divisions, the number of azimuthal divisions, and the percentage of sample points
with signatures.
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Figure 6.7: Precision-recall curves for harmonic shape contexts of different sizes.
In the legend of each plot we show the number of radial divisions, the number of
polar divisions, the number of azimuthal divisions, and the percentage of sample
points with signatures.
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Figure 6.8: (a) Precision-recall curves of the three signatures computed for scans
with 50% overlap. (b) Precision-recall curves of the same three signatures com-
puted for scans with 75% overlap.

roughly equal sizes. Our spin images have16 planar divisions and16 cylindrical divisions,

yielding a point signature of size256. Our fourier shape contexts have8 radial divisions,

8 polar divisions, and8 azimuthal divisions. Because the bin values are real, half the coef-

ficients of the Fourier shape contexts are complex conjugates of the other half, so we can

discard half of them, and the Fourier shape context is a vector of256 coefficients. The

harmonic shape contexts used in our experiments divide the radial, polar, and azimuthal

coordinates intou = 8, v = 16, andw = 16 bins respectively. The maximum bandwidth of

the spherical harmonics isz = 8, which means that each harmonic shape context signature

has288 coefficients.

In Figure6.8(a) we plot the precision-recall curves of the three signatures. Harmonic

shape contexts have the best precision-recall curves. In Figure6.8(b) we show precision-

recall curves for the same signatures computed from pairs of scans with at least75% over-

lap. For pairs of scans with large overlap, harmonic shape contexts show a large increase

in precision compared to the other signatures. In our coarse registration implementation,
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Model scans points Registration
(Seconds)

Bunny 10 362272 632
Dragon 61 1765913 5986
Buddha 48 2643108 9201

Armadillo 106 1706919 12089

Table 6.1: Running times of the coarse registration algorithm
.

we chose harmonic shape contexts withu = 8, v = 16, andw = 16 bins. Table6.1 we

shows the running times of the coarse registration algorithm. In Figure6.9we show pairs

of registered scans from the four data sets.
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Coarse Fine Coarse Fine

Coarse Fine Coarse Fine

Coarse Fine Coarse Fine

Coarse Fine Coarse Fine

Figure 6.9: Scans in the four test models after coarse and fine registration. The
rippling effect in the coarsely aligned scans suggests that the scans are already
quite closely aligned.
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