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Abstract

From Range Images to 3D Models
by
Ravi Krishna Bala Venkata Sai Kolluri
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Jonathan Shewchuk, Chair

Surface reconstruction algorithms build digital models of real world objects from data
recorded by a scanning device. Since scanning devices are not perfect, they introduce
noise and outliers into the recorded data. From such noisy data, an effective reconstruction
algorithm must produce models that reflect the geometry and the topology of the sampled
surface In this thesis we analyze surface reconstruction algorithms and describe a software
system that we have developed for building three-dimensional models of real world objects.

Implicit methods for surface reconstruction are widely used in computer graphics as
they are fast, easy to implement, and scale well to large point clouds. However, these
implicit methods come with no provable guarantees on the reconstructed surface. We an-
alyze an implicit surface reconstruction algorithm based on a data interpolation technique
calledmoving least square@LS). We prove that under certain sampling conditions, the
reconstructed surface is an accurate geometric and topological representation of the origi-
nal surface. Our sampling requirements are adaptive and allow for noise in the input data
set.

Delaunay-based surface reconstruction algorithms build the reconstructed surface as a
set of triangles from the Delaunay tetrahedralization of the sample points. Many Delaunay-

based reconstruction algorithms have been proposed with guarantees on the reconstructed



surface when the input point cloud satisfies certain sampling conditions. However, most
point clouds obtained from scanning devices violate these sampling conditions. We present
a Delaunay-based reconstruction algorithm cadligegncrusthat uses spectral partitioning

to robustly deal with noise, outliers, and regions of undersampling in the input point cloud.
We show empirical evidence that our implementatioreigiencrusts substantially more
robust than several closely related surface reconstruction programs.

We describe a software system that we have developed for reconstructing three-
dimensional models from data recorded using range scanners. Range images from a scan-
ning device are automatically aligned using point signatures cabechonic shape con-
texts An implementation of the MLS algorithm defines a smooth surface approximating
the scanned surface. Finally, aigencrusimplementation meshes the surface defined by

the MLS algorithm.

Professor Jonathan Shewchuk, Chair Date
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Chapter 1

Introduction

Three-dimensional geometry plays an important role in applications such as physical sim-
ulation, medicine, and preservation and restoration of archaeological artifacts. Indus-
trial applications include reverse engineering of CAD models and product design. Three-
dimensional models required by these applications can be built in two ways: they can
either be designed using interactive modeling software, or they can be created by digitizing
a physical model. Digitizing is often the more accurate and cost effective option for creat-
ing complex models, and for applications such as medical imaging that require an accurate
model of an existing physical object. Surface reconstruction algorithms are used to build
three-dimensional models of physical objects from data captured using a scanning device.
The output of scanning devices such as laser range scanners is a set of point samples
that lie near the surface of a three-dimensional object. In this thesis, we address methods
that reconstruct a digital representation of the scanned object from these point samples.
In the first part of the thesis, we analyze a surface reconstruction algorithm based on a
scattered data interpolation technique caleoving least squaresWe prove that under
certain sampling conditions, the reconstructed surface is a good approximation to the sam-
pled surface. In the second part we describe a system for reconstructing surfaces that builds

smooth, watertight, outlier-free surfaces from noisy range data.
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1.1 Creating 3D Models

Developments in the design of laser range scanners allow us to create highly accurate mod-
els with millions of points in three-dimensional space. Figufallustrates the pipeline for
creating three-dimensional models using acquisition devices such as range scanners. There

are several steps in the pipeline.

1.1.1 Acquiring Models

Methods of acquiring shape information can be broadly classified into active and passive
techniques. Active techniques include contact devices that probe the physical model by
touching, and non-contact laser range scanf@@k that project light onto the physical
object and record shape from the reflected light. Typically, the output of a scanning device
is a range scan which gives depth information indicating the surface as seen from the view
point of the scanner. Figurke2 shows two such range scans. Most modern range scanners
have digital cameras that can capture texture information along with the geometry of the
scanned object.

A lot of research in computer vision is focused on passive techniques for extracting
shape. These techniques include shape from multiple iM@dkshape from shadin@él,
and shape from textuf&2]. While passive methods require only commonplace hardware,
they are less accurate than active methods and the data obtained is often very noisy. The
techniques described in this thesis can be applied to data derived from active as well as

passive techniques.
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Acquisition

Registration

Surface

Reconstruction

Figure 1.1: Pipeline for creating three-dimensional models using laser range scan-
ners.
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Figure 1.2: Left, the Stanford bunny model. Shown in the center are triangulations
of two range scans of the bunny taken from different viewpoints. Multiple scans
must be registered as shown on the right to build a single model of the bunny.

1.1.2 Registration

Range scanners cannot scan an entire object at once because the whole surface is not visible
from a single point of view. Multiple scans, each taken from a different viewpoint, must

be registered—aligned into a common coordinate system—to form a unified model that
covers most or all of the object’s surface. Figar2 shows the alignment of two scans of

the Stanford bunny model.

The registration of multiple surfaces can be aided by external measuring devices like
trackers attached to a moving scanner, or a calibrated turntable used in conjunction with a
fixed scanner, but these methods are not always available or accurate, and registration must
often be done by hand or by algorithm.

Automatic surface registration typically takes two computational stagearse regis-
tration provides a rough positioning of the surfaces, éind registrationbrings the scans
into tight alignment. The most successful technique for coarse registration is based on

computingpoint signaturegshat summarize the shape of the scan relative to a given point.

4
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(a)

Figure 1.3: (@) Implicit surface reconstruction: The reconstructed surface is the
zero set of a scalar function built from the sample points. (b) Mesh-based surface
reconstruction: The reconstructed surface is a piecewise linear approximation to
the sampled surface.

The computed signatures are used to find points with similar point signatures in different
scans. Fine registration is typically done using a variant of Besl and Mckay’s iterative

closest point algorithrfL6] [28].

1.1.3 Surface Reconstruction

Scanners invariably introduce at least two kinds of errors into the data they renesd:
surement errorgrandom or systematic) in the point coordinates, andliers which are
spurious points far from the true surface. Furthermore, objects often have regions that
are not accessible to scanning and so remain undersampled or unsampled. Surface recon-
struction algorithms must process such imperfect data and produce a smooth surface that
accurately reproduces the topology and the geometry of the sampled surface. They must
also scale to handle data with billions of points such as the data sets created in the Digital
Michelangelo projeck61].

Surface reconstruction algorithms can be broadly divided into implicit methods and
mesh-based methods. Implicit methods build a three-dimensional scalar fuhdtiom
the point samples. The reconstructed surface is the zero sgiven by{z € R® : I(x) =
0}. Figurel.3(a) shows a two-dimensional example.

Mesh-based methods build a piecewise linear approximation of the sampled surface.

5
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These include Delaunay-based surface reconstruction algorithms that recover the surface
as a set of triangles in the Delaunay tetrahedralization of the sample points. Eigime

shows an example of a surface reconstructed by a mesh-based surface reconstruction algo-
rithm called Powercrug].

The two representations of the reconstructed surface have different applications. Im-
plicit representations are useful in physical simulations, level set methods, and point-based
modeling and rendering. They can also be rendered directly using ray marching methods.
Surface meshes are important for applications such as rapid prototyping and volume mesh

generation for finite element methods.

1.2 Related Work

We give an overview of previous work on surface reconstruction in this section. We discuss
related work in more detail in later chapters.

Surface reconstruction from unorganized points was introduced to the graphics com-
munity by Hoppe, DeRose, Duchamp, McDonald, and Stud&lk They construct an
implicit method based on an approximation of the signed distance function. Implicit sur-
face reconstruction algorithms derived on the data interpolation technique called moving
least squares (MLS) are now widely used as part of point-based methods for modeling,
simulation, and rendering. MLS methods have been used for scattered data interpolation,
and in meshless methods for simulation.

Although implicit methods are widely used in computer graphics, not much work has
been done on analyzing the surfaces reconstructed by these methods. All work on provably
good surface reconstruction has focused on Delaunay-based methods. The Delaunay-based
crustalgorithm of Amenta and Beri8] was the first algorithm with theoretical guarantees
on the reconstructed surface. The advantage of Delaunay algorithms is that they do not

require sample normals and they easily adapt to changes in sample spacing.
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The software system Scanalyiz$] is widely used for surface reconstruction. It con-
tains implementations of user-assisted coarse registration, the iterative closest point algo-
rithm for fine registration, and the space carving technique of Curless and [@lofor
surface reconstruction. Scanalyze was used to reconstruct models from the point clouds
created in the Digital Michelangelo Projel@1]. The Pieh project[15] used a mesh-
constructing ball-pivoting algorithrfil4] as part of a software system to build a model
of Michelangelo’s Florentine Piat Software systems for surface reconstruction have also
been developed for creating models of urban environments using range scanners. Examples
include the MIT city scanning proje€81], and the work done by Eh and Zakhof45] on

fast three-dimensional city model generation.

1.3 Our Contributions

The main contributions of this thesis are the following:

e An analysis of an implicit surface reconstruction algorithm based on a data interpo-
lation technique calledhoving least squaresiVe prove that under certain sampling
conditions, the reconstructed surface is an accurate geometric and topological repre-
sentation of the original surface. Our sampling requirements are adaptive and allow

for noise in the input data set.

e A Delaunay-based reconstruction algorithm cakégkncrusthat uses spectral par-

titioning to robustly deal with noise, outliers, and regions of undersampling.

e A software system for automatically reconstructing three-dimensional models from

range data that contains the following components.

— An implementation of a registration algorithm automatically aligns range im-

ages using point signatures callearmonic shape contexts
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— An implementation of the MLS surface reconstruction algorithm that defines
a smooth surface approximating the scanned surface. This step reduces the

scanner measurement noise and errors introduced during registration.

— An eigencrusimplementation that meshes the zero set of the implicit surface
defined by the MLS algorithm. The reconstructed mesh is outlier-free and wa-

tertight.



Chapter 2

Provably Good Moving Least Squares

In this chapter we analyze an implicit surface reconstruction algorithm based on an inter-
polation technique callechoving least squarg®r MLS). The input to the MLS algorithm

is a set of sample pointS close to the surfacé’ of a smooth, closed, orientable three-
dimensional object. For each sample point, an approximate surface normal is also given.
The output is a surface passing near the sample points.

For each sample poistc S we define goint function that approximates th&gned
distance functiorof F' in the local neighborhood of. These point functions are then
blended using Gaussian weight functions, yielding a three-dimensional furigtwinich
we refer to as the cut function. The reconstructed surfagegiven by{z € R* : I(x) =
0}. Figure2.1shows a two-dimensional example.

MLS methods have been used for interpolation of irregularly distributed function-value
data, and for building meshless interpolants in computational mechanics. One of the ear-
liest MLS algorithms is the metric interpolation technique of Shepagl Lancaster and
Salkauska$58] give an excellent description of the geometric and differential properties
of MLS interpolants. The MLS method analyzed in this chapter is not entirely new; it is a
variation of the implicit MLS algorithm proposed by Chen, O'Brien, and Shewdfigk

We use the Gaussian function instead of the inverse distance as the weight function used to
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Figure 2.1: Left, a set of points with approximate outside normals. Center, the
cut function built by our algorithm from the points. The zero set of the cut function,
which is the reconstructed curve is shown on the right.

blend the point functions together. Our main contribution is to introduce theoretical guar-
antees for MLS algorithms. We prove that the cut functios a good approximation of
the signed distance function of the sampled surfac®/e also show that the reconstructed
surface is an accurate geometric and topological reconstruction of the sampled surface.
The Delaunay-basectust algorithm of Amenta and Berf8] was the first surface re-
construction algorithm that guaranteed a correct reconstruction for sufficiently dense sam-
ple sets. The algorithm is guaranteed to work only if the input satisfies certain sampling
requirements, which are defined in termdaxfal feature size The local feature size of a
point on the surface is the distance from that point to its closest point on the medial axis.
Our algorithm has its own sampling requirements, described in Se@pwhich are also
based on théocal feature sizdunction. The MLS algorithm analyzed here requires uni-
form sampling in which the spacing between sample points is proportional to the smallest
feature size of the sampled surface. In ChaBtere relax the uniformity requirements to
accommodate adaptive sampling. The MLS algorithm reconstructs smooth surfaces from
noisy point clouds, as the zero surface of the cut function is not constrained to interpolate
the sample points. Our analysis can handle noisy data provided the noise is small compared

to the local feature size of the sample points.

10
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2.1 Related Work

2.1.1 Implicit Methods

Implicit methods reconstruct the surface as the zero set of a three-dimensional function.
They are widely used in computer graphics as they are fast, easy to implement, and scale
well to point clouds with millions of points. Hoppe, DeRose, Duchamp, McDonald, and
Stuetzle[50] provide one of the earliest algorithms, which locally estimates the signed
distance function induced by the “true” surface being sampled. Sample point normals,
which are needed to estimate the signed distance function, are computed by a local least
squares fit of the sample points. Curless and Le\8%} developed an algorithm that is
particularly effective for laser range data comprising billions of point samples, like the
statue of David reconstructed by the Digital Michelangelo Prdjgtt

Smooth surfaces can also be built by fitting globally supported basis functions to a point
cloud. Turk and O’Brier[83] show that a global smooth approximation can be obtained
by fitting radial basis functions. This method builds a linear system from the locations
of the sample points and from the normal at each sample point. The linear system is ill-
conditioned, and grows linearly with the size of the input point cloud. Carr g6lladapt
the radial basis function-fitting algorithm to large data sets using multipole expansions.
Implicit methods are popular as they are easy to implement, scale well to large data sets,
and are robust against noise in the input. However, current implicit methods come with no

guarantees on the correctness of the reconstructed surface.

2.1.2 Moving Least Squares

Moving least squares belongs to a class of meshless interpolation methods used in com-
putational mechanics that also includes partition of unity methods, kernel methods, and

smoothed particle hydrodynamics. See the survey paper by Belytschkol &8lafor a

11
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Method No normals| Theoretical| Scalable
required | guarantees
Hoppe et al[50] Implicit vV
Curless, Levoy30] Implicit VY
Turk, O'Brien[83] Radial basis
functions
Carr et al[26] Radial basis v
functions
Pauly et al[69) Projection MLS VY
Alexa et al.[2] Projection MLS VY
Amenta, Kil[7] Projection MLS VY
Fleishman et al41] | Projection MLS
Ohtake et al[67] Implicit MLS VY
Shen et al[ 78] Implicit MLS VY
Chapter2 Implicit MLS v Vv
Chapter3 Implicit MLS v VY
Ball-Pivoting[14] Mesh v VY
Gopi, Krishnar{46] Mesh VY
Boissonnat19) Delaunay v vV
a-shapé3§] Delaunay v vV
Crust[4] Delaunay v v vV
Boissonnat, Cazal®0] Delaunay v v a4
Implicit
Powercrust6] Delaunay v v v
Edelsbrunnel36] Delaunay v a4
Cocongl5] Delaunay v v vV
Tight Cocond 33 Delaunay v v vV
Eigencrust, Chaptdy Delaunay v v
Robust Cocong34] Delaunay v v vV

Table 2.1: Comparison of surface reconstruction algorithms. No normals required:
Can the algorithm reconstruct with no normal information at the sample points?
Theoretical guarantees: Does the algorithm have provable guarantees on the re-
constructed surface? Scalable: Can the algorithm scale to large data sets? Algo-
rithms with single checkmark can scale up to a million sample points, algorithms
with two checkmarks can handle points clouds with ten million points, and algo-
rithms with three checkmarks can scale up to a billion sample points.

12
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Noise
practice

Noise
theory

Adaptive
sampling

Watertight
reconstruction

Sharp
corners

Hoppe et al[50]

Curless, Levoy30]

Turk, O'Brien[83]

Carr et al[26]

Pauly et al[69]

Alexa et al.[2]

Amenta, Kil[7]

Fleishman et al41]

Ohtake et al[67]

Shen et al[78|

Chapter2

Chapter3

SSENESENENENENENENENEN

Ball-Pivoting[14]

Gopi, Krishnar(46]

Boissonnat19

NEN

a-shapd 38|

Crust|4]

Boissonnat, Cazal®0]

Powercrust6]

Edelsbrunne}36]

Cocond 5]

Tight Cocond 33

v

Eigencrust, Chaptey

vV

Robust Cocon€34]

v

v

ASNENENENENENENEN

Table 2.2: Comparison of surface reconstruction algorithms. Noise practice: Can
the algorithm reconstruct from noisy point clouds? Noise theory: Does the algo-
rithm have provable guarantees for noisy point clouds? Adaptive sampling: Can
the algorithm accommodate point clouds in which sampling is proportional to fea-
ture size? Watertight reconstruction: Is the reconstructed surface guaranteed to be
free of holes? Sharp corners: Can the algorithm reconstruct a surface with sharp

corners?
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comparison between these different formulations. In computer graphics, Ohtake, Belyaev,
Alexa, Turk, and Seid€l67] present a partition of unity method with a fast hierarchical
evaluation scheme to compute surfaces from large point clouds. Our MLS construction is
based on the implicit MLS algorithm given by Shen, O'Brien, and Shew¢Rgk which
introduced the idea of associating functions, rather than just values, with each point to en-
sure that the gradient of the implicit function matches the gradient of the signed distance
function near the sample points.

A different approach to moving least squares is the nonlinear projection method orig-
inally proposed by Levif60]. A point set surface is defined as the set of stationary
points of a projection operator. This surface definition was first used by Alexa, Behr,
Cohen-Or, Fleishman, Levin, and Sill2 for point-based modeling and rendering. Since
then the surface definition has been used for progressive point-set sUudétesd in
PointShop3070], a point-based modeling tool. Because Levin's method is not guaranteed
to converge, Amenta and Ki¥] give an explicit definition of point set surfaces as the set of
local minima of an energy function along the directions given by a vector field. Adamson
and Alexal 1] provide a simplified implicit surface definition for efficient ray tracing. They
also describe sampling conditions that guarantee a manifold reconstruction. The implicit
and the projection-based MLS algorithms require normals at each sample point. They scale
well to large data sets and are robust against noise in the input point cloud. However, there

are no provable guarantees on the reconstructed surface.

2.1.3 Computational Geometry

Following the Crust algorithm of Amenta and Bd8], many Delaunay-based algorithms
for surface reconstruction with provable guarantees have been proposed. Amenta, Choi,
Dey, and Leekh#5] present the Cocone algorithm, which is much simpler than the Crust,

and comes with a proof that the reconstructed surface is homeomorphic to the original sur-
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face. The Powercrust algorithm of Amenta, Choi, and Kollfiuses weighted Delaunay
triangulations to avoid the manifold extraction step of the Crust and Cocone algorithms,
and to recover sharp corners. Boissonnat and Cé2@ll$uild a smooth surface by blend-

ing together functions associated with sample points, using natural neighbor coordinates
derived from the Voronoi diagram of the sample points. The Robust Cocone algorithm of
Dey and Goswanli34] guarantees a correct reconstruction for noisy point data. Delaunay-
based algorithms do not require sample point normals, and current Delaunay software can
tetrahedralize hundreds of millions of points. However, surfaces reconstructed by Delau-
nay algorithms interpolate (a subset of) the sample points and a mesh smoothing step is

often necessary when the input point cloud is noisy.

2.1.4 Signed Distance Functions

Signed distance functions of surfaces are useful in their own right. Ray marching methods
used to render implicit surfaces can use the signed distance function to quickly compute the
intersection of a ray and the implicit surface. Mitra, Gelfand, Pottmann, and Gié#hs

use approximation of signed distance functions to align overlapping surfaces. The cut func-

tion constructed by our algorithm is a good approximation to the signed distance function.

2.1.5 Level Set Methods

Level set methods that have been used in surface reconstrli@hrphysical modeling

of fluids, and in many other areas rely on signed distance functions to implicitly maintain
moving surfaces. See the books by SetHiz#] and Osher and Fedki{é8] for an intro-
duction to level set methods. Level set methods require the signed distance function and
its gradient to be very accurate near the sample points. We prove that the cut function

constructed by the MLS algorithm satisfies this requirement.
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2.1.6 Estimating Point Normals

The MLS surface definition analyzed here requires normals at sample points. In practice,
the sample point normals are obtained by local least squares fitting of a plane. This least
squares method was first suggested by Hoppe, DeRose, Duchamp, McDonald, and Stuet-
zle[50]. Mitra, Nguyen and Guibd$5] analyze the least squares method for normal esti-
mation and present an algorithm for choosing an optimal neighborhood around each sample
point. They show that under certain adaptive sampling conditions, the least squares fit will
produce an accurate normal with high probability. Bremer and [24lprove a similar re-

sult based on a weighted least squares fitting near each sample. Alternatively, Amenta and
Bern[3] show that sample point normals can be approximated using the Voronoi diagram
of the sample points. Dey, Li, and S[86] compare these two methods of estimating sam-

ple point normals, and show that the Voronoi method is more robust against undersampling

and anisotropic sampling.

2.1.7 Contouring Algorithms

Sometimes it is desirable to generate a triangulation that approximates the implicit surface
that is the zero set of a cut function. The marching cUi6&b algorithm is widely used

in computer graphics for triangulating isocontours of implicit functions. Marching cubes
performs poorly near sharp corners, and often the contoured surface has bad quality trian-
gles. When the gradient of the cut function is available, the extended marching cubes algo-
rithm [57] can be used to recover sharp corners. Dual contolififlis also effective for
reconstructing meshes with sharp corners. There has been some recent work on contouring
algorithms with theoretical guarantees. Boissonnat and d@a@bgive a Delaunay-based
contouring algorithm that guarantees good-quality triangles in the reconstructed surface.
Boissonnat, Cohen-Steiner and Ved®2] present a contouring algorithm with guarantees

on the topology of the reconstructed triangulation.
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&

nCI Ny

Figure 2.2: A closed curve along with its medial axis. The local feature size of p is
the distance to the closest point  on the medial axis.

2.2 Sampling Preconditions

Our sampling preconditions are based onlteal feature siz€lfs) function proposed by
Amenta and Beri3]. For each poinp € F, Ifs(p) is defined as the distance fropto
the nearest point of the medial axis 6f Our theoretical guarantees require sampling
proportional to the smallest local feature sizefof

Assume that the sampled surface has been scaled such th@atdhany point onfF" is
at leastl. Any smooth surface can be scaled in this manner because for eachy poirat
smooth surfacé’, Ifs(p) > 0. We require that for each poipte F', the distance from to
its closest sample pointis less thare as shown in Figur@.2

The amount of noise in the sample points should be small, compared to the sample
point spacing. For each sample pomthe distance to its closest surface paiishould be
less than:? as shown in Figur@.2 Moreover, the angle between the normalof » and

the normal7,, of ¢ should be thas.
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Arbitrary oversampling in one region of the surface can distort the value of the cut
function in other parts of the surface. Hence we require that local changes in the sampling
density are bounded. Let, be the number of sample points inside a ball of radius
centered at a point. If oy, > 0, the number of sample points inside a ball at radiuat p

should be less thagw. The results in this chapter hold true for values &f 1/50.

2.3 Reconstructed Surface Definition

Lets; € S be the sample points in the input point cloud that lie near the suffaaed let

7; be the approximate outside normal of sample pejrt S. For each sample poinrt we
define a point functio®;(z) whose value is the signed distance froro the tangent plane
ats;, P(z) = (x —s;) - 11;. The cut functior/ is a weighted average of the point functions.

I(z) = Z Wi(z)(x — s;) - 7). (2.1)

ZS] ES 8;€8

For each sample point define a oversampling factas given by the number of sample
points inside a ball of radius arounds;. The oversampling factar; accounts for over-
sampling in the neighborhood of sample peaintWe use Gaussian weight functions along

with the oversampling factor,
W,(l’) = 6—||$—Sz'H2/€2/ai7

in computing the weighted average of the point functions. Hésdhe parameter defined
in our sampling requirements.

The cut function is the best least squares fit to the point functions in the following
sense: at point, each sample poir; votes for the value of the cut function to B¥(z)

with a weightWW;(z). Setting the cut functior(z) to the weighted average of these point
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Figure 2.3: For a point z, p is the closest point to = on the surface. The space
outside the ball By(x) is divided into spherical shells of width €. Hj is the shell
bounded by spheres of radius r, and r;, + e.

functions minimizes the weighted least squares error in the estiméate pf

2.4 Geometry of the Reconstructed Surface

Consider a point shown in Figure2.3, whose closest point on the surfaceisLet ¢(x)
be the signed distance function bf Inside F’, ¢(z) < 0, and outside"’, ¢(z) > 0. The
vectorzp is parallel to the surface normal pfand||zp| = |¢(z)|. Let By(x), Ba2(x) be
two balls centered at pointas shown in Figur@.3. The radius ofB; () is |¢(x)| and the
radius of By () is |¢(x)| + 4e.

We define an error functioR(z) that measures the difference between the cut function

computed by the MLS algorithm and the signed distance funetien. This error function
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E(x) is given by,

E(x) = I(z) - ¢(x)

- = Sl 7 22 Wi@)(Bi(a) = 9(@))
sj€ J s;€S
1

= — L S W), (2.2)

The function(;(x) defined in Equatior2.2 measures the error in the point function of
sample point;.

Our analysis of the cut function has two main ideas. First, the exponential decay of
the Gaussian weight functions means that the cut function is mostly determined by sample
points insideBy(x). Second, the cut function converges to the signed distance function
with e because the error functions associated with sample points iBside converge to
zero as goes to zero.

To prove our results, it is convenient to separate the contributions of sample points
inside B, () and outsideB, (z) to the error function(x). Leté(z) = >, ¢ Gi(7)Wi(x)
be the weighted combination of sample point error functions, afldllet) = . .o Wi(x)
be the sum of all weight functions at Let ¢, (z) and...(z) be the contributions tg(x)
by sample points inside and outsifg(z). Similarly, letWV;,(x) be the sum of weights of
all sample points insid&;(x), and letiV,,.(z) be the weight of all sample points outside
By(x).

Let F,; be the outside-offset surface of’ that is obtained by moving each pojnon
F along the normal gt by a distance. Similarly, let F},, be the inside-offset surface of
F as shown in Figur@.4. Dey and Goswanii34] (Lemma 3) prove that the offset surfaces
have the same topology @& whene is small relative to the feature size of each point on
the surface. The-neighborhood is the region bounded by the inside and the outside offset

surfaces. For any pointinside thes-neighborhoodj¢(z)| < e. We study the properties of
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Figure 2.4: The inside and outside offset surfaces of a two-dimensional curve.

the cut function for points outside thkeneighborhood, in SectioR.4.1and prove that the

cut function is non-zero outside theneighborhood o’ (Theorem2.7). This means that

the reconstructed surface is inside thaeighborhood of'. To prove that the reconstructed
surface is a manifold, we show that the cut function has a non-zero gradient at points inside
the e-neighborhood. These geometric results will be used in Se2tdto show that is
isotopic toF'.

We begin by proving some useful geometric properties of the surface and surface nor-
mals which we use later in the analysis of the cut function. Amenta and[Bepmove the
following Lipschitz condition on the surface normal with respect to the fundfioris we
assume that for each poipte F', Ifs(p) > 1, we can state the Lipschitz condition in terms

of the distance between two points.

Theorem 2.1.For pointsp, ¢ on the surfacé” with d(p, ¢) < r, for anyr < 1/3, the angle

between the normals atandgq is at most-/(1 — 3r) radians.

Consider the surface inside a small b&llcentered at a point € F as shown in
Figure2.5 The following lemma proves that the surface insi@éas to be close to the

tangent plane at.
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-
-
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Figure 2.5: The surface inside a ball B of radius r has to be outside the medial
balls B;, and B,,. As a result, all sample points in B are between two planes P,
and P, that are at a distance of O(r? + €2) from p.

Lemma 2.2. For a pointp € F, let B be a ball of radiusr < 1/4 centered ap. The
sample points insidés lie between two plane®,, P, parallel to the tangent plane at.

The distance from to P, P, is less thanr + €2)?/2 + ¢2.

Proof. Consider sample point € B, and letp be the point closest te on F. By the
sampling preconditiond(s, ¢) < ¢2. Without loss of generality assume thas above the

tangent plane at as shown in Figur@.5. The distance fromp to ¢ can be written as
d(p,q) < d(p,s) +d(s,q) <7+ €. (2.3)

As point ¢ is on the surface, it has to be outside the medial Bgll of radius! > 1.
Hence the distance fromto the tangent plane atis less thari(1 — cos 26) = 2[sin?§ <
d*(p, q)/2. Let P, be the plane passing througland parallel to the tangent planepatAs
d(s,q) < €2, the distance from to the planep; is

d(p, P) < d*(p.q)/2+ € = (r+€)*/2+ €,
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by Equation2.3. O

Partition the space outsid& () into spherical shells of widthas shown in Figur@.3.
Let H,, be the region between balls of radiysandr;, +¢. We sum over the spherical shells
starting atB,(z) to prove an upper bound on the error in the cut function due to sample
points outside3;(x). In the following two lemmas we prove an upper bound on the weight
of sample points inside these spherical shells. Recall that for each samplespaire
oversampling factod; is given by the number of sample points in a ball of radiasound

Si.
Lemma 2.3. For a ball B of radius§, >°, 5+ < 1.

Proof. Without any loss of generality assume tlatcontainsa: > 0 sample points. Let
s; be a sample point insid8. As all sample points insid& are inside a ball of radius
e centered at;, a; > «. The contribution of all sample points inside is given by,

> L<al <t O

si€B a; — T«

Lemma 2.4. Let H,, be a spherical shell of width, centered at point. Let the radius of

the smaller sphere surroundind, ber, > 4e. Then,ZSier L < 300:—5.

a;

Proof. Let C' be the smallest number of spheres of radi( that coverH,. Consider
a covering ofH,, with axis-parallel cubes of size/v/3. Any cube that intersectdl}, is
inside a slightly larger shell bounded by spheres of radjus 2¢ andr, — ¢ centered at
x. So the number of cubes that covéy, is less tharB6v/3re(r? + rie + €2)/€5. Any
cube in this grid is covered by a sphere of radi(/& Applying Lemma2.3to each sphere,
Ywen, = < C < 36V37(r} + re+ €%) /€. Asry, > 4e we can simplify the upper bound

onC'to

1 2 Tk Tk\2 2 7’13
> o < 3637 (12 + () + (5)%)/€* < 300, O

SZ‘GHk
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2.4.1 Outside thes-neighborhood

In this section we analyze the error functiéiiz) for x outside thes-neighborhood. We
prove that the cut function is mostly determined by sample points inside), and that
the cut function is non-zero outside th@eighborhood.

The following Lemma shows that for any sample pointe By (z), P;(z) is close to

¢(x). In order to state this result for points in the inside and outside offset regions, it is

convenient to defing(x) = @Eg' to be the sign function of'. Sincex is outside the

e-neighborhood|¢(x)| > 0. Forz outsideF,,, u(z) = 1 and forx inside £}, u(z) = —1.

Lemma 2.5. Let = be a point outside the-neighborhood. Let;(z) be the error in the

point function of sample point € By(x) evaluated atr.
o pfx)Gi(z) < de.
o w(@)Gi(@) > —(Bep(x)d(x) + 13¢%).

Proof. Letp be a closest point to on the surface. By the definition of the signed distance

function,d(z, p) = u(z)p(x). Ass; € By(x)

=
=
e
S
IA

d(x,s;)

p(@)d(x) + de.

4e.

IN

=
8

S~—
o
&
I

To prove the lower bound om(x)(;(z) consider the point’ closest tos; on the surfacé”’
as shown in Figur@.6. Let B,, be the medial ball touching on the side of' oppositer
and let/ be the radius 0B,,. Letd be the angle betweets; and the normal gt'. We prove

a lower bound orl(z, s;) cos # and use it in proving the desired lower boundigm)(;(x).
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The distance betweenand the centey of B,, is

d*(z,q) = (d(z,s;)cos®+1+d(si,q))?* +d*(z,p')sin® 0

< (d(x,si)cos0 + 1+ €*)? + d*(x,p') sin® 6, (2.4)

by the sampling preconditions.
The medial ballB,, cannot intersecB; (x) which is contained in a medial ball on the
opposite side of the surface. Therefore the sum of their radii should be less than the distance

between their centers. By Equati@r we have

(I+d(z,p))?* < (d(z,s;)cosl+ 1+ €)* + d*(z, s;) sin® .

1 2y 2
d(x,s;)cos > TES] (2ld(z,p) — (21 + €*)e*— (2.5)

16€* — d*(z, s) + d*(z, p)) . (2.6)

Sinces; is inside By(z), d(z, s;) < d(x,p) + 4e. From the local feature size assumption,

[ > 1. Substituting into EquatioB.6,
d(x,s;) cosf > d(z,p)(1 — 5¢) — 9. (2.7)

The angle between the normalsagind the surface normal ais at mosk by the sampling
preconditions. Thereforey(x)P;(x) > d(x, s;) cos(d + €). Using standard trigonometric

formulas, it is easy to show thaiys(6 + €¢) > cos — e. By Equation2.7 we have

p(x)Pi(z) > d(x,s;)cost —ed(z,s;)
> d(z,p)(1 — 5€) — 9¢* — e(d(x, p) + 4e)
> d(x,p)(1 — 6€) — 1362 (2.8)
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Figure 2.6: Sample Point s; is inside By(x) and p’ is the point closest to s on F.
B,, is a medial ball touching p’ on the side of F' opposite .

Sincep is the point closest te on F', u(z)¢(x) = d(z, p). Substituting into EquatioR.8
ua)Gi(x) = p(x)Pi(x) — p(r)g(x) = —(6epu(z)d(x) + 13¢%). O

In the following lemma we prove two results showing that the points outBide)

have little effect on the value df(z). We use a constant = 0.001 to state these results.
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Lemma 2.6. Letz be a point outside the-neighborhood. LelV,;(x) be the total weight

of sample points outsidB, (). ThenW"“(t()) < ¢1, and| By (2)] < cie.

Proof. Consider the division of space outsiBg(x) into spherical shells of widthstarting
with By (z) as shown in Figur@.3. Let the radius 0B, (z) bery = |¢(z)| 4 4e. The value
of the Gaussian weight function of each sample point inside $heditz is at most—"+/<".

By Lemma2.4we have

= Wi(x) _ 300 > 22 300 2
E L E e TR/€ E 2 ,—(rork) /e 2.9
out ’l" E ke ( )

k=0 i k=0

Here r,=r¢ + ke is the radius of the smaller sphere boundiig. The summation in
Equation2.9 is a geometric series with a common ratio®/c < 0.01 that has a closed

form solution. An upper bound is given by,
7’8 2/.2
Wow () < 4506—26—%/6 . (2.10)

Let B, be a ball of radius centered ap. The weight of samples insidg. is a lower bound
for W (x). From the sampling preconditionB, containsa > 1 sample points, and a ball
of radius2e centered ap contains at mosta sample points. Recall that the oversampling

factora; associated withs; is the number of sample points inside a ball of radiasound

si. Therefore fors; € B., - > <.

1 1
OEDY ;e—<|¢<z>|+e>2/e2 > %e—umwew& _ ge—uqﬁ(m)we)?/e? (2.11)

SiEB6

Combining results in Equatioch. 10and Equatior2.11we have

9 2
Wout(l’) < 3600T_oef(rgf(|¢(x)|+e)2)/e2 _ 3600(|(Z§(‘I)—+46)€*3€(2\¢(I)\+56)/62. (2.12)
Wi = 2 €2
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For|o(z)| > €, the expression in Equatidh12is a monotonically decreasing function of

|6(2)| whose value is maximum when(z)| = e.

W 25¢?
() 30025 2 <,
€

X

To prove a similar bound of¥,(z)| consider sample point; € H;. By definition,

|Pi(x)] = (x — s;) - 11; < ||z — s, and|p(x)| < ||z — s4||. Therefore,
G(2)| < o) + [|v — sil| < 2[|x — 54|

Recall thats,;(x) is the sum of the error functions associated with sample points outside
BQ([E)
(@) < D 1G@)Wix) <2 D o —si|[Wi(z). (2.13)

$i¢Ba(x) si¢Ba(x)
For||z — s;]| > 7o > Be, the value of|z — s;||e~l*=5I°/<* decreases dg: — s;|| increases.

Hence for each; € Hy, [Gi(z)|Wi(z) < 2rre"+/< /a;.

600 o~ 3 _,2/2
|§Out(x)]<€—22r,?;e e
k=0

Just like Equatior2.9, an upper bound of the summation in the above equation is given by,

900 5 22

|Eout ()] < 6—27"36_T0 (2.14)

Substituting the lower bound di (z) from Equation2.11into Equation2.14we have

|€out ()| - 7200

o 2l < D e = TR (o) 4 e I (2.15)
x €

€2
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The value ofE,,+(z) is maximized whene¢(z)| = 5e. By Equation2.15we have

_ Jowl@)] _ 7200

W) 5 (125e*)e™*! < cye. O
x €

| Eout ()]

In the following theorem we prove that the cut functibfx) is non-zero outside the

e-neighborhood.

Theorem 2.7. For each pointr outsideF,,, /(x) > 0 and for each poiny inside F},,,

I(y) < 0.

Proof. Consider point: outsideF, ;. The cut function at:
[(l‘) = Cb(l’) + Ein(x) + Eout(x) 2 Cb(flf) + Ein(x) — (1€, (216)

by Lemma2.6. We have a lower bound afi, (z) from Lemma2.5.

En(z) = ! D Gla)Wi(x)

W(il?) $i€Ba(x)
Win ()

min{(;(z)|s; € Ba(x)} W)
> —(6eg(x) + 13€%). (2.17)

v

Substituting the result in Equatidhl7into Equatior2.16we have

I(x) > ¢(z)(1 — 6¢) — 136> — cre.

As z is outsideF,,, ¢(x) > e. Itis easy to check that(z) > 0 whene < 1/50, A similar

argument proves that the cut function is negative at any paimside F,,. O

Theorem2.7 proves that the cut functioh does not have any spurious zero crossings

far away from the sample points, and gives an upper bourdofthe Hausdorff distance
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n

Figure 2.7: For x in the e-neighborhood, the sample points inside balls By(x) are
contained in a ball of radius 4¢ centered at p.

betweent' andU. In Sectior2.4.2 we derive tighter bounds which show that the Hausdorff
distance betweeti andF is O(e?).
Combining the results in Lemm&5 and Lemma2.6, it is easy to show that the cut

function converges to the signed distance functiongses to zero.

p(x)I(x) > p(r)d(x)(1 — 6€) — 13e¢* — cye.

p(@)(x) < ple)p(r) + 4e + cre.

2.4.2 Thee-neighborhood

In this section we analyze the cut function inside theeighborhood which contains the
reconstructed surface. Our prove that the reconstructed suffescg smooth manifold that
converges to the sampled surface g@oes to zero. The reconstructed surfaces smooth
because the point functions and the weight functions used in computing the cut function are
all smooth. To prove thdl is a manifold. we show (Theoreg117) that the cut function

has a non-zero gradient inside thaeighborhood.

Inside thee-neighborhood we defin8,(z) as a ball centered at whose radius: is
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given by
o = (|o(x)] + €)* + 12€%. (2.18)

In the following lemma we prove that sample points insiéi¢z) are contained in a small

ball centered at the poiptclosest tar on F'.

Lemma 2.8. Letx be a point that is inside theneighborhood, and lei be the closest point

to z in F. All sample points insid&,(x) are contained in a ball of radiuse centered ap.

Proof. Lett be the point at whichp intersects the plang; which is parallel to the tangent

plane afp as shown in Figur@.7. The distance betweenandt can be written as
d2(87 t) = d2(87p> o dz(pv t) = dQ(x7 S) o dz(CC,t) (219)
As s isinsideBy(z) d*(z, s) < (|¢(z)| + €)? + 12¢2. Substituting into Equatio8.19

d*(s,p) —d*(p,t) < (l¢(x)| +€)* +12¢* — (|p(2)| — d(p, 1))’
d*(s,p) < 13¢* +2|g(x)|e + 2lo(x)|d(p, 1)

< 15€* + 2¢d(p,t). (2.20)

Sincex is inside thee-neighborhood, any sample point insid®(x) is clearly inside a
ball of radius5e centered ap. By Lemmaz2.2 s is between two planes at a distariée +
€?)/2+ €% from p. Henced(p, t) < (5e+€?)/2+€* < 14€%. Substituting into Equatio.20
d*(s,p) < 15€* + 28> < 16¢°. O

In the following lemma we show that for a pointwhose closest point on the surface

is p, the point functions of sample points nednave small error when evaluatediat

31



Chapter 2. Provably Good Moving Least Squares

Lemma 2.9. Consider a pointr whose closest point on the surfageis p. Let7 be the

surface normal ap and let B be a ball of radiusr < 1/4 at p. For each sample point

s; € B, the angle between the normal atand i is less tharO(r) = 1—§(+1ni52) + €. For

each sample poing; € B, |¢;(z)| < |o(2)|O(r)?/2 + rO(r) + (r + €2)?/2 + €.

Proof. Letp; be the point closest tg on F. Then,d(p, p;) < d(p, s;) + d(s;, p;) < r+ €.
The angle between the normalpatand the surface normalatp is less thanl_g%g) by
Theorem2.1

Let 77; be the normal associated with From the sampling preconditions the angle
between the normal qf; andr; is at moste. So the angle betweety andri is given by

O(r) < #jjeg) + . We can now writei; = 7 + p;, where||p;|| < ©(r).

Gz) = olx) - Fi(x)

= o(x) = (x—p) 7 — (p—si) - (7 + pi). (2.21)

Because is the closest point ta on the surface(z — p) is parallel tori and ||z — p|| =

|o(2)].
[6(2) = (x —p) - 7is] < [é(2)|(1 = cosO(r)) < |6(2)|O%(r)/2.

Since sample poiry; is insideB,
((p = si) - pi| <7O(r).

From Lemma2.2, the distance from each sample point insi®léo the tangent plane atis
at most

[(p—si) 71 < (r +€)°/2+ €.
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Substituting the upper bounds on the individual terms into Equ&tidh

|Gi()]

IN

|p(x) — (v —p) 70| + |(p = si) - pi] + |(p — i) - 7]
< o(2)|©%(r)/2 +rO(r) + (r + €2)?/2 + €&

]

All sample points insideé3,(x) are contained in a small ball around the point closest to
x on F' by Lemma2.8 So the result in Lemma.9 gives us an upper bound on the error

functions of all sample points insidg,(z).
Lemma 2.10. For a pointz inside thee-neighborhood| E;,| < 3062

Proof. Consider the error in the cut function due to samples insigle’).

|Bun(z)] = '5“ < Z )<max{r<1< )| | 5 € Bala)}.

.%‘
SZGBQ
From Lemma2.8, we know that each sample pointe B, (z) is inside a ball of radiuge
aroundp the point closest te on F'. By Lemma2.9we have

Gi(2)] < |o(2)|O%(4e)/2 + 4O (4e) + (4e + €) /2 + €% < 30>, (2.22)

O

In the following lemma we show that sample points outsitiér) have little effect on
the value of the cut function at. The proof is similar to the proof of Lemnta6 and is

given in the appendix.
Lemma 2.11. For a pointz inside thee-neighborhood| E,. ()| < 4€>.
Proof. Given in the appendix. ]
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We will now prove a bound on the error in the cut-function insidedimeighborhood
which shows that the Hausdorff distance betwéeand the reconstructed surfateis
O(é€?).

Theorem 2.12.For a pointx inside thes-neighborhood|E(z)| < 34¢€?.

Proof. Adding the bounds of¥;,(x)| and|E.y(x)| in Lemma2.10and Lemm&.11gives

the desired result.
|E(z)| < |Bw(2)] 4 |Eow ()| < 30€* + 4¢® = 346>, O

Theorem 2.13.For a pointz € U, letp be the closest point ifi. Thend(z, p) < 34€2.

Proof. Sincex € U, I(x) = 0 and the result in Theorer®.7 tells us thatz is inside
the e-neighborhood. Hence from Theoreél2 |E(x)| < 34¢%. So,d(z,p) = |¢(z)] <
[I(x)| + |E(z)] < 346> O

Theorem 2.14.For a pointp € F, letq be the closest point iti. Then,d(p, q) < 34€%.

Proof. If I(p) = 0 we are done; assume without loss of generality ftia} < 0. Lett be
the point on the outside normal pfat a distance o$4¢? from p.

From Theoren2.12 |1(t)| > |¢(t)| — |E(z)| > d(p,t) — 34€* = 0. As the cut function
I is continuous, there is a poisaton pt at which(s) = 0 andd(p, s) < 34€*. Sinceq is

the closest pointtp in U, d(p, q) < d(p, s) < 34€>. O

Consider the gradient of the cut functid (z) = V¢(z) + VE(z). Letp be the point
closest tor on the surface”, and letr7 be the surface normal at The gradient of the
signed distance function is given B¥p(x) = © The gradient of the error function can be

written as

V(e = Y TSI |~ WG )

54,8;€8
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We separate the contributions of sample points inside and oufside to the gradient of

the error function.

VEa@) = 3 TS g W@W@EE =) o

2712
5;€Ba(x) W(:C) 54,8;€Ba() W (1;)
and,
n—n;) Wiz 2Wi(x)Wi(x)(i(x)(s; — s,
i) = 3 AW W0 5) (5 5
siZBa(x) 8;¢B2(x)Vs;¢€B2(x)

Lemma 2.15. Let x be a point in thes-neighborhood off" and letp be the point onF’
closesttar. Letri be the normal op. Then||V Ei, (z)|| < 486¢ and,|ii-V Ey, ()] < 1158¢2,

Proof. By Equation2.23we have

VB < 3 1= mHW<>+ 3 WG] s =)

2 2
s;€8 s5i,5;€Ba(x) W (x)
2
< — 1 5 . — Sq|} 2.25
< Slreang){Hn wil} + 5 e ){\C( z)|l[si — s;ll} (2.25)

By Lemma2.9 |7 — 7;|| < ©(4¢e) < 6e. By Equation2.22for each sample point; €
Bs(x), |Gi(x)] < 30€%. Since sample points;, s; are inside a balB,(z) whose radius

ro < 4e, ||si — 54 < 8e. Substituting into EquatioB.25
2 2
IV Ein(7)]| < 6+ = x 30€” x 8¢ < 486e.
€
ConsiderV E;,(x) projected onto the normal vectar

i VEa(r) < max {Jii- (71— 7))
45 max (G@ (- ) (2.26)

€“ s4,5;€Ba(x)
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Chapter 2. Provably Good Moving Least Squares

Since the angle betweehandri; is less thar® (4¢) < 6e, 7i- (1 —77;) = 1 — cos 6e < 18¢2.
By Lemmaz2.2, the distance from all sample points insiBg(x) to the tangent plane at
is at most{4e + €2)2/2 + €2. Hencelii - (s; — s;)| < (4e + €%)* 4 2€% < 19¢%. Substituting
into Equation?2.26

i - VEin(z) < 18€* + 11406* < 1158€%. O

In the following lemma we show that the sample points outdéider) do not affect the
gradient of the cut function. The proof is similar to the proof of Lenfxtel and is given

in the appendix.

Lemma 2.16. For each pointz inside thee-neighborhood||V E,.(z)|| < 146¢ and |77 -
VE, ()| < 496€2.

Proof. Given in the appendix. O]

Theorem 2.17.For a pointz inside thec-neighborhood, leti be the surface normal of,

the point closest ta on F'. Thenyi - VI(x) > 0.

Proof. From the definition of the error function,
n-VIi(x)=n-Vo(x)+7-VE(@x)>1—|i-VEu(z)|— |- VEo(z)]. (2.27)

By Lemma2.15|7 - VE;,(z)] < 1158¢%, and by Lemma.16 |77 - V Ey (7)| < 496€>.
Substituting into EquatioB.27

i VI(x) >1—1158¢* — 496€® = 1 — 1654¢€> > 0. O

The result in Theorerd.17 also proves that the gradient can never be zero inside the
e-neighborhood. The zero set éfis inside thee-neighborhood ofF' by Theorem?2.7.
Therefore from the implicit function theorel7], zero is aegularvalue of and the zero

setU is a compact, two-dimensional manifold.
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Chapter 2. Provably Good Moving Least Squares

The normal of the reconstructed surface at a poiat U is given by, = %. In
the following theorem we prove an upper bound on the angle betwgand the normail

of the pointp closest tau in F'. We show thati, converges tai ase goes to zero.

Theorem 2.18.Letwu be a point on the reconstructed surfadevhose closest point oR
is p. Letr,, be the normal ot/ at « and letri be the normal of" at p. An upper bound on

the anglef betweeni,, and is given by

1 — 1654¢>

g >
cos 1+ 632

Proof. The angle betweeii andri, is given by

n-VI(u)
IV (u)]

cosf =

(2.28)

By Theorem2.17we have
i - VI(u) > 1 — 1654¢€°.

Consider the following upper bound on the norm of the gradient of the cut function,
IVI(W)[| < [[Vé)| + IVE)| <1+ [VEw(2)| + |V Eou(w)]]-

By Lemma2.15||V Ey, ()| < 486¢, and by Lemma&.16 ||V E,. ()| < 146¢. Substitut-

ing into Equatior?2.28

1 — 1654¢2
> L 100t 0
oSt = 63
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Chapter 2. Provably Good Moving Least Squares

Figure 2.8: Points r, ¢ are the closest points to p on the offset surfaces. The line
segment p;p, intersects the zero set U at a unique point w.

2.5 Topological Properties

In this section we show that the reconstructed surtates the same topology as the sam-
pled surfacer’. Our first topological result is thdf is homeomorphic t&'. As surfaces
F andU are compact, a one-to-one, onto, and continuous function ffdm F' defines a

homeomorphism.

Definition: LetI : R®* — F map each poing € IR? to the closest point of .

Theorem 2.19.The restriction ofl" to U is a homeomorphism frofi to F.

Proof. The discontinuities of are the points on the medial axis Bf As U is constrained
to be inside the-neighborhood of", the restriction of" to U is continuous.

Now we show that’ is one-to-one. Lep be a point onF’ and letrs be the normal gt as
shown in Figure2.8. Consider the line segmehparallel ton that intersectd,; and F},
atp, andp; respectively. At each point € p,p;, VI(y) - i > 0 by Theoren2.17. So the
functionI(x) is monotonically decreasing fromto ¢ and there is a unique poiaton p,p;
wherel(u) = 0. Assume there is another pointc U for whichI'(v) = x. The pointv
has to be outside the segmepp; which means that the distance franto its closest point
on F'is greater tham. This contradicts Theore@ 13

Finally we need to show thatis onto. Asl' maps closed componentsi@fonto closed
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Chapter 2. Provably Good Moving Least Squares

components of’ in a continuous manner,(U) should consist of a set of closed connected
components. Consider the pojnin Figure2.8. Assume thay = I'(u) is not in the same
component ofF" asp. Sinceq is closest tau, d(u,q) < d(u,p) < e. Let B, be the ball

of radiuse centered at; that intersects two components Bf one containing poing and
one containing poing. Boissonnat and Cazalg1] (Proposition 12) show that any ball
whose intersection witl#" is not a topological disc, contains a point of the medial axis of
F. Therefore poinp is inside the ballB, that contains a point of the medial axis. By the
definition of the functionfs, Ifs(p) < 2¢. Recall that our sampling preconditions require
e < 1/50. Thereforelfs(p) < 2¢ < 1/25. This violates our assumption thid(p) > 1.

Hence the functiolm’ mapsU onto every closed component bt O

Amenta, Peters, and Russig] have argued that a guarantee of homeomorphism is in-
sufficient for applications in graphics and simulations. They propose using ambient isotopy
to show topological equivalence. An isotopy frdmto F intuitively means that/ can be

continuously deformed inté’ without any change in topology.

Definition: An isotopy between two compact orientable surfaceRinis a continuous
mapV¥ : U x [0,1] — R? such that¥(., 0) is the identity ofU/, ¥(., 1) = F, and for each
t € [0, 1], ¥(.,t) is homeomorphic td/.

Definition: An ambient isotopy between two compact orientable surfatesd ' is a
continuous map\ : IR* x [0, 1] — IR?, such that\(., 0) is the identity ofR?®, A(U, 1) = F,

and for eacht € [0, 1], A(., ) is @ homeomorphism dR®.

Theorem 2.20.The zero surfacé is isotopic to the sampled surfa¢é

Proof. We will define an ambient isotopy whose restriction t&/ will be an isotopy taF'.

Outside the:-neighborhood, the ambient isotopy is the identityt, ¢) = « for ¢ € [0, 1].
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From the proof of Theorer.19 a line segmentnormal to a poinp € F intersectd/ only
at one point: inside thee-neighborhood. Lep; andp, be the end points dfon the inside
and outside-offset surfaces respectively as shown in Figai@ We define the ambient
isotopy atu to be A(u,t) = tp + (1 — t)u. The line segmenp;u is linearly mapped to
pil\(u, t). Similarly, the line segmentp, is mapped ta\ (u, t)p,. ]

Recently, Chazal and Cohen-Steit@7] proved a condition for isotopic approximation
that gives an alternate proof for Theoréh2Q They show that if two surfaced and
B are homeomorphic, i is contained in a topological thickeniny of B, and if A
separates the sides 6f, then A is isotopic toB. From Theoren2.19 we know thatl/
is homeomorphic taF. The e-neighborhood is a topological thickening of the sampled
surfaceF’, and by Theoren2.7the zero sel of the cut function separates the two sides of

the e-neighborhood. Therefor& is isotopic toF'.

2.6 Discussion

Recall that the width of the Gaussian functions used in our algorithm depends on the small-
est local feature size. As a result, our sampling requirements and the noise preconditions
are determined by the smallest local feature size of a point.ofdeally, we would like

to handle sampling proportional to the local feature size. When the width of the Gaussian
weight functions is fixed, spacing between sample points in areas of the surface with large
local feature size might be much larger than the width of the Gaussians. As a result, the
reconstructed surface will be noisy and might have the wrong topology. One solution is
to make the width of the Gaussian weight functions proportional to the spacing between
sample points. We present an adaptive version of the MLS algorithm based on this idea in
Chapter3.
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One disadvantage of our algorithm is that it requires sample point normals. However,
approximate sample point normals can be easily obtained for laser range data by triangu-
lating the range images. Each sample point normal can be oriented using the location of the
range scanner. When oriented normals are unavailable, the absolute distance to the tangent
plane at each sample point can be used instead of the signed distance as a point function to
define a new functiod, (z). The zero set of this function is hard to analyze as its gradient
is not smooth near the sample points. However, the results in this chapter can be easily
extended to show that thelevel set of/,(z) consists of two components on each side of
the surface, each homeomorphicio

The zero set of the cut functiohonly passes near the sample points, but we can con-

struct a surface that interpolates the sample points with weight functions slich{ as=
e llz—s?
z—s|

to the e-neighborhood when this weight function is used, but, we could not prove results

that are infinite at the sample points. We can prove that the zero set is restricted

about the gradient approximations.

Our analysis of the MLS algorithm works in any dimension. The Lipschitz condition
in Theorem2.1, and our results which show that sample points outgigier) have little
effect on the cut function at pointcan be easily extended to higher dimensions. The value
of e required for the theoretical guarantees would decrease with increasing dimensionality.

It would be interesting to prove similar results for different weight functions and point
functions. Gaussian weight functions that have infinite support yield a cut function that
is defined everywhere. Our results show that we only pay a small penalty for the infinite
support; the cut function at pointis mostly determined by sample points insilg(z). It
might be easier to analyze other commonly used weight functions such as cubic B-splines
that have compact support. Of course, the cut function and the its analysis would be valid
only in areas covered by the support of the weight functions.

Here we have used point functions that are a first-order approximation to the neighbor-

hood of each sample. For a sample pairthat is near sharp features, the point function
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Figure 2.9: For point = inside the e-neighborhood, all sample points inside B,,;q(x)
are near p the point closest to = on F. As a result, the error in the point functions
of sample points inside Byq(x), evaluated at z, is small.

of s is a poor representation of the local neighborhood.dfligher order approximations

such as quadric surface patches might be more robust to sharp features.

Appendix

Consider a balB,,,;4 () of radiusr,,;q = 0.125 centered at point as shown in Figure.o.

Note thatr,;q is a fixed constant and does not dependeorAll sample points inside
Bnia(x) are near the poing closest tar on F. Recall that for each sample poisyt the
oversampling facton; is the number of sample points inside a ball of radi@ounds;.

In the following lemma we prove a bound on the oversampling factors of sample points in

a shellH,, when H, is contained inside3,,q(x).

Lemma 2.21.For a pointz inside thes-neighborhood, let;, be a spherical shell centered
at x that is outsideB;(x), and insideB,,;q(x). Let the radii of the two spheres bounding

3
Hy, bery andry, + e Theny, . L < 4%,

Proof. Let p be the point closest ta on the surface. as shown in Figu2elQa). As
x 1S inside thee-neighborhood, each sample pointe H, is inside a ballB of radius
T+ 2¢ < rmiq + 2€ < 1/4 centered ap. All sample points insidé3 are squeezed between

two parallel plane$, P, that are(ry, + 2¢ + €2)? + 2¢2 apart, by Lemma.2
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0
r o
X
Ry
b

(a) (b)

Figure 2.10: (a) Point x is inside the e-neighborhood and p is the point closest to
x on F. Hy is a spherical shell of width ¢ contained inside B,,4. (b) The base of Cy
is a ring R, whose width is w. The ring Ry, is divided into sectors such that the arc
length of the outside circle within each sector is less than ¢//3.

The intersection of{, and the space betweéh, P, is a cylindrical annulug’, whose
cross section is the shaded region shown in Figut§a). The radius of the outer circle of

C} isr + €. To compute the inner radius, consider the distance feampP;, P, given by
| = max{d(z, P),d(z, P)} < (1 + 2+ €2)?/2+ € + e

The radius of the smaller circle enclosing can be written ag; = \/m Letw =
r, — r; be the width of the annulus.

Let R, be the base of the cylindrical annul% as shown in Figur@.1Qb). Divide the
ring R, into sectors such that the length of the outer arc inside each seejoy3s Each
sector is contained in a rectangle of Iength at mg@st3 as shown in Figur@.1Qb). The

height of the rectangle is < § + w < + w. Consider a covering of the rectangle

( €)
with squares of size/sqrt3. Since the squares can extend out of the rectangle, we can

cover each rectangle with

ty zﬁx(h—%e/\/_) V3

e <24<€2+ 5T Y3
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squares of size/v/3. As each rectangle covers a sector of lengtty3, ring R, can be

covered with,

ty =t x {Z?W(m +€)W <t x (2\/§W(rk+e) + 1)

€

squares.
We can now fill the cylindrical annulus), by stacking cubes of size/\/3 on top of

these squares. The number of cubes required to cgvex
3
t1 X ty X £((7“;€ + 2¢ + €2)2 4 262 + €/V3).
€

Each cube in this grid is covered by a sphere of radids Forx inside the:-neighborhood,

e < ro/V/12 < 1,/4/12 by Equation2.18 Applying Lemma2.3 to each sphere, and
simplifying

Z ali < :—g [l
Proof of Lemma 2.11 We compute the desired upper bound by summing over the contri-
butions of sample points inside shellg starting atB,(z). Recall that,,; (x) is the sum of

the error functions associated with sample points outBide). Let{; (x) andés(z) be the
contributions tc,(x) by sample points insid8,,;4(z) and outsideB,,;4(x) respectively.

An upper bound fof¢: (z)| is given by|&i ()| < 37, cp ) [G(2)[Wi(z). Consider shell

H, inside B,;q. The radius of the smaller sphere boundfigis . < r.;q. Letp be the

point closest ta: on F'. The distance fromp to each sample poiitinside H,, is given by
d(p,s) <d(p,z)+d(z,s) <rp+2€ < rpiqg + 26 < 1/4.

Recall that we proved an upper bound on the error in the point functions of sample points
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nearp in Lemma2.9. By the inequalityy/12¢ < 79 < 7 < Tmid,

e + 2€ + € < re(1+2/V12 4 €/4/12)

O(ry, + 2
(re+2€) < T30 T2t 8 = 1= 3(rm 1 2/50 © 1/2500)

~ 3.06r;, (2.29)

and,

G(@)] < [(2)|©%(ry, + 2€)/2 + (ri + 2€)O(rg + 2€) + (rg + 2¢ + €2)%/2 + €

6.25r7 < Tri. (2.30)

Q

Substituting the upper bound on the weights of sample points in shglisontained in

Bpia(z) from Lemma2.21we have

Tk <Tmid

42 63
|£1 < Z f,= Tk/f er —roTE /€ < —7“5 —r /62‘ (231)

By the lower bound oV (x) in Equation2.11

& (@) 504 B o-3-(o@)+a2/e) _ D04 5 1o
W 63 ro€ < 6—3T0€ . (232)
For sample points outsidB,,iq(z), we revert to the bound obtained in Lem2& on the

error function associated with each sample. By Equaid3we have

@) < Y (G Wie) <2 > o= si|[Wila). (2.33)
8;ZBia () $;¢Bmid ()
The expression fofg,(x)| in Equation2.33is the same as the expression f@f(z)| in
Equation2.13except that the summation begins-at,; instead ofr.,;.. By Equation2.15
we have
4
< P00 5 —Gae@iraye < P20 e (2.34)

€2 mid = 2 mi

€
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Note that the expression in Equati@rB4is o(¢?) because of the exponential term. For

each point: is inside the:-neighborhood 1y < /(e + €)2 + 12€2 = 4e. Adding the upper
bounds in Equatio@.32and Equatior?.34we have

7200e*
+ e, -de"’?nid/62 < 4é. ]

€2 mi

| Bt ()| < —(4€)’e™12

Proof of Lemma 2.16 Recall thatz is a point inside the-neighborhood, ang is the
point closest ta: on F'. Let7 be the normal gt. The contribution of sample points outside

By(z) to VE(z) is given by,

VEout(l') _ Z (_‘ - ﬁl)WZ(x) + Z ZM/%(Z.)WJ(Z.)Q(Z.)(SZ — Sj) ) (235)

Wz eW?2(x)

5:@Bo(x) 5;¢B2(x)Vs;¢B2 ()

The first term in Equatio2.35can be written as a summation over sample points inside

spherical shellH;, outsideB;(x).

L O = Wia),

k=0 s;€EHy,

Assume without loss of generality that the indices of sample points are in the increasing

order of distance t@. We can write the second term in Equat@B5as

B 2Wi ()W () (Gi() = ¢ () (5i — 55)
T Z ) , (2.36)

$i¢€Ba(x),i>j

For each spherical shell;, define a seb), containing pairs of sample points given by

S, = {(82', Sj) |l > j, S; € Hk}

Intuitively, s; is inside the shell;, ands; is inside the larger sphere that surrourds
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The summation in Equatic®.36can be written as,

- €2W2 Z Z 2)(G(2) = G())(si — 55). (2.37)

k=0 (s4,5;)€Sk

An upper bound on the norm @f is given by

e

2

a2 2 WEWi@IG(@) — @)l - )l

k=0 (Si,Sj)ESk

I <

9 k=00
< W > Wiz) max {[G(z) = G@)lli(si = 55)I[}-

i,55)ESk
k=0 s;ESk 5 SJ)

So the expression fafV E,,(z)|| can be written as,

k=00

1
IV ol < s 2o 3 Wila) (I =7

k=0 Sler

2 max{lG@) = G@)lls — sl (s05) € 5) (238)

We split the summation in the above equation iffo£, (x)|| containing the contributions
of all sample points in shell&;, € Bq(x), and||V Ey(x)| containing the contributions
of sample points in shellH;, ¢ Byia(z).

As z is inside thes-neighborhood, for each sample pointnside shellHy, d(p, s;) <
r + 2¢. For each sample poirf that is insideH, € Bua(x), [|[n—ni|| < O(rg +2¢) < 4ry,
by Equatior2.29 and|¢;(z) — ()| < [¢(2)] +1¢;(z)] ~ 12.5rF by Equatior2.3Q Since

s;, s; are inside a ball of radius, + 2¢ atp,

1Gi(2) — (@)] X [[si — s5]] < 12577 % 2(r + 2€) < 12.5rF X 2(rg + 273 /V12) < 40r7.
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Substituting the above upper bound into Equaf2d38 ||V E;(z)|| can be written as

1 Tkgrlnld 807,,3 6—7‘2/52
IVE(@) < >SS

a;

By the bound on the weights of sample points inside each shelt B,,q(z) proved in

Lemma2.21we have

6 Tk <Tmid 80T3 9 9
IVE(z)] < W (z)e? Z (4ry, + 6219)7,]:3677";@/5
k=0
9 80rg
< (4rg + "o )rge_r3/€2

€2

W(z)e3
Substituting the lower bound fé# (x) from Equation2.11

72 80r? 72 80r3
[VE(2)]| < 6—3(47“0 + 20)T86_(T‘%_(|¢($)|+52)2 = 6—3(41”0 —Dyrde 12,

62)0

For shellsH), such that, > rpq, ||[n — n;|| < 2, and|¢(z) — ()] < |G(2)] +[¢(2)] <
4(r, + €) by Equation2.13 Since,s;, s; are insideHy,

Gi(2) = G (@)] % llss = 5]l < Alri 4 €) x 2(re + ) < 1472,

By the upper bound on the weight of sample points ingigdrom Lemma2.4we have

300 & 2812 5 2,2 3600e! 28120 o 2 e
HVEz(&C)H SW Z (2 2 )rke i/ < = (2_|_ > )mide mid/ )
Tk=Tmid

Recall thatr, < 4e for z inside thee-neighborhood. An upper bound @iV E,.(z)]| is
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given by,
IVEow ()| < [[VEL + [[VEy(2)]]
72 8073 _ 3600¢* 2872, 2 e
< 6—3(4T0+ 620)7’86 12+ 2 <2+6—2d)rr2nid€ mid/
< 146e.

To derive an upper bound dfi - VE,(x)|, consider a sample poiat inside shellH,,

Buia(). By Equation2.29we have
i (7t — 7)) = 1 — cos O(ry + 2¢) < O%(rp + 2¢)/2 < 5r?.

Sample point; is between two planeB;, P, orthogonal tori that are at a distande;, +

2¢ + €2)? + 2¢2 apart, by Lemma.2 Therefore
[(Gi(x) — ¢(2) X 7+ (85— 85)] < 12577 x (1% + 2€ + €)% + 2€%) < 347y,

by Equation2.30Q It is easy to show that

72 68rg
7 VE@)] < S+ ke,

and,

3600e* 2812
it VEy(z)] < S (24

€

Adding the upper bounds di.V E;(x)|, and|i.V Ex(x)| we have

72 6814 3600¢* 2812
171V B ()] < = (5r24 20 )pde 24 2 (24 Tmid )2 orial < 4962, O
€ € €
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Chapter 3

Provably Better Moving Least Squares

In this chapter we generalize the MLS algorithm of Chagtier handle adaptively sampled

point clouds. Consider the curve shown in Fig@r& Because of a portion of the curve

that has a small feature size, the sampling should be dense everywhere under the uniform
sampling conditions of Chapt&; as shown in Figur8.1(b). Moreover, the noise in the
sample points is required to be much smaller than the smallest feature size of the surface.
Ideally, we would like the algorithm to accommodate adaptive spacing in the input point
cloud as well as data noise proportional to the local feature size. F&lf® shows a

two-dimensional example.

(a) (b)

Figure 3.1: (a) Point p near the tip has the smallest local feature size of all the
points on the curve. (b) Uniform sampling means that the spacing between sample
points and the noise are, at most, proportional to lfs(p). (c) Adaptive sampling,
proportional to the local feature size of surface points. The noise in the sample
points can also vary with the local feature size.

(©)
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Before we describe the adaptive MLS algorithm, it is useful to understand why the
uniform MLS algorithm of ChapteR breaks down under adaptive sampling conditions.
The width of Gaussian functions in the definition of the uniform MLS surface depends on
the smallest feature size of the sampled surface. When the spacing between the sample
points is adaptive, this width is much smaller than the sample point spacing near areas
of the surface with large feature size. The Gaussian weight functions no longer smoothly
blend the point functions of nearby sample points. As a result, both the gradient and the
topology of the reconstructed surface are unreliable.

The main idea of the adaptive MLS algorithm is to vary the widths of the Gaussian
weight functions to match the local sample point spacing. These widths are computed by

estimating the local feature size near each sample point.

3.1 Guarantees

Our theoretical guarantees are similar to the results in Ch&pt&ve prove that the cut
function defined by the adaptive MLS algorithm is non-zero outside a small neighborhood
N of the sampled surface. The width of the neighborhddds proportional to the local
feature size of the sampled surface. As the spacing between sample points in the input
point cloud goes to zero, the Hausdorff distance between the reconstructed surface and the
sampled surface goes to zero and the reconstructed surface normals converge to the true
surface normals. The reconstructed surface is guaranteed to be a smooth manifold that has

the same topology as the sampled surface.

3.2 Related Work

For adaptively sampled point cloud data, Delaunay-based surface reconstruction algorithms

such as therustproposed by Amenta and Bel8] are the gold standard as they can easily
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adapt to changes in sample point spacing. However, MLS-based algorithms are better than
Delaunay-based algorithms at handling noisy data.

Varying the widths of the Gaussian weight functions that define MLS surfaces was first
proposed by Pauly, Gross, and Kobldé#8]. They estimate the feature size of the surface
near each sample pointas the radius of the smallest ball athat containst (~ 20)
sample points. The widths of the Gaussian weight functions are computed by interpolating
the feature size estimates with radial basis functions.

Dey and Sur{32] analyze an adaptive MLS surface and prove certain reconstruction
guarantees. The width of the Gaussian weight function associated with sample abant
given pointz is a function of the feature size efand the feature size of the point closest
to = on the sampled surface. Unlike our results which prove that the entire cut function
converges to the signed distance function, their analysis of the MLS surface is limited to a

small neighborhood of the sample points.

3.3 Sampling Preconditions

The sampling preconditions required to prove theoretical guarantees for the adaptive MLS
algorithm are a generalization of the sampling preconditions defined in Cl2ajated are
based on théocal feature siz€lfs) function proposed by Amenta and BdB). Recall that

for pointp € F, Ifs(p) is the distance from to the medial axis of'. We require sample
point spacing neas to be small compared tds(p).

Given a set of sample points on the surfd¢ecomputing the local feature size near
each sample point is impossible because the medial axis®tinknown. The best we can
hope for is an approximation to the functitfa. The adaptive MLS algorithm builds the
weight functions from an approximation to the functiéngiven at each sample point. We
call this approximation theample induced feature siger sif).

The functionsif is al-Lipschitz function whose value at each sample point is given as
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input to the adaptive MLS algorithm. This functisif should satisfy the following two
conditions. First, the set of sample poittsshould be dense with respect to the function
sif. For each poinp € F, the distance fromp to its closest sample poirtshould be less
thane sif(p). Second, the noise in each sample peishould be small compared to the the
functionsif nears. The distance from each sample pairit its closest surface poipte F
is less thare?sif (p). Moreover, the angle between the normialat s and the true normal
7, atp should be less than The results in this chapter hold true for values of 1/150.

The two conditions force the value of the functiahat each sample poirtto be larger
than a certain value that depends on the sample spacing.nelawever, the functiorif
cannot be arbitrarily large. To prove our theoretical guarantees, we require the fusiiction

to be less than the functidfs on the surface. For each pome F,
sif(p) < Ifs(p). (3.1)

Unlike the functionlfs, the functionsif is defined everywhere because the sample points
might not lie onF’. We assume that the values of the functdimre known at each sample
point. Finally, we need one condition on the rate at which the sample spacing #side
changes. Arbitrary oversampling in one region of the surface can distort the value of the
cut function in other parts of the surface. Our MLS algorithm estimates oversampling
near each sample poigtfrom the number of sample points that are inside a ball of radius
esif(s) arounds. This estimation only works if changes in sample point spacing near
are bounded. Lety;,o; be the number of sample points inside two balls of radiK

r; < 3esif(s) at a sample point including s. Then the ratio of the number of sample
points inside the two balls is bounded by the ratio of their volumggq; < r3/r?. In

Section3.4.2we discuss our method for estimating oversampling in the input point cloud.
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3.3.1 Sample Induced Feature Size

The MLS algorithm needs the the value of the functidronly at each sample pointe S.
In the following lemma we show thaif(s) is a good estimate of the sample induced feature

size of surface points near

Lemma 3.1. Let s be a sample point, and Igtbe the point closes toon F. Then,
(1 — e?)sif(p) < sif(s) < (1 + €H)sif(p).
Proof. Since the functiosif is 1-Lipschitz,
sif(s) < sif(p) + d(s, p) < (1 + €)sif(p),
by the sampling preconditions. Similarly
sif(s) > sif(p) — d(s, q) > (1 — €*)sif(p). O

Since we require the functiosif to be a lower bound of the functidfs on the surface
F (Equation3.1)
sif(s) < (1 + €?)sif(p) < (1 + )lfs(p), (3.2)

by Lemma3.1

3.4 Formula for the Cut Function

Let the inputS be a set of sample points that lie near the surfaAceand letri; be an
approximate outside normal at sample paintE S. For each sample poirt we define a

point function P;(z) whose value is the signed distance freno the tangent plane at,
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Pi(z) = (x — s;) - 11;. The cut functior/ is a weighted average of the point functions.

I(:E):Z W ZW ((x — ;) - 11;).

SES

For each sample poini; let a; be the number of sample points inside a ball of radius
esif(s;) centered at;, includings; itself. Define a normalization factor associated with
ase’sif®(s;)/a;. We use Gaussian weight functions along with the normalization factor,
Wi(z) = Me—uz—sini’/o%)?
a;

to weight the average of the point functions.

The functiono (z) sets the width of the Gaussian weight functions. The valug( of
at each sample pointshould be set to the sample point spacing ne@e esif(s) from
the sampling preconditions) to smoothly interpolate between point functions. Since sudden
changes in the width of the Gaussian weight functions affect the gradient of the cut function,
the functiono(z) should satisfy a Lipschitz condition. To compute such a function we
define a new function that we call tlextended feature siZer efs). This functionefs is an
extension of theif values at each sample point to all points. The valuefdfr) is given
by

efs(z) = rsréiél{d(x, s) +sif(s)} — d(z, sp,). (3.3)

Hered(z, s,) is the distance betweenand the sample point, closest tar. The width of

the Gaussian weight functiongx) is defined as

o(x) = eefs(z).
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SHE)

Figure 3.2: Sample points that influence the value of efs(z) are inside ball B.
Sample point s; has no effect on the value of efs(z) as it lies outside B.

3.4.1 Computing the Functionefs

The functionefs given by EquatiorB.3 can be naively computed by iterating over all the
sample points in the input point cloud. To derive a more efficient algorithm, consider a

sample point at a distance(z, sy) > d(z, s,,) + sif(s,) from z as shown in Figur8.2

d(z,sf) +sif(sy) —d(x,s,) > d(x,s,)+sif(s,) +sif(sy) — d(x, s,)
= sif(sy) + sif(s,). (3.4)

Consider the following upper bound efs(x).

efs(z) < d(z,s,) +sif(s,) — d(zx, s,)

IN

sif(sy,)
< sif(sy) + sif(s,)

< d(z,sy) +sif(sy) — d(z, sp),

by Equatior3.4. So the sample point that achieves the minimum in Equ&tidis guaran-
teed to be inside a bal} of radiusd(z, s,,) + sif(s,,) aroundr as shown in Figur8.2 The
nearest sample point,, and the sample points insidecan be efficiently estimated using

kd-treed43].
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Figure 3.3: The sample points near ¢ have large feature size and vote for the cut
function to have a positive value at = whereas the sample points inside B, have a
small feature size and vote for the cut function to have a negative value at point z.
Under adaptive sampling, the number of sample points inside B, can be arbitrarily
greater than the number of sample points near q.

3.4.2 The Normalization Factor

The curve shown in Figur8.3illustrates the necessity of the normalization factor used
in our definition of the MLS surface. Consider the value of the cut function at the point
x, which is clearly outside the sampled surfa€e Let S be a point cloud in which the
sampling is proportional to the feature size. Since the feature size is smalp,nibare
can be an arbitrarily large number of sample points in a smallBalroundp, and each
sample point inside3, votes for the value of the cut functiahat = to be negative. The
sample points that vote for a positive valuerafire near poing which has a large fea-
ture size. Hence, regardless of the width of the Gaussian weight functions at:ptiet
sample points insidé3, can force the value of the cut function ato be negative if the
normalization factor is not used. For each sample pgirt B, the numeratoe® sif?(s;)
in the normalization factor of each sample paine B, compensates for the large number
of sample points insidé3,. With the normalization factor, we prove that sample points
inside B, have little effect on the value of the cut function at pointThe denominator in
the normalization factor (which also appears in the definition of the uniform MLS surface)
accounts for oversampling in the input point cloud.

Note that the denominatat in the normalization factor of; is the number of sample
points in a small balB of radiuse sif (s;) arounds;. This means that we expect the number

of sample points insidé3 to be be a good estimate of sample spacing reaAdding
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a large number of sample points outsiBe and arbitrarily close ta3, would make the
normalization factor a poor estimate of the sample point spacingspediis motivates

the local uniformity requirements in our sampling preconditions which limit the change in
sample point spacing inside a larger ball of radiasif(s;) arounds;. The local uniformity
preconditions guarantee that the normalization fagfas a good estimate of the sample

point spacing neat;.

3.5 Geometry of the Reconstructed Surface

In this section we study the geometric properties of the cut function. The main result is that
the distance between the reconstructed surfaead F' goes to zero witl. We also prove
that the normals of the reconstructed surface converge to the nornfalwii e.

The following three results are related to the Lipschitz conditions on the surface nor-
mals, and the feature sizes of the surface points. Recall that Amenta anfBBpraved
the following Lipschitz condition on the surface normal with respect to the funttiolve
replace the functiotfs with the functionsif as it is a lower bound oifs for points on the

surfacerF'.

Theorem 3.2 (Amenta and Bern[3]). For pointsp, ¢ on the surfacer” with d(p, q) <
amin{sif(p), sif (¢) }, for anya < 1/3, the angle between the normalsgeandgq is at most

a/(1 — 3a) radians.

The following lemma shows a useful relationship between the local feature sizes of two

surface points, and thef values associated with two sample points.

Lemma 3.3. For pointsp, g on the surface” with d(p, q) < alfs(p) + B1fs(q), for 5 < 1,
(1—P)fs(q) < (1+ a)lfs(p). For sample points, ¢t € S with d(s,t) < assif(s) + Fsif(t),
for 5 < 1, (1 — B)sif(s) < (1 4 «)sif(t).
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Proof. Since the functiorifs is 1-Lipschitz,

Ifs(q) < Ifs(p) +d(p,q)
< fs(p) + alfs(p) + B1fs(q)
(1= P)ls(g) < (1+a)lfs(p).

Since the functionif is 1-Lipschitz like the functionlfs, the same argument shows that

(1 — B)sif(s) < (1 + a)sif(t) for sample points, ¢. O
In the following lemma we prove that the functiefs is 2-Lipschitz.
Lemma 3.4. The functiorefs is 2-Lipschitz.

Proof. For two pointsz andy, and lets,, s, be the sample points closestitoy respec-

tively. By the definition of the functionfs in Equation3.3we have

efs(z) + 2d(x,y) < min{d(z,s) +sif(s)} - d(x,5,) + 2d(x,y)
< min{d(z,s) + d(z,y) +sif(s)} — d(z, 5,) + d(z,9)
< min{d(y, s) +sif(s)} — (d(z,5.) — d(z,))
< min{d(y, s) +sif(s)} — d(y, 5,). (35)

Sinces, is sample point closest tg d(y, s,) > d(y, s,). By Equation3.5we have
efs(x) + 2d(z,y) < min{d(y, s) +sif(s)} — d(y, 5,) = efs(y) =
seE

Let F,; be the outsid8e-offset surface of" that is obtained by moving each pojnt
on I’ along the normal gt by a distancae sif (p). Similarly, let F},, be the insidee-offset
surface ofF. Figure3.4(a) shows a two-dimensional example. Dey and Gosw&4i

(Lemma 3) prove that th&:-offset surfaces have the same topology-as
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B
><\

(a) (b)

Figure 3.4. (a) An inside offset curve F;, whose distance to F' varies with the
feature size of points on F. (b) The dashed lines form the medial axis of the
square. For a point p € F, its closest point = on the offset curve F;, might not lie
along the normal at p.

The 3e-neighborhood is the region bounded by the inside and the outside offset sur-
faces. Note that unlike the neighborhood defined for the uniform case in Ci2apter
neighborhood defined here adapts to the feature size. It is large near areas of large feature
size and small when the surface feature size is small. The offset surface is always contin-
uous, but might not be smooth as shown in FigBb). The following result proves a

lower bound on the distance from a poinE F' to the offset surfaces.

Lemma 3.5. Letp be a point on the surfacE and letz be the point on the-offset surface

closest tp. For a < 1/2, d(z,p) > (1 — 2a)sif(p).

Proof. Assumed(z,p) < asif(p). Let ¢ be the point onF' closest toz as shown in
Figure3.4(b); thend(zx, q) < d(z,p) < asif(p). The distance from to ¢ can be written as
d(p,q) < d(z,p)+d(z,q) < 2asif(p). By Lemma3.3we have

sif(q) > (1 — 2a)sif(p). (3.6)

Sincegq is the point closest ta@ on the surfaceyq is parallel to the normal af. From the
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‘-
Figure 3.5: Point x is outside the 3e-neighborhood and s, is the sample point
closest to x.

definition of thexw-offset surfaced(z, ¢) = asif(q). By Equation3.6 we have
d(x,p) > d(x,q) = asif(q) > a(l — 2a)sif(p). O

Consider a point: whose closest sample point fis s,,. Let By(z), Bo(z) be two
balls centered at pointas shown in Figur8.5. The radius ofB3, (x) is d(z, s,,); a Ba(x) is
a slightly larger ball whose radiusis = d(z, s,,) + 3e efs(x). Just like the analysis of the
uniform MLS algorithm, our analysis of the adaptive MLS algorithm has two main ideas.
First, the exponential decay of the Gaussian weight functions means that the cut function
is mostly determined by sample points insilg x). Second, the cut function converges to
the signed distance functiaf{z). ase goes to zero, because the point functions associated
with sample points insid®&,(z) converge tap(x).

In Section3.5.1, we study the properties of the cut function for points outside3the
neighborhood, and prove that the cut function is non-zero outsidé&theighborhood of
F (Theorem3.11). This means that the reconstructed surféces restricted to thee-
neighborhood of. To prove that the surfade is a manifold, we analyze the gradient of
the cut function for points inside th&-neighborhood in Sectio8.5.2 These geometric

results are used in Secti@b6to show that’ is isotopic toF'.
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3.5.1 Outside the3e-neighborhood

Consider a point: outside the3e-neighborhood. Lep be the point closest to on F. Let
s, be the sample point closesttp and letp,, be the point onF’ closest tos,,. Sincex is
outside thede-neighborhoodd(z, p,,) > 3¢(1 — 6e)efs(p,,) from Lemma3.5.

From the sampling precondition$s,,, p,) < eefs(p,), andefs(p,,) > efs(s,)/(1+€2).

Therefore

3 —19¢

d(l’, Sn) Z d(l‘,pn) - d(snypn) Z (36 - 1962)efs(pn) Z N 9
14 €

eefs(s,).

The definition of the functiomfs guarantees thats(z) < efs(s, ), which gives the follow-

ing lower bound orni(z, s,) when pointz outside thede-neighborhood.
—cefs(x). (3.7)

Recall thaty(z) is the signed distance fromto F'. To prove our geometric results it is con-
venient to define two functions. Feroutside the3e-neighborhood leti(z) = ¢(x)/|p(x)|

be the sign function of’. Whenx is outsideF,, u(z) = 1, and when is inside F},

u(x) = —1. Let E(z) be an error function that measures the difference between the cut
function computed by the MLS algorithm and the signed distance to the nearest sample.

This functionE(x) is given by

E(x) = I(IE)—M(I)d(x Sn)

- S;q Zs]es W (z) (Pi(z) — p(z)d(z, sn))
— Wi(z) "
N siesz es Wiz )C( ) (3.8)

The function(;(x) defined in Equatior8.8 measures the error in the point function of
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sample points;. As thee parameter in our sampling preconditions decreases, the sam-
pling is more dense, and has less noise. So the signed distance to the closest sample point
w(x)d(z, s,) will converge to the signed distance fbase goes to zero. The error func-

tion £'(x) indirectly measures the difference betwdén) and the signed distance function

¢(x). Recall that we used a similar error function to analyze the uniform MLS algorithm

in Chapter2.

Define function(z) = > ¢ Gi(x)Wi(x) to be the weighted combination of sample
point error functions, and let the weight functili(z) =}, .o Wi(x) be the sum of all
weight functions at. Consider the contributions of sample points insijéx) and outside
Bsy(z) to these two functions separately. I§gt(x) and¢,..(x) be the contributions t§(z)
by sample points inside and outsife(z). Similarly, letV;,(x) be the sum of weights of
all sample points insid&,(z), and letiV,;(z) be the sum of weights of all sample points
outsideB; ().

The following lemma proves an upper bound and a lower bound on the error in the point
functions of sample points inside,(z). The result is similar to the result in Lemrabin
Chapter2. The main difference is that there is no lower bound on the feature size of sample

points insideB,(z).

Lemma 3.6. Letx be a point outside thae-neighborhood and let,, be the sample point
closest tar. Lets; be a sample point insidB;(x) whose closest point on the surfaceyis

Then,
pu(z)Gi(z) < eefs(x),

and,
w(x)Ci(w) > —6ed(z, s,) — € sif(q) — 8e* efs(x).

Proof. Proving the upper bound is easy; singés inside By (x), pu(z)P;(x) < d(z,s;) <
d(x, s,) + 3eefs(z) which meansgu(z)(;(x) = p(z)(Pi(z) — p(z)d(z, s;)) < 3eefs(x).

To prove the lower bound consider pointvhich is closest to sample poist on the
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(@) (b)

Figure 3.6: (a) Sample point s; is inside By(x) and ¢ is the point closest to s; on
F. B, is a ball of radius Ifs(q) touching ¢ on the side of F' opposite x. (b) The
medial ball B,,, centered at point ¢ can only intersect B;(x) at an angle « given by
4sin®(a/2) = e.

surfacef’ as shown in Figur8.6(a). Letd be the angle betweers; and the normal

vecn, atq. The vectors; is parallel tor7, because is the point closest te; on F'. By the
sampling preconditions the angle betwegmnd the sample point norma) ats; is at most

e. Therefore the point function associated WithP;(z) = (z—s;)-1; > d(z, s;) cos(6+¢).
We first show a lower bound ai(z, s;) cos # and then prove the desired lower bound on
pu(z)Gi().

Let B,, be a medial ball of radius > 1fs(q) > sif(q) touchingq on the side ofF’
oppositex. For two intersecting spheres, the angle of intersection is defined as the angle
between the tangent planes of the two spheres at any point of intersection.

To prove a contradiction, assume thay, intersectsB, (z) at an angle larger tham
given by4sin?(a/2) = ¢, as shown in Figur8.6(b). Since points andz are on opposite
sides of the surface, the line segmemntintersectsF’ at a pointp. Without any loss of
generality, we can assume thes on B,,. Observe thaB; (z) does not contain any sample
points because, is the sample point closestto The medial ballB,, does not contain any

surface points, but there might sample points inditle Therefore the distance fromto
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its closest sample point is greater than the widbithe lune formed whe®,,, and B; ()
intersect. Consider the anglgs~y shown in Figure3.6(b). By the definition of the angle

of intersection/ + v = «. So the width of the lune
[ =2r(1 —cosf3) > 2r(1 — cosa) = 4rsin®(a/2).

Sincec is a point on the medial axisif (p) < Ifs(p) < d(p,c) = r. Whend sin?(a/2) > e,
the distance from to its closest sample point is greater than> esif(p), which violates

our sampling preconditions. Therefore
sin?(a/2) < /4. (3.9)

The angle of intersection of two intersecting sphereB,,,, B (x) of radii r,d(x, s,,) IS

given by
d*(c,x) —r? — d*(z, s,,)
cosa = Srd(z.s.) : (3.10)

The distancel(c, x) can be written as
d*(c,z) = (d(z,s;) cos 0 + d(s;,q) +1)* + d*(z, s;) sin 6.

By our sampling preconditionsi(s;, q) < ¢%sif(q). Substituting into Equatio.10we

have

r? + d*(z,5,) + 2rd(z, 5,) cosa < (d(x,s;) cos O + €%sif (q) +1))* + d*(x, s;) sin® 6.
rd(z,s,)cosa  d*(x,s;) — d*(x, s,)
d ; 0 > —
(w,8i) cos) = e2sif(q) +r 2(e%sif(q) + )
_ e*sif(q)(e%sif(g) + 2r)
2(e%sif(q) + 1)

(3.11)

Sinces; isinsideBy(z) d(zx, s;) < d(x, s,)+3eefs(x), and since3,, is medial ball touching
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q, r > 1fs(q) > sif(q). Using standard trigonometric formulas, it is easy to slkowd +

€) > cos @ — e. Substituting into EquatioB8.11we have

p(x) Py()

Vv

d(z,s;)(cosf — €)
d(x,sn) cosa eefs(z)(2d(z, sn) + 3eefs(z))
1+ ¢ 2(e%sif(q) + 1)
—e%sif(q) — e(d(w, s,) + 3eefs(z)). (3.12)

Y

To prove a lower bound osif(¢) in terms ofefs(z) consider the definition of the function

efs.

efs(x) <sif(s;) + d(z, s;) — d(x, sy). (3.13)

Since sample poing; is inside By(z), d(z, s;) — d(z, s,) < 3eefs(x). Substituting into
Equation3.13
sif(s;) > (1 — 3e)efs(x). (3.14)

Recall that in Lemm&.1we showed thaiif(s;) is a good approximation tef(q).

, sif(s;) _ (1 — 3e)efs(x)
f(q) > >
2227

?

by Equation3.14 Substituting into Equatio8.12

p@)Glz) = pa)(Pi(r) — p(x)d(z, sn))
—d(z, s,)(1 — cos a + 5e)

> — €% sif(q) — 8¢€” eff

> e e sif(q) — 8e” efs(x)
_ —d(z,s,)(sin*(a/2) +5e) 9

= T — e~ sif(q) — 8¢ efs(x).

Substituting the upper bound eim?(«/2) from Equation3.9 and simplifying using: <
1/150 we have

w(@)Gi(z) > —6ed(w, s,) — € sif(q) — 8€® efs(x). O
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Figure 3.7: For point z, the closest sample point is s,, and Bs(z) is a ball of
radius d(z, s,) + 3eefs(z) at z. The ball B, of radius e efs(z) at point = is completely
contained inside B ().

Since the signed distance to the nearest sample p¢inti(z, s,,) converges ta(x)
ase goes to zero, the result in Lemn3s6 shows that for each sample poite By(z),
P;(x) converges t@(x) ase approaches zero. Unlike sample points inditdéz), the error
functions of sample points outsid&(x) can be arbitrarily large. In the remainder of this
section, we show that the error in the sample points outBide) does not adversely affect
the cut function.

In Lemma3.7 we derive a lower bound on the weight of sample points ingiger).
Lemma3.7 is the only result which depends on the local uniformity requirements in out

sampling preconditions.
Lemma 3.7. Letz be a point outside th8e-neighborhood, and letV;,(z) be the sum of

the weights of all sample points insidg(z). Then

Win(z) > 1_003(x)e—(d(as,sn)+a(x))2/a2(x).

Proof. Let B, be a ball of radiugr(z) = eefs(x) centered at the sample poin closest

to = as shown in Figurg.7(a). Leta be the number of sample points insidg, and
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let 5 be the number of sample points inside a b@ll of radiusesif(s,) at s,. Since
efs(z) <sif(s,), the ball B, is contained insidé3..

Consider a sample point inside B, as shown in Figur&.7. Recall thata; is the
number of sample points inside a bal] of radiusesif(s;) arounds;. Sinced(s,,s;) <
cefs(z) < esif(sy), sif(s;) < (1 + ¢)sif(s,) by Lemma3.3. Therefore all sample points
inside B; are inside a balB of radiuse(2 + ¢) sif(s,,) arounds,, as shown in Figur8.7(b).

Let v be the number of samples inside Recall that in our sampling preconditions, we
required the sampling neay, to be uniform. So the ratio of the number of sample points

inside B to the number of sample points insidk is less than the ratio of their volumes.

€3(2 + €)sif?(s,)
e3sif?(s,,)

% < % < = (24¢) (3.15)

As the weight of all sample points inside, is a lower bound foiV;,(z) we have

3 -f3 )
Win(z) > 3 ﬂﬂe—w(asn)w(m»?w(x). (3.16)
sieBCf ¢

Sinced(s;, s,) < esif(sy), sif(s;) > (1 — €)sif(s,) by Lemma3.3. Substituting into

Equation3.16we have

. 3(1 — e)3sifd (s o [dasnto@)?/o2@) N 1
Win(z) = €(1—€)%sif*(sy)e ; o
> E(1— €)’sif?(s, ) e (U to@)?/o @) S;U m,
by Equation3.15 Recall thatB,, containsa: sample points. Therefore
Win(z) > ae’(l — 6)3Sif3(sn)ef(d(m,sn)JrU(x))Q/UQ(z). (3.17)

- (2+¢€)3

Again from the uniformity conditions in our sampling requirements, the ratio of the number
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=2

(a) (b)

Figure 3.8: (a)Sample point s; contributes to the density functions inside the
shaded region (s;). Each point inside €)(s;) is closer than s; to the point z. (b)
Each sample point that contributes to the density function at y is contained in ball
around y and is farther from z than y.

of sample points insidé, to the number of sample points inside a smaller Ballis

sif3(sp,)
efs?(z) -

simplifying using the inequality < 1/150 we have

less than the ratio of their volume§, <

Substituting into Equatiod.17, and

3 (z)efs’ (z) 2,2 o3(x) 2 /42
. — ) ) o= (d(@se)to(@)? /o (x) - 2\ —(d(z,sn)+0(2))? /0% (2)
W(x) > Win(z) > 10 e 0 ¢

]

To prove an upper bound di,,.(z) we define radial density functions,(x, r) such
that

/]R3 Az, r)dr > Z dk(m,si)I/Vi(:p),

si¢ B2 ()

for k = 0,1,...4. The integral of\y(z, r) is an upper bound o/, (z). Functions that

involve higher values of appear later in the analysis of the cut function and its gradi-

ent. With each sample point we associate a region of spaRés;) inside whichs; will
contribute to the density functions. This regif@i, s;) is defined as the lune formed by

intersecting a ball of radiuz sif(s;) /5 centered at;, and a ball of radiud(z, s;) centered
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atx as shown in Figur8.8a). In the following lemma we prove thatis outside)(s;).
Lemma 3.8. Let s; be a sample point outside, (). Thend(z, s;) > 2esif(s;)/5.

Proof. To prove a contradiction assume th#t:, s;) < 2esif(s;)/5. By the definition
of the functionefs, efs(s;) = sif(s;) at each sample point. Since the functiorefs is

2-Lipschitz

sif(s;) = efs(s;)

IN

efs(x) + 4esif(s;) /5.
efs ”“2 . (3.18)

€
5

Slf(SZ) S

—_

Therefore the distance fromto s; is given by

2€ 4e
d(fL’,SZ’) S gSlf(Si) S 5(1—_%)

efs(z).

For values o < 1/150, ﬁefs(x) < 3eefs(z). This is clearly a contradiction because
5

for s; outsideBy (), d(x, s;) > ro > 3eefs(x). O
For sample poing; define a density function; whose value insid€)(z, s;) is given
by dividing of @ (z, s;)e~(#51)/*) by the volume of(z, s;). It is easy to show that the
volume ofQ)(z, s;) is greater tham® sif*(s;) /12 sincex is outsidef)(z, s;) by Lemma3.8.
Thereforeyi(z,y) < 12d*(x, s;)e"5°/7*(@) /q,. Fory & Q(s;), vi(z,y) = 0.
From the definition ofy;, [ps (2, y)dy > d*(x,y)W;(z). The density functiony,

that accounts for the contributions of all sample points outsigle’) is given by
Yelw,y) = > (e, y). (3.19)

In the following lemma we prove an upper bound on the value of the density funetions
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Lemma 3.9. Letr is the radius ofBy(x). For a pointy ¢ Bs(x)
Yelz, y) < 12d*(x, y)e—dZ(x,y)/JZ(x)’

and fory € By(x),
(x,y) < 12rke778/%@),

Proof. Let y be outsideB,(z) and letS, be the set of sample points such thaty €
Q(z, s;). Assume that the sef, it not empty. By the definition of2(x, s;), each sample
points; € S, is farther fromz thany, and is contained in a small ball arouné shown in

Figure3.8(b). By Equation3.19the density function at pointis given by

12 2(p ) fo2(a
Wl(ry) < Y —di(a,s;)e CE/ ), (3.20)

Sinces; is outsideBy(x), d(z,s;) > d(z,s,) + 30(x) > 30(x). For values ofr >
30(z), the functionr*e~"*/*@) (0 < k < 4) is a monotonically decreasing function f
Therefored” (i, s;)e~ % @s0)/*@) < gk (g, y)e~@v)/o*(@)  Sybstituting into EquatioB.20

we have

12 TR
Wlwy) < Y —d(wy)e VT,

SiESy v

Consider sample points, s; € S, as shown in Figur&.8(b). By the definition of the re-
gions$)(z, s;) andQ)(x, s;), d(s;,y) < 2esif(s;)/5, andd(s;,y) < 2esif(s;)/5. Therefore
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the distance between ands; can be written as

d(si,s;) < d(si,y) +d(y,s;)
2 2
< =€ sif(s;) + =€ sif(s;). (3.21)
By Lemma3.3we havesif(s;) < (1 + 2¢/5)sif(s;)/(1 — 2¢/5). Substituting into Equa-

tion 3.21we have

2 2(1+2¢/5)\ .
d(si,s5) < (5 + m) esif(s;) < esif(s;).

Hence every sample poist € S, is inside a ball of radiussif(s;) centered at;. Recall
thata; is the number of sample points in a ball of radiusf(s;) arounds;. which means

a; > |S,| for eachs; € S,. The density functiony,(z, y) can be written as

2 2 12 2 2
Wl y) < d¥(w, y)e T/ N o] < L@y e (@.22)
)

SieSy

Consider pointy € Bsy(x). The sample points that contribute to the density functibns
are all outsideB,(x), which meansd(z, s;) > r, for all s; € S,. The proof for sample

points outsideB, () can be easily adapted to show thatz, y) < 12rke 70/7°(®), O

For a pointz, define radial density functiok,(x, r) as
Ae(,7) = 12rFe /7" (@), (3.23)
From the result in Lemma.9,

/ 4 Mg (z, r)dr > / Ye(z, y)dy > Z Me*dQ(%Si)/Uz(x), (3.24)
0 R?

a;
s;ZBa(x)
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In the following lemma we prove thal/,.(z) < W (x), and that the error in the cut

function is small.

Lemma 3.10. Let = be a point outside th8e-neighborhood. LetV,.(x) be the sum of

weights of sample points outsid®&(z), and E,(x) be the error in the cut function due

to sample points outsid®,(x). For a small constant; = 0.002, ”{;—(;S”) < ¢, and

| Eout ()| < cqe.
Proof. Integrating the density functiok, overIR® gives an upper bound A, (). By

the definition of)\, in Equation3.23we have

Wout(z) < / 4r? No(, r)dr

= 0

r=rQ r=00
= / 47rr2/\0(1:,r)d7”+/ 47r® No(, r)dr

=0 r=rQ

3 00
487 <%Oe_r(2>/"2($) —|—/ 7’26_r2/02($)d7‘)
ro

3 0
48 (%06_7"3/"2(3”) +/ T2€_TOT/U2(I)C1T) .
ro

IN

A

Substituting the lower bound di (x) in Lemma3.7into the above integral

out (2) 4807 (g 2 2 4 2 4 —2(2rg—2
W < o z Ea ro—20(x))/o(x)
W) S o) (3 + roo”(x) + TOJ (x) + 7"80 () | e

From Equatior8.7 d(z, s,,) > (3 — 19¢)eefs(z)/(1 + €%) > 2.50(z), which means, >
5.50(x). Forry > 5.50(x), the ratioW,,(z)/W (x) is a decreasing function efthat is

maximized whem, = 5.50(z).

+ (5.50(z))o*(x) + +

Wout () 4807 [ (5.50(x))?
W = o—3<x>( 3
< o (3.25)

To prove the desired upper bound on the error function, consider the contribution of sample
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points outsideB,(z) to the error function,;(x). Recall that,,;(z) is the sum of the
error functions of sample points outsidg(z). For sample poing;, |P;(z)| < d(z,s),
andd(z,s,) < d(z,s;). Therefore the magnitude of the error function associated with
samples;, |¢;(z)| < 2d(z, s;). The contribution of sample poist to &, () is less than
2d(z, s;)W;(x). By Equation3.24 the integral of the radial density function overIR?® is

an upper bound of,.(z)].

‘fout<x)| < 2/_ 471'7'2)\1(1‘,7”)(17'

=0

IN

3 6 6
967 (%0 + 130’ (z) + 30*(z) + 0% (z) + —408(93)) e778/7 (@),
7o To

Substituting the lower bound di (x) from Lemma3.7

|Eout(l')| = %

9607 (i 6
pETe <§0 +r20?(z) 4 30*(x) + T—gaﬁ(x)

+%ag(x)) e~ 2ro-2o(@))/o(z), (3.26)
0

IN

The error|E,.(x)| is maximized whem, = 5.50(x). Substitutingry = 5.50(z) into the

above inequality it is easy to verify the,, ()| < cye. O

We now have all the tools required to prove the main geometric result for points outside

the 3e-neighborhood: the cut functiof(z) is non-zero outside th&-neighborhood.

Theorem 3.11.For each pointz outsideFy,,, I(xz) > 0 and for each poiny inside F,,,

I(y) <0.

Proof. Consider point: outsideF,;. The value of the cut function at pointis

I(x) =d(z, $p) + En(z) + Fow(x) > d(x, s,) + Ein(z) — c1€, (3.27)

74



Chapter 3. Provably Better Moving Least Squares

by Lemma3.10 Lemma3.6gives us a bound of), ().

Eale) = frg 3 1G@Wi@) (3.28)
si€Ba(x)
ZsieBm) Wi(x)
W)
> min{—6ed(z, s,) — €%sif(q) — 8e%efs(x) |s; € By(x)}. (3.29)

Vv

min{ P;(x)|s; € Ba(x)}

Recall thatg is the point onF" closest tos;. To prove an upper bound efsif(q) in terms
of o(x) consider the distance from poimtoutside the3e-neighborhood to poing on the
surface.

d(z,q) > 3e(1 — 6¢) sif(q), (3.30)

by Lemma3.5. Sincey is at a distance less thahsif(¢) from sample poin; inside By (),
d(z,q) < d(z,s;) +esif(q) < d(z, s,) +30(x) + €2sif (¢). Substituting into Equatio8.30

we have

d(x, s,) + 3eefs(z) + %sif(q) > 3e(1 — 6e)sif(q).

E2sif(q) < —(d(z,s.) + 30(x)).

- 3—19¢

Substituting the above upper bounddsif(q) into Equation3.29we have

€ 3€? 9
En(z) > — <d(m,sn) (6€+ . 196) ~ 110 8¢ ) efs(x).

Substituting the lower bound aof(z, s,,) from Equation3.7, and the above lower bound
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into Equation3.27

I(x)

>
3 —19¢ € 3€
> — Be — _ _ Q¢ —
> < (1 6e ) T 8¢ cl> eefs(z)
0

V

for e < 1/150. A similar argument proves that the cut function is negative at any goint

inside F},,. O

Theorem3.11proves that the cut functiohdoes not have any spurious zero crossings
far away from the sample points, and shows that the Hausdorff distance befthaedl/
converges to zero with In Section3.5.2we derive tighter bounds and show that the rate

of convergence of the Hausdorff distance betwEeand F is O(e?).

3.5.2 The3e-neighborhood

In this section we analyze the cut function inside $aeneighborhood. The main result is

that the reconstructed surfateis a manifold that converges to the sampled surface as
goes to zero. We study the of the gradient of the cut function to provéitisa manifold.

The gradient analysis also shows that the normals of the reconstructed surface converge to
the normals off’ ase goes to zero.

For z inside the3e-neighborhood, all sample points that have a large influence on the
value of the cut function at have approximately the same feature size. These sample
points are also sampled uniformly. As a result, all the proofs in this section are an easy
extension of the proofs in Secti@¥.2in Chapter2. The main difference is in proving that
samples far away from have little effect on the value of the cut functiomat

Inside the3e-neighborhood we modify the error functidiyz) and define it to be the

difference between the cut function and the signed distance fungtion Similarly, the
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Figure 3.9: Point z is inside the 3e-neighborhood and p is the point closest to x on
the surface F'. The sample point closest to x is s,, and p,, is the point on F' closest
to s,.

error function(; associated with sample poist measures the difference betweBsx)

ando(x).

E(z) = I(z) — 6(z) = —— 3 (Pi(z) — d(e))Wi(z) = —— 3 G} Wi(a).
W (z) W(z)

S,L'ES S¢€S

Consider a point inside the3e-neighborhood whose closest point on the surfage e

following lemma proves an upper bound and a lower bounefdmn) in terms ofsif (p).

Lemma 3.12. Let = be a point inside th&e-neighborhood whose closest point on the
surface isp. Then
(1 — 16¢)sif(p) < efs(x) < (1 + 8e)sif(p).

Proof. Let s, be the sample point closest:tcand letp, be the surface point closest p
as shown in Figur8.9. By the sampling preconditionss(s,,) < (1 + €?)sif(p,), and by

the definition of the functioefs, efs(z) < efs(s, ). Therefore
efs(z) < efs(s,) < (1 + €)sif(pn). (3.31)

By the sampling preconditions, there is a sample pgjntithin a distance sif (p) from p.
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Sinces,, is the sample point closest 10

d(z, s,) < d(z,p) + esif(p) < 4esif(p). (3.32)

The distance betweeanp, is given by

IN

d(p, pn) d(p,z) + d(x, $p) + d(Sn, pn)

IN

3esif(p) + 4esif(p) + €%sif (p,)
< Tesif(p) + *sif (pn).
Applying Lemma3.3

1-— 1
i) < i) < 1

sif(p). (3.33)

1—¢2
Substituting the upper bound eii(p,,) into Equation3.31we have

(1+7€)(1 + €2)

f; <
efs(z) < o

sif(p) < (1 + 8e)sif(p).

To prove the lower bound o#fs(z) recall that the functioefs is 2-Lipschitz.

efs(x) > efs(s,) — 2d(z, s,) > efs(s,) — 8esif(p), (3.34)

by Equation3.32 and from the sampling requirements(s,,) > (1 — €?)sif(p,). Substi-
tuting the lower bound osif(p,,) in Equation3.33into Equation3.34we have

(1—€2)(1 - Te)

efs(z) > T

— 8esif(p) > (1 — 16¢)sif(p). O
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For x inside the3e-neighborhood, we definB,(z) as a ball of radius
re = ((d(z,s,) + o(z))* + 170%(z), (3.35)

centered atz. We modify the definition mainly to improve the upper boundeon our
sampling preconditions. Consider popntlosest tar on the surface. From the sampling

requirements, there is always a sample point within a distanc€fgp) from p. Therefore,

e = ((d(z,s,) +o(x)?*+170%(z)

IN

(4esif (p) + eefs(x))? + 176 (z)efs?(x)

IN

(1 —46165 efs(x) + € efs(x)) + 176 (2)efs?(z)

ro < 6.83¢€efs(z), (3.36)

and,

3
IA

(4esif(p) + eefs(x))? + 17€*(w)efs® ()

IN

(4esif (p) + (1 + 8e)sif(p))* 4 17€*(x) (1 + 8¢)sif*(p)

6.67 esif(p). (3.37)

A\

To

For z inside3e-neighborhood, all sample points insiffe(z) are near the point closest to
x on F. In the following lemma we prove that the sample points neare constrained to
lie between two planes close to the tangent plane dhis result is later used to show that

the error in the sample points neais small.

Lemma 3.13. For a pointp € F, let B be a ball of radiusa sif(p) centered atp for
a < 1/4. The sample points insid® lie between two planeB,, P, parallel to the tangent

plane atp. The distance from to P, P, is less thanD(«a) = <2((“1f2); + 62&;‘”) sif (p).

Proof. Consider sample point € B whose closest point oA’ is ¢. From the sampling

79



Chapter 3. Provably Better Moving Least Squares

-
-
-

l

Figure 3.10: The surface inside a ball B of radius r has to be outside the medial
balls B;, and B,,;. As a result, all sample points in B are between two planes P,
and P;.

requirementsi(s,q) < e%sif(q). Without loss of generality assume thats above the

tangent plane at as shown in Figur&.10
d(p,q) < d(p, s) +d(s,q) < asif(p) + € sif (q). (3.38)

Let c be the center of the medial bah,;, and let the angle between andcp be26. As
point ¢ is on the surface, it has to be on or outside the medial Ball whose radius is
[ > 1fs(p) > sif(p). Hence the distance fromto the plane passing througtand parallel
to the tangent plane dt is at most (1 — cos 260) = 2/sin*f < % The distance from

to the tangent plang, passing through is given by

(arsif(p) + € sif(g))?
2sif (p)

d*(p, q)

D(a) < 5]

+ €% sif(q) < + €? sif(q), (3.39)

by Equation3.38
The upper bound in Equatiod.38 shows thatd(p, ¢q) is small relative tasif(p) and

sif(¢). Hence we can apply the result in Lemr8a to get an upper bound a#if(q),
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n

Figure 3.11: For z in the 3e-neighborhood, the sample points inside balls By(z)
are contained in a ball of radius 6¢sif(p) centered at p.

sif (¢) < {%sif(p). Substituting into EquatioB.39we have

2sif (p) 1—¢

2((61%;))28%(]?) + ﬁ Sif(p)

D(a) < ! (@+M>281f2(p)+wsif(p)

The following lemma proves that the sample points insitjéx) are contained in a

small ball centered at as shown in Figur8.11

Lemma 3.14.Letx be a point that is inside th&-neighborhood as shown in Figug11l
Letp be the closest point te on F'. All sample points insid&,(x) are contained in a ball

of radiusé6e sif (p) centered ap.

Proof. Without loss of generality assume thats on or outsidef’, and lets be a sample
point insideB,(z). Lett be the point at whiclp intersects the plang; that contains

and is parallel to the tangent planepat

d*(s,t) = d*(s,p) — d*(p,t) = d*(x, s) — d*(z,1). (3.40)
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As s is inside By(z), d*(z,s) < (d(z,s,) + o(x))* + 170%(z) by Equation3.35 The
distance fromz to its closest sample poink(z, s,) < ¢(x) + €esif(p) by the sampling

preconditions. Substituting into Equati80

d*(s,p) = d*(p,t) < (lo(x)| + esif(p) + o (2))* + 170%(2) — (|¢(x)] — d(p, 1))*
d*(s,p) < 2/é(2)|(esit(p) + o(x))
+(esif(p) + o(x))? + 17%efs® (z) + 2|0 (x)|d(p, t). (3.41)

The expression on the right hand side is maximized wheén)| is maximized. Since: is
inside 3e-neighborhoodg¢(z)| < 3esif(p). The distance betweenand any sample point

inside By (z) is less than
d(z,p) +d(p, s) < 3esif(p) + 6.67esif(p) < 9.67esif(p),

by Equation3.37). Sample points is between two planes at a distanbg9.67¢) from
p by Lemma3.13 Therefored(p,t) < D(9.67¢). Substituting into EquatioB8.41, and
simplifying using the upper bound ar{z) = eefs(z) in Lemma3.12

d*(s,p) < 6esif(p)(esif(p) + eefs(z)) + (esif(p) + o(z))?
+170%(z) + 6Gesif (p) D(9.67¢)

< 36e%sif?(p).

]

In Lemma3.14we showed that all sample points insiBg(x) are near poinp closest
to z on F'. In the following lemma we show that the point functions of these sample points

have a small error when evaluatedrat
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Lemma 3.15. Consider a point: whose closest point on the surfakds p. Let7 be the
surface normal ap. For o < 0.25 let B be a ball of radiusxysif(p) at p. For each sample
points; € B, the angle between the normalatand is less thar®(«) = 1_?1&*22462 + €.

For each sample poing; € B, |¢;(z)] < |o(2)|0(a)?/2 + asif(p)O(a) + D(a).

Proof. Let p; be the point closest tg on F'. Then,
d(p,p;) < d(p, s;) + d(si,p;) < avefs(p) + € sif(p;).

Applying the result in Lemm&.3d(p, p;) < 2*5sif(p), andd(p, pi) < 2+ sif (p;). Com-

bining these two resul@(p, p;) < —2+<, min{sif(p), sif(p;)}. By the Lipschitz condition

1—a—e?

on surface normals in Theored2, the angle between the normalkatnd the normal gt

is less than ,
1?:;,& a + 62

1 _30t 1 _da— 42

1—€e2—a

(3.42)

Let7z; be the normal associated with From the sampling preconditions we know that the
angle between the normal pf and7i; is at most. By Equation3.42the angle betweeri;

and7i is
a4+ €2

Ofa) < 1 —4a — 462

+ €.

We can therefore write the normal of sample pairasi; = 77 + g;, where||;|| < O(«).

The error function of sample point when evaluated at is given by

Glz) = olx) — Fi(x)

= o) = (x=p) -7 = (p— ) - (T + o).

Because is the closest point ta on the surface(z — p) is parallel to7i and ||z — p|| =
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|o(2)]-

|0(2) = (x = p) -7 < [o(2)[(1 = cos O(a))
= 2|¢(x)|sin*(0(a)/2)
< |o(=)|©*(a)/2. (3.43)

Since sample poing; is insideB,
(p—s1) - 7] < alfs(p) ©(a). (3.44)

From Lemma3.13 the distance from sample poisitinside B to the tangent plane atis
at mostD(«). Therefore

(p = si) - 71| < D(ev). (3.45)

Adding the upper bounds on the individual terms in Equat®48 3.44 and 3.45gives

the desired result. OJ

In the following lemma we prove a result similar to Lemi®& for points inside the
3e-neighborhood. We show that the error functions of all sample points idsife) have

a small value at:.
Lemma 3.16. For a pointz inside the3e-neighborhood| E;, | < 69¢%sif (p).

Proof. Combining the results in Lemntal4and LemmaB.15gives the desired bound.

Eal < Y SO ool |sie Bt

$i€Ba(x)

By Lemma3.14 each sample point € B,y () is inside a ball of radiu§e sif (p) aroundp,
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the point closest ta on F'. By Lemma3.15we have
()] < 3esif(p)O?(6€)/2 + 6esif (p)O(6¢) + D(6e) < 69¢7sif (p). (3.46)

O

In the following lemma we prove an upper bound on the contribution of samples outside
By () to the error function. The proof is similar to the proof of Lemih6, and is given in

the appendix.
Lemma 3.17. For a pointz inside the3e-neighborhood| . ()| < 3€3sif(p).
Proof. Given in the appendix. ]

In the following three theorems we prove that the reconstructed surface is inside the

72¢2-neighborhood of the sampled surfate

Theorem 3.18.For a pointz inside the3e-neighborhood whose closest point éhis p,
|E(x)| < T2€%sif (p).

Proof. Adding the bounds of¥;, (x)| and|Eo, (x)| in Lemma3.16and LemmaB.17gives

the desired result.
|E(2)| < |Bn(2)] + | Bow ()| < 69€%sif(p) + 3€%sif (p) = T2€sif (p). O

Theorem 3.19.For a pointz € U, let p be the closest point iF’. Thend(z,p) <
72€%sif (p).

Proof. Forz € U I(z) = 0. Hencex is inside the3e-neighborhood by Theorer®.7.x
Applying the result in Theorer8.18we have|E(z)| < T2¢2sif(p). Therefored(z, p) =
[6(2)] < [I(2)] + [E(z)] < 72€%sif (p). 0
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Theorem 3.20.For a pointp € F, let ¢ be the closest point i/. Then,d(p,q) <
72€%sif (p).

Proof. If I(p) = 0 we are done; assume without loss of generality ftia} < 0. Lett be
the point on the outside normal pfat a distance of2¢?sif (p) from p. From Theoren3.18
we have

11(1)] = [6(t)] = |E(2)| > d(p,t) — 72€%sit(p) = 0.

As the cut function' is continuous, there is a poian pt at which(s) = 0 andd(p, s) <

72¢%sif(p). Sinceq is the point closesttp onU, d(p, q) < d(p, s) < 72€%sif(p). O

The above two results prove that the distance betwieand F' is small. In the remain-
der of this section, we analyze the gradient of the cut function to show that the normals of
the reconstructed surfa€éare close to the normals of the sampled surfac&he gradient

of the cut functionVI(x) can be written as
Vi(z) =V¢(x)+ VE(x).

Let p be the point closest to on F', and letii be the surface normal at The gradient of
the signed distance function atis given byV¢(x) = 7. The expression for the gradient

of the error function can be simplified to

VE@ = Y B | g W@ @)@ = s)

Si€S W(.CE) 55,8;€8 0'2(.77)W2(£E)
2Wi(2)Wj(2)Gi(@) (|17 — 551> = llo — s4l|*) Vefs(x)
* 25 o2(2)W2(z)efs(x) (3.47)

We separate the contributions of sample points inside and oufside to the gradient of
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the error function as

B (7 — 1i,) Wi(x) 2Wi(2)W(2)Ci()(s; — s5)
VEn(w) = y g;( )W p> o?(x)W?(x)
W)W ()G ()l — s, ]2 — e — sa]2)Vels(x)
> o2 (@) V2 (2)els(a) - (3.48)

54,8§€Ba(x)

84,57 €Ba(x)

and,
(71 — 1) Wi(x) 2Wi(z) Wi ()G () (si — s;)
VEou(r) = — 4 - )
S¢§§2($) W) szngz(m)Zv;ﬁBQ( ) o*(z)W?(z)
2W;(2)Wy(2)G(@) (|2 = s511* — llz = s4l*) Vefs(z)
+ 5 (3.49)
WBQ@%%(@ o?(z)W?(z)efs(z)

In the following lemma we prove th&f F;, () has a small norm.

Lemma 3.21. Let z be a point in the3e-neighborhood ofF" and letp be the point onF’
closest tar. Letii be the normal op. Then||VEy(z)| < 2096¢, and |77 - VEy,(7)| <
19250¢2.

Proof. By Equation3.48

IVEa(z)] < max {||n—nz||}

2€B2(

+— 2 max @)l = sl

0-2(1‘) 54,8 €Ba()
2| Veis(a)]| B
( Jefs(x) si, s]e%f {16 (@)l — 517 =1l ill¥)} (3.50)

Consider sample poind; inside By(z). By Lemma3.14 d(s;,p) < 6esif(p), and by

Lemma3.15the angle betweeri, and the normati; of s; is less thar®(6¢). Therefore

i — ;|| < ©(6e). (3.51)
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Consider the error functiogy associated with sample poisit By Equation3.46|(;(x)| <
69¢? sif (p). Substituting the upper bound eif(p) Lemma3.12we have

69¢2

|Gi()| < 69¢ sif (p) < 1= 160

efs(x) < T7%efs(z),

Since sample points are inside a b&Y(z) whose radius s, ||s; — s;]| < 2r, and
(Jlz = s;]|* = [|x — si]|*) < r3. By Equation3.36r, < 6.83cefs(z). Since the functiosif
is 2-Lipschitz, ||Vefs(z)|| < 2. Substituting into Equatio8.50we have

IV Ewn(2)|| < 2096e.
ConsiderV E;,(x) projected onto the normal vectar By Equation3.48we have

- VEu(z)| < max {[i- (7 — )}
SiGBQ(Z’)

2
o2(x) Si,SI‘I]éaé}g(x){|Ci(x)|ﬁ' (si —si)}

] {G@llz = 55 = e = i)} (3.52)

02(x)efs(ac) 5i,5;€Ba(x

+

Since the angle betweehandi; is less thar® (6e),

i (7 — ;) = 1 — cos O(6¢) = sin?(O(6¢)) < O*(6¢)/2.

The distance from each sample poipinside By(x) to the tangent plane atis at most
D(6¢) by From Lemma3.13 Hence|i - (s; — s;)| < 2D(6¢). Substituting these upper

bounds into EquatioB.52we have

il - VEi(z) < 1925062, O
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In the following lemma we show that samples outsitiéx) have little effect orvV I (x)

by proving thatV £, (x) has a small norm.

Lemma 3.22. For each pointz inside the3e-neighborhood,

|77 - V Eou ()] < 2958¢€2.

VE.u(x)|| < 137¢, and

Proof. Given in the appendix. ]

In the following lemma we prove that the gradient of the cut function is non-zero inside
the3e-neighborhood. This result is later used in SecB8dsto prove thatU is topologically

equivalent taoF'.

Theorem 3.23.For a pointzx inside the3e-neighborhood, lep be the point closest to on

the surfacel. Let7i be the surface normal @f Then,i- VI(z) > 0.

Proof. By the definition of the error function

i-VI(z) =7 -Vo(x)+i-VE@)>1—|it-VEn(x)| — |- VEou(z). (3.53)

By Lemma3.21we have|ii - VEi,(x)| < 18752¢%, and by LemmaB.22 we have|r -
V Eoui ()| < 2620€%. Substituting into EquatioB.53

it VI(x) >1—19250€> — 2958¢% = 1 — 22208¢* > 0,

fore < 1/150. N

The result in Theorer.23also proves that the gradient can never be zero inside the
3e-neighborhood. The zero set 6fis inside the3e-neighborhood ofF' by Theorem2.7.
Hence by the implicit function theorefi7], zero is aegularvalue ofI and the zero séf

is a compact, two-dimensional manifold.
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The gradient of the cut function at a pointc U determines the normal of the recon-

structed surface at, i, = ro7r- In the following lemma we prove that, converges to

V1 (u)
7 With e.

Theorem 3.24.Letwu be a point on the reconstructed surfadevhose closest point oR
is p. Letr,, be the normal ot/ at pointu and let7i be the normal of at pointp. An upper

bound on the anglé betweeni, andr is given by

1 — 22208¢2

g > - 220
cos 1+ 2233¢

Proof. The angle betweeii, andri is given by

n-VI(u)
IV (u)]

cosf =

(3.54)

From TheorenB.23
i VI(u) > 1 — 22208¢.

Consider the following upper bound fOK I (z)||,
IVI(w)]| < [[Vo(u)|| + [VE(u)|| < 1+ [[VEu(2)]| + IV Eou ()]l

From Lemma3.21 |VE,,(z)|| < 2096¢, and from LemmaB.22 ||V E, ()| < 137e.
Substituting into Equatio.54

1 — 22208¢?
p > - =20 0
COSU = T 9933¢
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Figure 3.12: Points r,t are the closest points to p on the offset surfaces. The line
segment p;p, intersects the zero set U at a unique point w.

3.6 Topology of the Reconstructed Surface

We now use the geometric results in Sect®bfto show that the reconstructed surfdce
has the same topology as the sampled surfacéhe proof of correct topology is identical

to the proof in Sectio.5.

Definition: LetT : R* — F map each poing € IR? to the closest point of .

Theorem 3.25.The restriction ofl" to U is a homeomorphism frofi to F.

Proof. The discontinuities of are the points on the medial axis Bf As U is constrained
to be inside th&e-neighborhood of, the restriction of" to U is continuous.

Now we show that" is one-to-one. Lep be a point onF’ and letii be the normal ap
as shown in Figur8.12 Without any loss of generality, assurié(p) = 1. Consider the
line segment parallel tori that intersectd,,; and F}, at p, andp; respectively. At each
pointy € p,p;, VI(y) - 7 > 0 from TheorenB.23 So the functior/ (x) is monotonically
decreasing from to ¢ and there is a unique poiaton p,p; wherel(u) = 0. Assume there
is another point € U for which I'(v) = z. The pointv has to be outside the segment
pop; and the distance from to its closest point orF’ is greater thamde. This contradicts
Theorem3.19

Finally we need to show thatis onto. Asl' maps closed componentsi@fonto closed
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components of’ in a continuous manner,(U) should consist of a set of closed connected
components. Consider the poinin Figure3.12 Assume thay = I'(u) is not in the
same component of asp. Let B, be the ball of radiuse centered at: that intersects
two components of’, one containing poinp and one containing poinf. Boissonnat
and Cazal421] (Proposition 12) show that any ball whose intersection Witls not a
topological disc contains a point of the medial axigofSince poinip is inside the bal,
that contains a point of the medial axisf(p) < 6e. Recall that our sampling conditions
requiree < 1/150. Hencesyif(p) < 6e < 1/25. This violates our assumption thaf(p) =

1. O

We will now prove a stronger topological result which shows that the reconstructed
surfacel/ can be continuously deformed into the sampled surfagéthout any change in

topology. Recall the definitions of isotopy and ambient isotopy from Ch&pter

Definition: An isotopy between two compact orientable surfacelRinis a continuous
mapV : U x [0,1] — IR? such that¥(., 0) is the identity ofU, ¥(., 1) = F, and for each
t € [0,1], (., ) is homeomorphic td/.

Definition: An ambient isotopy between two compact orientable surfatesd F' is a
continuous mag’ : IR? x [0, 1] — IR?, such that¥’(., 0) is the identity ofR*, ¥(U, 1) = F,

and for eacht € [0, 1], ¥(., ¢) is a homeomorphism dR?.

Theorem 3.26.The zero surfacé is isotopic to the sampled surfa¢é

Proof. We will define an ambient isotopy whose restriction t&/ will be an isotopy taF'.
Outside the3e-neighborhood, the ambient isotopy is the identitl:, ¢) = x for t € [0, 1].
From the proof of Theorer8.25we know that a line segmenhinormal to a poinp € F

intersectd/ only at one point: inside the3e-neighborhood. Lep; andp, be the end points
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of [ on the inside and outsidi-offset surfaces respectively as shown in FigBrE2 We
define the ambient isotopy to g, t) = tp + (1 — t)u. The line segmeng;u is linearly
mapped tg;V(u, t). Similarly, the line segmentp, is mapped tol (u, t)p,. O

Appendix

Recall that for points inside th&-neighborhood the radiug of the ball By(z) is given by
r2 = (d(z,s,) + eefs(x))? + 17e%efs (z).

With this new definition ofBy(z), it is easy to prove that Lemn®&a8is true forx inside the
3e-neighborhood. Therefore the density functions defined in Ler@r@are valid inside

the 3e-neighborhood.

Observation 1. Let = be a point inside th&e-neighborhood, and leB(x) be a ball of
radius r,;, > ro aroundz. Let )\, (0 < k < 4) be radial density functions given by
Me(x,7) = 12rF e~ Tmin/ (@) for r < T, @NA N (z,7) = 12rke=r*/7*@) for r > Tmin-.

Then

0o k )
/ 4rr? M\ (z,7) > Z d*(z, si) o~ @ (@,5:)/0%(z)
0 SZQB

a;

Let g = 0.06 be a small constant. Sinee< 1/150, ayiq > 9¢. Consider a ball
Bia() of radiusay,iqefs(x) centered at point as shown in Figur8.13 All sample points
inside By,;q(z) are neap, the point closest ta on F. This definition of B,;q(z) is used
in the following two results in which we prove that samples outd¥dér) have little effect

on the cut function for inside the3e-neighborhood.

Proof of Lemma 3.17. Recall that,;(x) that is the sum of the error in all sample points

outside By(z). SinCeamia > 9¢, Bniq is clearly larger thanB,(x) as shown in Fig-
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Figure 3.13: The normal of each sample point s € B, is close to the surface
normal at p. As a result, the point function of s when evaluated at z is close to ¢(z).

ure 3.13 Let & (z) and & (x) be the contribution of sample points insidg,;q(z) and
outsideB,,qa () t0 &, (x) respectively. We compute the desired upper bound by integrat-
ing over density functions defined in Observation

Consider a sample poigst in the spherical shell betweds,(z) and B,,;4(z) at a dis-

tancea efs(x) < apq efs(z) from z. By the upper bound oefs(z) in Lemma3.12
d(p, s;) < aefs(x) + 3esif(p) < (o' + 3€)sif(p),

wherea’ = (1+8¢)a/(1—¢€?). Sinces; is outsideB,(z), « is clearly larger tharde. Recall

that we defined a functio® in Lemma3.15such that)(«) is an upper bound on the angle
between the normal gf and the approximate normal of a sample point that is at a distance
of asif(p) from p. We can simplify the expression for the angle between the normal of

and the normal of p to

'+ 3¢ + €2 o +3a/44 (1/150)a/4
0o/ +3¢) = —— ~ 2.850.
(O 8 = T “12e 4@ < 1=, — 12(1/150) — 5(1/150)2 “
(3.55)
Recall that in Lemm&.13we proved that the distance framto the tangent plane atis

given by D(a/ + 3¢) &~ 1.62a%sif (p).

By the upper bound on the error function associated witterived in Lemma.15we
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have

G(z) < 3e0%(a +3¢€)/2 + O(a’ + 3¢)(a + 3e)sif(p) + D(a + 3¢)
< Ta’sif(p)

< 8a’efs(x). (3.56)

Consider sample point inside B,,iq () at a distancex efs(x) from z. The contribution of

sample poing; to the function¢; (z) is given by
8alefs(x)W;(z) = 8d*(w, s;)Wi(z) /efs(x).

The integral of the density functiok, defined in Observatiod is useful in proving an

upper bound for such a function.

6@ < G0 / " s (e, r)dr

=0

< 3847T (7’86_1%/‘72(55) _I_ /OO r4e—7”01”/0'2(1’)d7ﬂ)
efs(z) r=rg

120%(x)
To

384w (1
< oT(2) (50 +rgo?(z) + droo(z) +
2408
L 20 (x)

3
To

+ 24010(95)7“8) e 718/ (@),

For z inside the3e-neighborhoodr, < 6.83¢cefs(z) by Equation3.36 Substituting the

lower bound oV (z) from Lemma3.7

3840me= 1" (1rd 120°%(x)
E o 3 2 4 4
Bl < S (8 ot + ano'(a) + 22
+240’Z<:L‘) N 24012(95))
7o 7o
< 2.466%fs(z). (3.57)
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For sample points outsidB,,;q(x), we revert to the bound obtained in Lemr@d.0 on
the error function associated with each sample. &o¢ B,.(z) at a distance: from
x, (i(x) < 2r. The expression fof,(x)| is the same as the expression fgy,.(z)| in
the proof of LemmaB.10except that the sample points are outsigg instead ofr,. By

Equation3.26we have

960 rd. 6
Exz)| < ™ (m1d+rzﬂd02<x>+3a4<x>+ 5 55a)

efs(z)o3(x) \ 3 T"nid
6

+r4 0_8(x))6—(rr2md—(d(ac,8n)+0($))2)/02(95)) . (358)
mid

Whene = 1/150, |Ey(x)] < 10~ €?efs(x), and because of the exponential term in its

expression|F,(x)| remains less thah0—'*c%efs(z) for e < 1/150. By Equation3.57and

Equation3.58we have
Eout(7) < |Ey(2)] + | By(x)] < 2.42€%efs(p) < 3esif (p),

by Lemma3.12 O

Proof of Lemma 3.22 Recall thatz is a point inside thee-neighborhood, ang is the
point closest tar on F'. Assume without loss of generality that the indices of sample
points are in the increasing order of distancertd_et 7 be the surface normal at The

contribution of sample points outsid# (x) to VE(z) is given by

(7 — 11 ) Wi(z)

VEan(r) = 2 W(z) (3.59)
siZBa(x)
2Wi(x)W;(x)
T N2 () ((Gi(z) = ¢i()) (si — s5)
siQB;:c)ﬂ'>j o?(z)W3(z)
+efsl(iv) (G(2) = G(@)) (lz = s]1* = |l = si]]*.Vefs(x).) (3.60)
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Let VE,(z) and VE,(z) be the contributions of sample points inside and outside
Bmia(7) to the gradient of the error function.

Consider a sample point inside B,,;4(x) at a distance; = «efs(z) from z. From
Equation3.55 |n — n;|| ~ 2.84a < 3«, and from EquatiorB.56 |(;(z)], |¢;(z)] <
8a’efs(z). So the expression fgfV £ (x)|| can be simplified to

E@I < Y g

5;€Bmid (%) —Baz(z)

2Wi(ax)Wi(x) ((16r7)(2rs) | (16r7)(r7)|[Vefs(z)|
Z o?(x)W?2(z) ( efs(x) * sif?(x) )

5i€ Bmid(x)—B2(x),i>j

1 64r? 64r} o
()W (2) ZBQ( | (3“’ T @t 02(x)efs(m)> Wilz).

8;€ Bmid ()

The density function3,, are useful in proving an upper bound of the above summation.

1 1 6478 64r] 2 /52
5 S S 1 4 0 0 —rg/o%(2)
IVE (z)]| < efs(2)W (z) ( o (3 (3% * o?(z) * 02($)efs($)> o

o0 64r° 6470 2
3 3 —ror/o (ac)d )
* /TO T o?(x) * 02($)ef8(l‘)6 "

Evaluating the integral and substituting the lower boundifx) from Lemma3.7, we

have
|VE(x)]| ~ 131.5¢.

To compute an upper bound @iV E»(x)|| note that||77 — n;|| < 2, and|¢|, |¢;(z)] <

2||x — s;|| outsideBs(z). So the expression fafE,(z)|| can be simplified to

1612 1613
<2+ or + 6T>dr.

€2 €2

1 (0]
IV Es ()| < W/

Tmid
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Simplifying the integral, it is easy to show
|V Ey(z)|| < 1077

whene < 1/150. Adding the upper bounds diE; (z)| and|| Ex(z)||, || VE(z)|| < 132e.
Consider the gradient of the error function projected onto the normal @kt s; be

a sample point insid#,,;4(z) at a distance; = aefs(z) from x. From Equatior3.55

i (i —ri;) < 0%(a +3¢)/2 < ba?, andri - (s; — s;) < 2D(a’ 4 3¢) < 4a’efs(z). So the

error due to all sample points insid&,;4(x) is given by

1 1 1287‘7 647’7 2/ 2
7. F = — = (48 Z (5 5 0 0 —rg/o*(x)
7 Br()] sifQ(:c)W(a:) ( i (3 ( ot o?(x) + 02(w)> ¢

00 6 6
+/ 57”4 i 128r i 64r e_ror/aj(m)dr)> '
0

o?(x)  o?(x)

Evaluating the integral and substituting the lower boundéfx) from Lemma3.7 we
have

7 - VE (z)] < 2619.9¢%,

Sincel||n|| < 1, |7 - VEy(x)| < [[VEy(x)]| < 107°€¢* for ¢ < 1/150. Adding the upper
bounds on7i - VE, (x)| and|7i - VEy(x)|, we havelii - VE(x)| < 2620e. O
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Chapter 4

An Implementation of Moving Least

Squares

In this chapter we move from theory to practice and describe our implementation of the
MLS algorithm analyzed in Chapt& The input to the MLS implementation is a set of
sample points obtained from a scanning device or from passive techniques. We assume
that the range images have been aligned into a single coordinate system by the automatic
registration algorithm described in Chapéer

Sample points in the range images might not exactly lie on the sampled surface after
registration. Instead, they typically form a thick cloud of points near the sampled surface.
Figure4.1 shows a two-dimensional point cloud with added noise, and the zero set of the
cut function defined by the MLS algorithm. Notice that even when the point cloud is noisy,
the reconstructed implicit surface is smooth. However, the cut function Let might contain
spurious zero crossings due to outliers and areas of undersampling in the range images.
An isosurface triangulation algorithm such as Marching Cub8kscannot reconstruct the
right surface from cut functions containing zero crossings far from the sampled surface.

Our approach is to project the sample points onto the zero set of the cut function, and
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F

Figure 4.1. (a) A two-dimensional data set with added noise. (b) Cut function
defined by the uniform MLS algorithm. (c) Zero set of the cut function.

reconstruct a surface mesh from the projected sample points using the Eigencrust algorithm
described in Chaptds. The Eigencrust algorithm is robust against outliers and undersam-
pling. Projecting the sample points onto the zero set of the cut function reduces scanner

measurement noise, and errors introduced due to poor alignment of scans.

4.1 Implementation

Let S be the set of sample points in the aligned range images and for each sample point
s; € S letn; be the approximate outside normal of the sampled surfage 8e smooth

the noisy point cloud by projecting each sample point onto the ze® s&the cut function

I defined by all the sample points # In our implementation we use the uniform MLS
algorithm analyzed in Chapt@ Recall the definition of the uniform-MLS surface given

by Equation2.1
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The weight functions are Gaussian functiol§(z) = e~ l==sil*/¢* /4, with a normaliza-
tion factora; which is set to the number of sample points inside a ball of radaentered

ats;, includings; itself.

4.1.1 Estimating Normals and Parameters

Range scanners sample points on a square grid (as viewed from the scanner), which forms
a natural triangulation. We treat the triangulation as a piecewise linear surface embedded in
three-dimensional space. This triangulation might contain long triangles where the scanner
crosses a silhouette of the object being scanned as shown in Big@ag We compute a

grid spacing/ equal to the median length of the diagonal edges of the triangulated grid,
and we discard any triangle whose greatest edge length ex¢ée&ggure4.2(b) shows

the triangulation of after triangles with long edges are removed.

The normal at each sample poinge S is given by an average of the normals of all faces
incident ons. These normals are oriented along the outside direction using the location of
range scanner. We discard sample points that have no incident triangles. We set the
parameter of the Gaussian weight functiond4so that the Gaussian functions associated

with adjacent sample points in the range images overlap significantly.

4.1.2 Projection

A simple Newton iteration procedure projects the sample points onto the zero set of the cut
function. Letp, be the position of the sample pointfteri?” iteration. At each iteration

we compute the value and the gradient of the cut functign,atnd projeci; to the point

pi+1 given by
1(pi)

MO

Pi+1 = Pi —
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(@) (b)

Figure 4.2: (a)Triangulation of a range image in the Stanford Happy Buddha data
set. (b) The triangulation after removing triangles with long edges.
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The iterative procedure stops when the absolute value of the cut function at the projected
point is below a threshold. If the iterative procedure does not converge after a user specified
number of iterations (10 in our implementation) we leave the sample point to its original
position.

Let B(z) be a ball of radiug(z, s,,) + 5e centered at, wheres,, is the nearest sample
point toz. In Lemma2.6in Chapter2 we proved that sample points outsi&x) have
little effect on the value of the cut function at Let W,,(z) be the sum of the weights of
sample points insid&(x). We ignore sample points outsidd x) when evaluating the cut

function. An approximatior (z) to the cut function is given by

ZsieB(:ﬁ) Py(x)Wi(z)
Win()

I(z) =

The projection step also requires the gradient of the cut function. In our analysis of the cut
function given in ChapteR, we wrote the expression for/(x) as a double summation
over the sample points (Equati@y.?. We can rewrite the expression for the gradient so

that the double summation is not required,

2 ses(lli = Pi(x)(x — si)/€) o 2msies(® — si) /€
W (z) '

VI(z) =
Just as with the approximation of the cut function value, we approximate the gradient by
ignoring sample points outside(x):

ZsieB(I)(ﬁi — Bi(z)(z — s;))/€*) - . ZSZEB(x)(‘T —8i)/¢
Win(0) O

Vi(z)~

Since the number of sample points insilér) is much smaller than the number of sample
points inS for most point clouds, the approximate gradient is much faster to compute than
the exact gradient. We use kd-trdd§] to efficiently find the sample point closestt@nd

the set of sample points insidg(z).
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(a)

Figure 4.3: (a) The cut function defined by the MLS algorithm for a point cloud
with undersampling. (b) Adding outliers to the point cloud introduces a zero set far
away from the real sample points.

4.1.3 Limitations

Although the MLS algorithm effectively removes scanner and registration noise, it can-
not handle undersampling and outliers in the input point cloud. FigiBshows a two-
dimensional example. In Figu#e3(a), removing some of the sample points causes the
zero set of the cut function to appear far away from the sample points. This is a problem
for point-based modeling algorithms that rely on projecting random points onto the zero
set of the cut function. Similarly, the MLS algorithm cannot differentiate between sample
points that lie on the true surface and outliers that are far away from the sampled surface as
it relies on purely local information. Outliers introduce spurious zero crossings into the cut
function as shown in Figuré&.3(b).

We deal with undersampling and outliers when we mesh the zero set usikgyte
crustalgorithm, which we describe in ChapterWhile projecting sample points, we have
to be careful not to move sample points that are near the true surface onto zero set compo-
nents far away from the surface. We move the sample point to its projection on the zero set
only if the projected point is less than a given threshold away (n our implementation)

from its original position.
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Model Points | Iterations| Average number Time
of iterations | (Seconds

Bunny | 362272 | 748563 2.07 42.34

Dragon | 1769513| 4850420 2.74 435.34

Armadillo | 1706919| 2735165 1.60 234.12

Buddha | 2643108| 6626532 2.50 559.164

Angel | 9449840 35106984 3.71 2808.95

Table 4.1: Running times for projecting sample points on to the zero set of the
MLS cut function.

4.2 Results

Figure 4.4(a) shows the Eigencrust reconstruction of the bunny model with and without
MLS smoothing. Notice that the surface reconstructed without MLS smoothing is bumpy
because of noise and poor alignment of scans. After MLS smoothing the reconstructed
surface is smooth. However, MLS smoothing does not remove outliers in the input, as
Figure4.4(b) shows.

Table4.1shows the running time of MLS smoothing on a few data sets. The projection
procedure converges very quickly, typically in 2—4 steps. The quick convergence confirms
our gradient results in Chapt@r where we showed that the gradient of the cut function
approximates the sample point normals inside a small neighborhood of the sampled surface.
The Eigencrust reconstructions of all the point clouds in Tdbleare given at the end of
Chapterb.

4.3 Discussion

Our implementation of the uniform MLS algorithm is effective for building a smooth con-
sensus surface when the range data is obtained from a single range scanner. In cases when
data from multiple sources is being combined, the adaptive MLS algorithm is necessary.

We estimate the parameter from the sample point spacing in the input point cloud.

105



Chapter 4. An Implementation of Moving Least Squares

(b)

Figure 4.4: (a) Eigencrust reconstructions of the bunny model without (left) and
with (right) MLS smoothing. (b) Sample points in the dragon model after MLS
smoothing.
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This method only works when the magnitude of the noise in the point cloud is comparable
to the sample point spacing. When noise in the point cloud is much larger than the sample
point spacing, the width of the Gaussian weight functions should be determined by the
noise characteristics of the scanner. Noise in the sample points can either be estimated
from confidence values associated with sample points by some range scanners, or from the

error in the alignment of scans during fine registration.
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Eigencrust

5.1 Introduction

There are two kinds of errors that cannot be handled by the MLS algorithm: outliers, which
are spurious points far from the true surface, and, unsampled regions that are not accessible
to scanning. A data set that suffers from both of these errors is shown in Eigui&hen

these problems are severe, data arise for which no algorithm can construct an accurate,
consistent, watertight model of an object’s surface solely by examining local regions of a
point cloud independently. A successful algorithm must take a global view. We propose
a Delaunay-based reconstruction algorithm to handle outliers and undersampled regions.
The general technique we use to produce a surface from a point cloud is well known:
compute the Delaunay tetrahedralization of the points, then label each tetralvesiden

or outside. (Recent advances in Delaunay software make it possible to tetrahedralize sets
of tens of millions of points.) The output is a triangulated surface, composed of every
triangular face where anside tetrahedron meets antside tetrahedron. This procedure
guarantees that the output surfacevegertight—it bounds a volume, and there is no route

from the inside to the outside of the volume that does not pass through the surface.
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Figure 5.1: A watertight manifold surface triangulation reconstructed by our algo-
rithm; a photograph of the source object; the point cloud input to the algorithm, with
4,000 artificial random outliers; and the sorted components of the two eigenvectors
used for the reconstruction. 2,008,414 points; 12,926,063 tetrahedra; 3,605,096
output triangles; genus 14; 437 minutes reconstruction time, including 13.5 minutes
to tetrahedralize the point cloud, and 157 minutes and 265 minutes to compute the
first and second eigenvectors, respectively.
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Our innovation is to introduce the techniques of spectral partitioning and normalized
cuts into surface reconstruction. These techniques are used heavily for tasks such as image
segmentation and parallel sparse matrix arithmetic, where partitioning decisions based on
a global view of an image or a matrix can outperform local optimization algorithms. Al-
though the global optimization step makes our algorithm slower than some competitors, it
reconstructs many models that other methods cannot.

We create a graph that represents the tetrahedra. A spectral partitioner slices it into two
subgraphs, amside subgraph and aautside subgraph. Because the spectral partitioner
has a global view of the point set, it is effective at identifying the triangular faces that are
most likely to lie at the interface between an object and the space around it. Although the
global optimization step makes our algorithm slower than some competitors, it reconstructs

many models that other methods cannot.

5.2 Related work

5.2.1 Delaunay-based surface reconstruction

There has been much work on reconstructing surfaces from point clouds using the Delaunay
tetrahedralization of the sample points. The idea of labeling each Delaunay tetrahedron
inside or outside, then extracting a surface using the labels, appears in an early paper of
Boissonaf18].

Thea-shape proposed by Edelsbrunner, Kirkpatrick, and Sé3¥is a parameterized
construction that associates a subset of the Delaunay tetrahedralization with an unorganized
point set. A simplex is in the-shape if it has an circumsphere of radius at mo$tat does
not contain any sample points. Edelsbrunner aricthé¢[38] use then-shape spectrum of
the sample points for surface reconstruction. Bajaj, Bernardini, and Hwse weighted

a-shapes as the first step in a reconstruction pipeline.
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The crust algorithm of Amenta and BerfB] was the first surface reconstruction al-
gorithm with theoretical guarantees. The cocone algorithm of Amenta, Choi, Dey, and
Leekhal[5] simplified the crust algorithm and also proved that the reconstructed surface
is homeomorphic to the sampled surface. The idea of labeling Delaunay tetrahedra also
appears in the Tight Cocone algorithm of Dey and Gosw&a]iand in the Powercrust al-
gorithm of Amenta, Choi, and Kollufig] (with cells of a power diagram replacing tetrahe-
dra). Both Tight Cocone and Powercrust avoid the manifold extraction step that is required
by the crust and cocone algorithms.

A recent advance is the Robust Cocone algorithm of Dey and Gosl@dinia Delau-
nay reconstruction algorithm that is provably robust against small coordinate errors. Their
algorithm is not robust against undersampling or outliers, and in fact is easily defeated by
undersampling. We observe that a variant of our spectral algorithm could be used to help
the Robust Cocone algorithm to label tetrahedra when the sample set is not dense enough
for the Robust Cocone’s original labeling algorithm to succeed.

Different branches of algorithms have different advantages. The main advantages of
the Delaunay algorithms are the ease with which they exactly interpolate the sample points
(except the samples judged to be erroneous outliers); the effortlessness with which they
obtain watertight surfaces; the ease with which they adapt the density of the triangles to
match the density of the points (unlike marching cubes), for models whose point density
varies greatly from region to region; and the theoretical apparatus that makes it possible to

prove the correctness of some reconstruction algorithms on well-sampled smooth surfaces.

5.2.2 Spectral Partitioning

Spectral methods for partitioning graphs were introduced by Hall and Fiedler[39]
and popularized by Pothen, Simon, and L[@@]. They are used for tasks such as image

segmentation, circuit layout, document clustering, and sparse matrix arithmetic on parallel
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computers. The goal of graph partitioning is to cut a graph into two subgraphs, each roughly
half the size of the original graph, so that the number of cut edges is small, or so that the
total weight of the cut edges is small (if each edge is assigned a numerical weight). There
are many ways to formulate the graph partitioning problem, which differ in how they trade
off the weight of the cut against the balance between the two subgraphs. Most formulations
are NP-hard, so practical partitioning algorithms (including spectral methods) are heuristics
that try to find an approximate solution.

One of the most effective formulations of spectral partitioning isrtbemalized cuts
criterion of Shi and Malik[80], which is particularly effective at trading off subgraph
balance against cut weight. We make a simple modification to the Shi-Malik algorithm
(closely related to a technique of Yu and $86]) that greatly improves our surface re-
construction algorithm’s speed and the quality of the surfaces it produces. Ng, Jordan, and
Weiss[66] analyze the normalized cut algorithm and also present a spectral clustering pro-
cedure to divide a graph inte(> 2) components. When the weight of the inter-cluster
edges is much smaller compared to the weight of edges inside each cluster, they prove that

that spectral clustering algorithm will recover the correct clusters.

5.3 Spectral Surface Reconstruction

5.3.1 Delaunay triangulation

The Delaunay triangulation is a fundamental geometric construction that has been well
studied in computational geometry. See Fort{#@ for a nice survey of the properties

of the Delaunay triangulation and its geometric dual, the Voronoi diagram. Although De-
launay triangulations and Voronoi diagrams are defined in any dimension, we are mainly
interested in three-dimensional Delaunay triangulations. In three-dimensions, geometric

duality maps each Delaunay tetrahedron to a Voronoi vertex and each Delaunay face to a
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N T

Figure 5.2: The Delaunay triangulation (black) and Voronoi diagram (red) of a set
of points sampled from a closed curve.

\Voronoi edge.
Our algorithm begins with a sef of sample points in space. Lét" be the setS

augmented with eight bounding box vertices, the corners of a large cube that encloses the
sample points. (The width of the cube should be much greater than the diamétesof

that no sample point lies near any side of the cube).ILbe the Delaunay tetrahedraliza-

tion of S*. Figure5.2 shows a two-dimensional example. l@tbe the Voronoi diagram

of S*. For each tetrahedranin the tetrahedralizatiof’, there is a dual vertex of the
Voronoi diagram®), andw is the center of the sphere that circumscribeBy construction,

the circumscribing sphere ofdoes not contain any of the sample points$in

5.3.2 Overview of the reconstruction algorithm

The goal is to label each tetrahedron—or equivalently, each Voronoi vertestde or

outside. Our algorithm labels the Voronoi vertices in two stages. Each stage forms a graph

and patrtitions it.
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Figure 5.3: Left: the negatively weighted edges of the pole graph G (green), before
the bounding box triangles are collapsed into a single supernode. Yellow triangles
are the duals of poles labeled inside by the first stage of spectral partitioning. The
black triangle does not dualize to a pole; it is labeled inside by the second parti-
tioning stage. Right: the positively weighted edges of G.

In the first stage, our algorithm labels a subset of the Voronoi vertices callgulbs
following Amenta and Berh3]. We form a grapl, called thepole graph whose nodes
represent the poles. See Fig&@ for a two-dimensional example. The edgestohre
assigned numerical weights that reflect the likelihood that certain pairs of poles are on the
same side of the unknown surface that we wish to reconstruct.

The graph is represented by pole matrixL. We partition the poles afr by finding
the eigenvector that corresponds to the smallest eigenvalue of a generalized eigensystem
Lx = \Dz, and using that eigenvector to cut the graph into two piecesinide and
outside subgraphs. Thus we label each pwigide or outside.

In the second stage, we form another grdphwhose nodes represent the Voronoi
vertices that araotpoles, and partitio/ to label all the Voronoi vertices (equivalently, the
tetrahedra) that were not labeled in the first stage. The goal of the second stage is different
from the goal of the first: the non-poles are somewhat ambiguous—most of them could
arguably be eitheinside or outside—so the partitioner tries to assign them labels that will
yield a relatively smooth surface with low genus.

Now all the Voronoi vertices have labels, so all the tetrahedrd bave labels. The
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algorithm outputs a surface triangulation consisting of every triangular fa€endfere an
inside tetrahedron meets ayutside tetrahedron. If the points i are sampled densely
enough from a simple closed surface, then the triangulation approximates the surface well.

If all the tetrahedra adjoining a sample point are labalatside (or all inside), the
point does not appear in the reconstructed surface triangulation. In Seetjove see that
this effect provides our algorithm with effective and automatic outlier removal. No other
effort to identify outliers is required.

Why are the Voronoi vertices labeled in two separate stages? Because the non-poles are
ambiguous, they tend to “glue” the inside and outside tetrahedra together. If they are in-
cluded in the first partitioning stage, the graph partitioner is much less successful at choos-
ing the right labels, and runs more slowly too. A two-stage procedure produces notably
better and faster results.

We have chosen the graphs’ edge weights (by trial and error) so the algorithm tries to
emulate the provably correct Cocone algorithm of Amenta d6alwhen there is neither
noise nor outliers, and the sampling requirements of the Cocone algorithm are met. Our
algorithm usually returns significantly different results only under conditions where the
Cocone algorithm has no guarantee of success.

Our algorithm includes three optional steps. After the first partitioning stage, we can
identify some tetrahedra that may be mislabeled due to noise, and remove their labels (so
new labels are assigned during the second stage). This step improves the resilience of our
algorithm to measurement errors. After the second partitioning stage, we can convert the
surface to a manifold (if it is not one already) by relabeling sams&le tetrahedrautside.

After the final surface recovery step, we can smooth the surface to make it more useful for

rendering and simulation.
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Figure 5.4: (a) No matter how finely a surface is sampled, tetrahedra (yellow) can
appear whose circumscribing spheres are centered on or near the surface (green)
being recovered. (b) The Voronoi cell (pink) of a sample point s. The poles of s—
the Voronoi vertices « and v—typically lie on opposite sides of the surface being
recovered, especially if the cell is long and thin.

5.3.3 The Pole Graph

Imagine that we form a graph whose nodes represent the vertices of the Voronoi diagram
(and their dual tetrahedra i), and whose edges are the edge® ¢bmitting the edges that
are infinite rays). Suppose we then assign appropriate weights to the edges, and partition
the graph intanside andoutside subgraphs.

Unfortunately, this choice leads to poor results. The main difficulty is that the Delaunay
tetrahedralizatiol” invariably includes flat tetrahedra that lie in the surface we are trying
to recover, as Figur®.4(a) illustrates. These tetrahedra are not eliminated by sampling
a surface extremely finely; they are a natural occurrence in Delaunay tetrahedralizations.
Many of them could be labeledside or outside equally well. They cause trouble because
they can form strong links with both the tetrahedra inside an object and the tetrahedra
outside an object, and thus prevent a graph partitioner from finding an effective cut between
the inside and outside tetrahedra.

To solve this problem, Amenta and Beli8l identify special Voronoi vertices called
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poles Poles are Voronoi vertices that are likely to lie near the medial axis of the surface
being recovered. The Voronoi vertices whose duals are the troublesome flat tetrahedra are
rarely poles, as the problem tetrahedra lie near the object surface, not near the medial axis.

Each sample poird in S can have two poles. Letbe the Voronoi cell ok in @ (i.e.
the region of space composed of all points that are as close or closérda to any other
sample point inSt). See Figures.4(b) for an example. The Voronoi cellis a convex
polyhedron whose vertices are Voronoi vertices. It is easy to compute the vertices of
because they are the centers of the circumscribing spheres of the tetrah€drebhave
s for a vertex.

Let u be the vertex ot furthest froms;  is considered a pole af Letv be the vertex
of ¢ furthest froms for which the angleZusv exceed9)0°; v is also considered a pole of
s. Figure5.4(b) illustrates the two poles of a typical sample point. The eight bounding box
vertices inS* are not considered to have poles. Lebe the set of all the poles of all the
samples irS.

Amenta and Bern show that in the absence of noise, the tetrahedra that are the duals of
the poles are likely to extend well into the interior or exterior of the object whose surface
is being recovered. The tetrahedra whose duals are not poles often lie entirely near the
surface, as Figurb.4(a) shows, so it is ambiguous whether they are inside or outside the
object.

Our algorithm identifies the sét of all poles, then constructs a spagsale graph
G = (V, E). The setE of edges is defined as follows. For each sampiéth polesu and
v, (u,v) is an edge ink' as shown in Figur®.5. For each pair of samples s such that
(p, s) is an edge of the Delaunay tetrahedralizafigriet = andv be the poles of, and let
r andt be the poles op; then the edgeg-, u), (r,v), (t,u), and(t, v) are all edges oF as
shown in Figureb.5. Every pole is the dual of a tetrahedron, so tetrahedra that adjoin each
other are often linked together (®, whereas tetrahedra that are not close to each other are

not linked.
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() C®

Figure 5.5: (a) For each pair of samples p, s that share an edge in the Delaunay
triangulation, we add edges with positive weights between the poles of s and the
poles of p to the pole graph. (b) The poles of sample s—the Voronoi vertices « and
v—typically lie on opposite sides of the surface being recovered. We therefore add
a negative edge between them in the pole graph.

We assign edge weights in a heuristic manner based on several observations of Amenta
and Kolluri [8]. If S is sampled sufficiently densely from a smooth surface, the Voronoi
cells are long and thin, and the longest dimension of each cell is oriented roughly perpen-
dicular to the surface, as Figubed(b) depicts. Of course, point sets that arise in practice
are often not sampled densely enough, but if a sampkes a long, thin Voronoi ced|, the
likelihood is high that its poles andv are on opposite sides of the surface. Therefore, we
assign the edggu, v) a negative weight, to indicate that if onewbr v is labeledinside,
the other should probably be labeledtside.

Let ¢, andt, be the tetrahedra i’ whose duals are andv. Let C, andC, be the
circumscribing spheres of andt,.. The sphere§’, andC, intersect at an angle. Amenta
and Kolluri show that ifp is small, as illustrated in Figure.6(a), thenc is quite long and

thin, and the likelihood is high that andt, lie on opposite sides of the surfaceglis close
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(b)

Figure 5.6: (a) Small angles of intersection between circumscribing spheres may
indicate that two tetrahedra are on opposite sides of the surface being recovered.
(b) Large angles of intersection usually indicate that two tetrahedra are on the
same side of the surface.

to 180°, thenc is relatively round, and it is unsafe to conclude thaandt, lie on opposite
sides. We assigfu, v) a weight ofw,, , = —e***<?, so thatw, , is most negative when
is closest to zero. For two spheres that intersect at an angle can computeos ¢ using

the forumla,

cos ¢ = (d*(u,v) —r2 —r?).

27,7y
Here, d(u,v) is the distance between the pointsv andr,,r, are the radii of the two
sphereg’,, C, respectively.

We assign positive weights to the other edge#/inThese weights are the glue that
hold proximal tetrahedra together and ensure thatlikely to be cut only near the original
surface, where the glue is weakest. [etv) be an edge of that is not assigned a negative
weight—thus, there is a Delaunay edgep) for which v is a pole ofs andv is a pole ofp,
but there is no sample pointvhose poles are andv. Again, lett,, andt, be the tetrahedra

that are dual ta. andv, and letC,, andC,, be their circumscribing spheres, which intersect
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at an angles. We assigr(u, v) a weight ofw, , = e*~*°*?. Amenta and Kolluri show that

if ¢ is close tol80°, as illustrated in Figurd.6(b), thenu andw are likely to lie on the same
side of the surface, so we use a large, positive edge weightisitlose to0°, we choose

a small edge weight, so thatandv are not strongly glued together. It may occur that the
sphereg”, andC, do not intersect at all, in which case we remove the ddge) from E.

We could patrtition the grapty directly, but we knowa priori that certain tetrahedra
must be labeledutside, and it is advantageous to fix their labels prior to the partitioning
step. LetO be the set of poles whose dual tetrahedra are known to be outside the object
being reconstructed. We take advantage of this information by forming a new gfaph
that is similar toG, but the poles irO are collapsed into a singkupernode:. If v and
v’ are poles inD, and(u, ') is an edge of7, the edge is eliminated (not presentGt).

If v is a pole inG that is not inO, then in the new graphy’, the edg€z, v) has weight
W.o = Y .co Wup- Collapsingoutside poles into a single supernode makes the spectral
partitioner faster and more accurate.

What poles doe®) contain? There are several types of tetrahedra that can be labeled

outside prior to the partitioning step.
e Any tetrahedron with a vertex of the cubical bounding box musiugside.

o If the point samples were acquired by a laser range finder, the tetrahedra that lie be-
tween the laser source and any sample point it recorded muasitbiele. Of course,
there may be measurement errors in the positions of the sample points and the laser
source, so we recommend only labeling those tetrahedra that the laser penetrated

more deeply than some tolerance depth, multiple times.

e For particularly difficult reconstructions, a user may visually identify specific points
in space that are outside the object. The tetrahedra containing these points are labeled

outside. Collapsing just one such tetrahedron intodlkside supernode can change
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the labeling of many other tetrahedra, so this is occasionally a practical option. (No

example in this paper takes advantage of this possibility.)

Optionally, the algorithm may create arside supernode as well, with a large negative
weight connecting theutside andinside supernodes. This is particularly useful for re-
constructing one-sided building facades or other sets of sample points that do not represent
closed volumes. For this purpose, the tetrahedra adjoining the front face of the bounding

box are labeledutside, and the tetrahedra adjoining the back faceiasale.

5.3.4 Spectral Partitioning

From the modified pole grapi’, we construct @ole matrixL. (L is often called thé.apla-

cian matrix but our use of negative weights makes that name a misnomes.$parse and
symmetric, and has one row and one column for each node of the g¥aplor each edge

(vi, v;) of G" with weightw,, .., the pole matrix. has the components; = Lj; = —w,,,,.
(Positive, “attractive” weights become negative matrix components, and negative, “repul-
sive” weights become positive matrix components.) The diagonal componehisrefthe

row sumsL;; = Z#i |L;;|. The remaining components 6f(the off-diagonal components

not represented by an edge@) are zero. IfG’ is connected (which is always true in our
application) and includes at least one edge with a negative wdigktguaranteed to be
positive definite.

The spectral analysis of a Laplacian matrix or pole matrix can be intuitively understood
by analogy to the vibrational behavior of a system of masses and springs. Imagine that
each node of+’ represents a mass located in space, and that each edge represents a spring
connecting two masses. Positive edge weights imply attractive forces, and negative edge
weights imply repulsive forces. The eigensystenLakpresents the transverse modes of
vibration of the mass-and-spring system. The lowest-frequency modes give clues as to

where the graph can be cut most effectively: ittede masses are usually found vibrating
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)

Figure 5.7: Watertight skeleton surface, and the sorted components of the eigen-
vectors computed during the two partitioning stages. The points are densely sam-
pled from a smooth surface, so the eigenvectors are polarized. 327,323 input
points; 2,334,597 tetrahedra; 654,596 output triangles; genus zero; 12.3 minutes
reconstruction time, including 2.8 minutes for the tetrahedralization, and 5.1 min-
utes and 4.2 minutes for the eigenvectors.
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out of phase with theutside masses.

We take advantage of this observation by finding the eigenvecissociated with the
smallest eigenvalug of the generalized eigensystein = A\Dzx, whereD is a diagonal
matrix whose diagonal is identical to thatof Becausd. is sparse, we compute the eigen-
vectorz using the iterative Lanczos algorithi®9; 72]. Each component of the eigenvector
x corresponds to one column 6f and therefore to one node 6f, to one pole of), and
to one tetrahedron df’. (The exception is the component ofthat corresponds to the
supernode.)

Figure5.7 shows a reconstruction of a skeletal hand and the eigenvectors computed
during the two partitioning stages. The components of the eigenvectors are sorted in in-
creasing order. When our method is applied to smooth, well-sampled surfaces, we find
that the eigenvector is relatively polarized: most of its components are clearly negative
or clearly positive, with few components near zero. However, noisy models produce more
ambiguous labels—see Figurgdl, 5.11, and5.13 One of the components aof corre-
sponds to theutside supernode. Suppose this component is positive; then the nodes of
G' whose components are positive are labealatside, and the nodes whose components
are negative are labeladside. (If the component corresponding tds negative, reverse
this labeling.)

This procedure differs from the usual formulation of normalized 8@ in one crit-
ical way. The standard normalized cuts algorithm does not use negative weights, so its
Laplacian matrixL is positive indefinite—it has one eigenvalue of zero, with an associ-
ated eigenvector whose components arel allTherefore, the standard formulation uses
the eigenvector associated with the second-smallest eigenvalue (calleédher vecto)
to dictate the partition. Our pole graph has negative weights, our pole matrix is positive
definite, and we use the eigenvector associated with the smallest eigenvalue to dictate the
partition. Because the negative weights encode information about tetrahedra that are likely

to be on opposite sides of a surface, we find that this formulation reconstructs better sur-
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faces, and permits us to calculate the eigenvector much more quickly than normalized cuts
in their standard form.

Spectral partitioning solves a real valued approximation to the normalized-cut problem,
which is NP-complet¢80]. It is interesting to note that the first eigenvectoof the pole

matrix minimizes the following summation:

1

s | 2o OO ) v+ 3 @) 4G, | B)

Woy; >0 Woy; <O
Consider an ideal pole graph in which all theside poles (andoutside poles) form a
connected subgraph df, there is no positive weight edge betweenside pole and an
outside pole, and there is at least one negative weight edge betwemside pole and
anoutside pole. In the first eigenvectar of this ideal pole graph, the components of the
inside poles and theutside poles will have the same value with opposite sign. The eigen-
vector of the skeletal hand shown in Figs€ illustrates the clean separation iokide
poles andbutside poles. When there are no negative weight edges, all the components in
x will have the same value.

The Lanczos algorithm is an iterative solver which typically takes abigytn) iter-
ations to converge, whereis the number of nodes i6’. (L is ann x n matrix.) The
running time also depends on the distribution of eigenvalues of the generalized eigensys-
tem, in a manner that is not simple to characterize and is not related to the condition number.
The most expensive operation in a Lanczos iteration is matrix-vector multiplication, which
takesO(n) time becausé. is sparse.

For noisy models, th&(n+/n) running time is justified. Because spectral partitioning
searches for a cut that is “good” from a global point of view, it elegantly patches regions
that are undersampled or not sampled at all (see Figil)le Measurement errors may

muddy up the edge weights, but a good deal of noise must accumulate globally before
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the reconstruction is harmed (see Sectof). Many other algorithms are faster, and they
are preferable for clean models. But most surface reconstruction algorithms are fooled by
outliers and noise, and many leave holes in the reconstructed surface or make serious errors

in deciding how to patch the holes.

5.3.5 Correcting Questionable Poles

An optional step, strongly recommended for noisy models, removes labels whose accuracy
is questionable, so that some poles will be relabeled during the second step. Most poles lie
near the medial axis of the original object, and dualize to tetrahedra that extend deeply into
the object’s interior. However, random measurement errors in the sample point coordinates
can create spurious poles that are closer to the surface than the medial axis. Fortunately, a
spurious pole is usually easy to recognize: it dualizes to a small tetrahedron that is entirely
near the object surface.

Laser range finders typically sample points on a square grid. Using the coordinates of
those samples, we compute a grid spaciregual to the median length of the diagonals of
the grid squares. Any labeled tetrahedron whose longest edge is lesid ihauspicious,
so we remove its label. The grid resolution is typically small compared to the object’s
features, so poles near the medial axis are unaffected.

We find that this step consistently leads to more accurate labeling of noisy models. Itis

unnecessary for smooth, noise-free models.

5.3.6 Labeling the Remaining Tetrahedra

The first partitioning stage labels each tetrahedron whose dual Voronoi vertex is a pole, and
labels some of the other tetrahedra too (such as those touching the bounding box). Many
tetrahedra with more ambiguous identities remain unlabeled. To label them, we construct

and partition a second grapth. The goal of the second partitioning stage is to label the

125



Chapter 5. Eigencrust

Figure 5.8: Left: the spectral reconstruction of the bunny (with no added noise)
patches two unsampled holes in the bottom of the bunny. 362,272 input points;
2,283,480 tetrahedra; 679,360 output triangles; genus zero; 19.1 minutes recon-
struction time, of which 17.5 minutes is spent computing the eigenvectors.

ambiguous tetrahedra in a manner that produces a relatively smooth surface of low genus.

The graphH has two supernodes, representing all the tetrahedra that were labeled
side andoutside, respectively, during the first stagél also has one node for each unla-
beled tetrahedron. If two unlabeled tetrahedra share a triangular face, they are connected
by an edge of{. If an unlabeled tetrahedron shares a face with a labeled tetrahedron, the
former is connected by an edge to one of the supernodes.

We have tried a variety of ways of assigning weights to the edgés. diVe obtained
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Figure 5.9: Spectral reconstruction of a point cloud with a large unsampled region,
and its first partitioning eigenvector. 23,767 input points; 47,536 output triangles;
80 seconds reconstruction time.

our best results (surfaces with the fewest handles) by choosing each weight to be the aspect
ratio of the corresponding triangular face, defined as the face’s longest edge length divided
by its shortest edge length. These weights encourage the use of “nicely shaped” triangles
in the final surface, and discourage the appearance of “skinny” triangles (whose large edge
weights resist cutting).

H has just one negative edge weight: an edge connectinipsie andoutside su-
pernodes, whose weight is the negation of the sum of all the other edge weights adjoining
the supernodes. The negative edge ensures that the supernodes are assigned opposite signs
in the eigenvector.

We partition H as described in Sectidn3.4 A tetrahedron is labelethside if the
corresponding value in the eigenvector has the same sign assttie supernode, and vice
versa.

As an alternative to this stage, we can label power cells of the poles instead of labeling
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Delaunay tetrahedra—in other words, we replace the Powercrust’s pole labeling algorithm
with our spectral pole labeling algorithm. In the Powercrust algorigwerypower cell is
the dual of a pole, so there is nothing left to label after the first partitioning stage.
Figure5.10shows that spectral tetrahedron labeling is poor at capturing sharp corners,
and the Powercrust algorithm is much better, but the hybrid algorithm is even more effec-
tive. Spectral partitioning labels power cells better than the original Powercrust. The hybrid
spectral Powercrust algorithm shares the Powercrust’s advantage of recovering sharp cor-
ners well, but it also shares its disadvantage of increasing the number of vertices many-fold.

The number of vertices in each model is 4,100, 52,078, and 51,069, respectively.

5.3.7 Constructing Manifolds

An optional step searches for local topological irregularities that prevent the reconstructed
surface from being a manifold, and makes the surface a manifold by relabeling selected
tetrahedra froninside to outside.

These irregularities come in two types. First, consider any edgkethe Delaunay
tetrahedralizatiorY’. The tetrahedra that havefor an edge form a ring around If the
reconstructed surface is a manifold, there are three possibilities: the tetrahedra in the ring
are alloutside, they are alinside, or the ring can be divided into a contiguous strand of
inside tetrahedra and a contiguous strandatfside tetrahedra. If the ring of tetrahedra
arounde do not follow any of these patterns—if there are two or more contiguous strands
of inside tetrahedra in the ring—then we fix the irregularities by relabeling some of the
tetrahedra froninside to outside so that only one contiguous strandin$ide tetrahedra
survives. The surviving strand is chosen so that it containggide tetrahedron that was
assigned the largest absolute eigenvector component during the second partitioning stage.

The second type of irregularity involves any point sample S. If the reconstructed

surface is a manifold, then the tetrahedra that haf@ a vertex are either abhutside,
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Spectral Powercrust Hybrid

f -

_ J

Figure 5.10: Reconstructions of a mechanical part by three algorithms. The hybrid
algorithm uses only the first eigenvector, whereas the spectral tetrahedron labeling
algorithm uses both.
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all inside, or divided into one face-connected blockaftside tetrahedra and one face-
connected block ahside tetrahedra. A topological irregularity atmay take the form of
two inside tetrahedra that havefor a vertex, but are not connected to each other through
a path of face-connectedside tetrahedra all having for a vertex. In this case, theside
tetrahedra adjoining can be divided into two or more face-connected components. Only
one of thesanside components survives; we relabel the otheusside. The surviving
component is the one that contains a pole.din the unlikely case that there are two such
components, choose one arbitrarily.)

Itis also possible to have two or more face-connected componeoisfie tetrahedra
(and just one component ofside tetrahedra). Letl” and X be two of them. We compute
the shortest face-connected path fromto X, where the length of a path is defined to be
the sum of the absolute eigenvector components oinide tetrahedra on the path. The
tetrahedra on the shortest path are relabelddide.

These operations are repeated until no irregularity remains. The final surface is guaran-
teed to be a manifold. One can imagine that for a pathological model this procedure might
whittle down the object to a few tetrahedra, but in practice it rarely takes an unjustifiably

large bite out of an object.

5.3.8 Smoothing

Triangulated surfaces extracted from noisy models are bumpy. The final optional step is
to use standard Laplacian smoothidg] to remove the artifacts created by measurement
errors in laser range finding, and to make the model more amenable to rendering and sim-
ulation. Laplacian smoothing visits each vertex in the triangulation in turn, and moves it to
the centroid of its neighboring vertices. We performed five iterations of smoothing on the

smoothed dragon and bunny in FiguBe$land5.8.
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5.4 Results

Our implementation uses our own Delaunay tetrahedralization software, and TRBAN
implementation of the Lanczos algorithm by Kesheng Wu and Horst Simon of the National
Energy Research Scientific Computing Center.

Figure5.11illustrates the performance of the spectral algorithm on the Stanford dragon.
The raw data exhibit random measurement errors and include natural outliers. Spectral
reconstruction yields a watertight manifold surface, and removes all the outliers.

The model is too large for the Powercrust implementation, so we have applied the Pow-
ercrust labeling algorithm to the Delaunay tetrahedra. (We use our algorithm discussed in
Section5.3.6to label the tetrahedra that are not poles, just like with our spectral algorithm.)
The Powercrust labeling algorithm mislabels tetrahedra because of bad local decisions that
the spectral algorithm averts.

Figure5.13shows how several algorithms degrade as randomly generated outliers are
added to the input data. Even 1,200 random outliers have no influence on the spectral recon-
struction except to affect how a hole at the base of the hand is patched. The Tight Cocone
and Powercrust algorithms correctly reconstruct clean models, but they are incapacitated
by relatively few outliers.

The fourth row of Figuré.13shows the degradation of several algorithms as increas-
ing amounts of random Gaussian noise are added to the point coordinates of the Stanford
bunny, which already includes measurement errors. The expression under each reconstruc-
tion is the variance of the Gaussian distribution used to produce additional noise, expressed
in terms of the grid spacingdefined in Sectios.3.5 The spectral reconstruction remains
a genus zero manifold when the added noise has varizhd®it begins to disintegrate as
the measurement errors become notably larger than the resolution of the range data. With

added noise of variancé the Powercrust algorithm succeeds, but with varia2céhe

1 http://www.nersc.gov/research/SIMON/trlan.html
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Figure 5.11: Reconstruction of the Stanford dragon model from raw data. The
point cloud (upper left) has many outliers, which are automatically omitted from
the spectrally recovered surface (upper right). The eigenvectors are less polarized
than the eigenvectors in Figure 5.7, reflecting the labeling ambiguities due to mea-
surement errors. The surface produced using Powercrust’s labeling (middle right)
fails to handle the outliers correctly. 1,769,513 input points; 11,660,147 tetrahedra,
2,599,114 surface triangles; genus 1; 197 minutes reconstruction time.
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structure is full of holes. (It is a watertight surface, but what it bounds is Swiss cheese.)
The Tight Cocone algorithm can only cope with noise of less thafvariance.

Figure5.12illustrates the three algorithms on a set of points densely sampled from the
smooth splines of the Utah Teapot. The difficulties here are more subtle. The teapot’s spout
penetrates the body deeply enough to create an ambiguity that neither the Powercrust nor
Tight Cocone algorithms solve correctly. The spectral reconstruction algorithm treats the
interior spout sample points as outliers, and correctly omits them from the surface.

The eigencrust algorithm is effective on sparse point clouds. Figureshows the
eigencrust reconstruction of the schale data set which contains some thin regions that are
sparsely sampled. Figufel16 shows how different algorithms degrade as sampling be-
comes more and more sparse. The first column is a uniformly sparse point cloud. In this
case the Spectral and the powercrust algorithms correctly reconstruct the knot. In the sec-
ond and third columns we linearly increase the sampling density from left to right. As
shown on the right, both Powercrust and Tight cocone reconstructions begin to degrade

before the spectral reconstruction.

5.4.1 Effect of MLS smoothing

The bunny model in Figur®.8, and the dragon model in Figukellwere reconstructed
directly from the laser range data. Notice that the measurement noise and the errors in
alignment make the eigenvectors ambiguous. Smoothing the point sampled by the MLS
algorithm described in Chapt@rreduces this ambiguity in the eigenvectors as shown in
Figure5.17. Computing the eigenvectors is faster, and the reconstructed models have less
topological noise. Figures.18 5.19 5.20and 5.21show spectral reconstructions of the

models Isited in Tabld.1after MLS smoothing.
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Model Points | Tetrahedra Delaunay| Eigenvector| genus
(Seconds) (Seconds)
Bunny 362272 | 2711705 53 487 0
Dragon | 1769513| 13159466 478 5263 1
Armadillo | 1541522| 11454212 235 2735 6
Buddha | 1849576| 12571346 306 5257 7
Angel | 1889131 13346501 338 4625 9

Table 5.1: Eigencrust reconstruction times for the data sets in Table 4.1.

5.5 Discussion

Our modification to the normalized cut algorithm that adds negative weight edges into the
pole graph works well only when the pole graph has two components that repel each other
with negative weight edges. The spectral clustering algorithm proposed by Ng, Jordan, and
Weiss[66] to partition a graph intd:(> 2) components does not handle negative weight
edges.

The spectral algorithm is not infallible. It occasionally creates unwanted handles—
fourteen on the angel. The global eigenvector computation is slow. Tetrahedron-labeling
algorithms do not reconstruct sharp corners well—observe how the teapot adjoins its spout.
This problem can be overcome by labeling power cells rather than tetrahedra, at the cost
of much larger model complexity. Either way, however, spectral surface reconstruction is

remarkably robust against noise, outliers, and undersampling.
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Spectral Tight Cocone

Spectral Powercrust

Figure 5.12: Reconstructions from 253,859 points sampled on the Utah Teapot.
The spout’s splines penetrate into the body of the teapot, causing difficulties for
both the Powercrust and Tight Cocone algorithms. A cutaway view shows that
Powercrust mislabels as outside a cluster of cells where the spout enters the body.
The spectral algorithm correctly identifies the same poles as inside.
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200 outliers 1,200 outliers 1,800 outliers 6,000 outliers 10,000 outliers

< Tight Cocone
Powercrust>

Figure 5.13: Top row: 25,626 noise-free points plus randomly generated outliers.
Second row: spectral reconstructions of this model maintain their integrity to 1,200
outliers, then begin to degrade. Third row: other Delaunay-based algorithms de-
grade much earlier.
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Spectral -2/ Spectral 43¢
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— Powercrust-2¢ —

Figure 5.14: Stanford bunny reconstructions from raw data (with no outliers), some
with added random Gaussian noise.
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Figure 5.15: Eigencrust reconstruction of a sparse point cloud; 2714 points; 48727
tetrahedra; 5 seconds reconstruction time.
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Figure 5.16: Reconstructions of a sparse point cloud with adaptive sample spac-
ing.

139



Chapter 5. Eigencrust

Figure 5.17: Eigencrust reconstruction of the Stanford dragon model after MLS
smoothing.
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Figure 5.18: Eigencrust reconstructions of the Stanford bunny after MLS smooth-
ing.
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Figure 5.19: Eigencrust reconstructions of the armadillo model after MLS smooth-
ing.

142



Chapter 5. Eigencrust

Figure 5.20: Eigencrust reconstructions of the armadillo model after MLS smooth-
ing.
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Figure 5.21: Eigencrust reconstructions of the happy buddha model after MLS
smoothing.
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Registration

6.1 Introduction

Laser range scanners cannot scan an entire object at once because the whole surface is not
visible from a single point of view. In this chapter we describe our implementation of a
registration algorithm that aligns range images into a common coordinate system.
Automatic surface registration is typically done in two stagésarse registratiorpro-
vides a rough positioning of the surfaces, dim@ registrationbrings the scans into tight
alignment. The difference between the two is akin to the difference between global and
local optimization: coarse registration is concerned primarily with determining which gen-
eral region of one scan represents the same portion of an object as a selected region of
another scan, while fine registration is concerned with minimizing the disparity between
“overlapping” regions of different scans.
We present here a coarse registration algorithm that sigeaturesthat we callhar-
monic shape contexte match similarly shaped regions of different surfaces. A signature
encodes the surroundings of a particular point in a particular surface in a manner that makes

it easy to find similar regions in different surfaces while discriminating between dissimilar
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regions. Our signatures are computed by formirglape context-a rough model of the

shape of the surface that a scan represents—and computing the spherical harmonics of the
shape context. Shape contexts began life as successful two-dimensional signatures in the
computer vision literature; we generalize them to three dimensions. We choose spherical
harmonics because they allow us to define signatures that are invariant to rotation as well
as translation, yet retain most of the geometric information in the shape context.

Given two surfaces with similarly shaped regions, we register the surfaces relative to
each other througlorrespondencespairs of approximately matching signatures taken
from the two surfaces. For the scan registration application, we expect the overlapping
regions of the two scans to be similarly shaped throughout the region of overlap. The
guality of a match might depend on the area of overlap. Our method is fully automatic and
works consistently without manual assistance. Because translation- and rotation-invariance

are built into our signatures, we achieve excellent accuracy and competitive speed.

6.2 Related Work

Computer vision researchers have extensively studied the problem of object recognition
and matching, in two and three dimensions. Campbell and HIgBhoffer a survey of
three-dimensional shape representations used for object recognition.

Most shape signatures are one of two typ&bject signaturesattempt to summa-
rize the shape of an entire object, and are a fast way to find similar shapes in a database.
Point signatured29] attempt to summarize the shape around a specific point, a neces-
sary task for registering two scans. (The tesighatureanddescriptorappear to be used
interchangeably.) Many object signatures have been proposed, including superquadrics,
parabolic curve$82], medial axis representations, and spherical harmonic representations.
Our point signatures are inspired by the spherical harmonic object signatures of Kazhdan,

Funkhouser, and Rusinkiewi¢6]. Vranic[84] presents object signatures similar to har-
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monic shape contexts for searching in shape databases. Object sighatures provide a fast
way to identify similar shapes, but are rarely suitable for finding small similarities (e.g. a
shared part) between objects that are otherwise different.

Point signatures can be either “local” or “global” in nature, depending on how much
of the object’s shape is encoded. The curvature of a surface is an example of a purely
local point signature. Unfortunately, purely local signatures are not descriptive enough
to disambiguate many shapes. Global point signatures can perform better, but they are
sensitive to occlusion (i.e. the deletion of a large part of a surface) and positional noise.

We use point signatures that characterize an object’s shape in a region surrounding
a point of interest. The most successful three-dimensional point signatures to date are the
spin images of Johnson and Hed@d]. At the end of SectioB.4, we describe spin images
and compare them with harmonic shape contexts. See Frome, Huber, Kolluri, Bulow and
Malik [44] for a comparison of the performance of several point signatures on the task of
object recognition in range images.

Fine registration has been well studied. Most authors use some variant of the Iterated
Closest Point (ICP) approach for aligning a pair of scans, which was introduced indepen-
dently by Chen and Medioh28] and Besl and Mckaja6]. In the ICP method, each scan
is approximated by a continuous surface. Typically, a pair of scans partly “overlap” each
other, and each scan also has sample points that are not near the surface covered by the
other scan. The goal of ICP is to ensure that each sample point in one scan (excepting
points not in the overlap region) is as close as possible to some surface that represents the
other scan. The ICP method iteratively minimizes an energy function that estimates how
well two scans are aligned in their region of overlap. Several variants of the ICP algorithm
have been proposed, such as the fast algorithm that Rusinkiewicz and[Z&/dgveloped
for real-time scanning.

Of course, there are usually more than two scans to align. Algorithms are available

that simultaneously align several scans. For coarse multiview registration, Huber and
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Hebert[52; 53] present an aggressive alignment algorithm that uses a consistency crite-
rion to combine pairs of scans that have been aligned using spin imaged.7Butiifers
a notable fine multiview registration algorithm, which is well-suited for large models that

cannot fit in memory. We use Pulli’s algorithm in our registration software.

6.3 Overview of Our Algorithm

Our software for scan registration executes two stages, solving global and local optimiza-
tion problems. First, the software aligns pairs of range scans using point signatures called
harmonic shape contexts. The aligned pairs are combined into a single model by placing
the scans in a shared coordinate system. Second, a multiview ICP algorithm refines the
registration and improves its accuracy.

Our signatures are based on tsleape contextproposed by Belongie, Malik, and
Puzicha[12] for problems arising in computer vision. Shape contexts appear to perform
better than most of their competitors, as they are able to make finer discriminations of shape
while omitting irrelevant detail. To make shape contexts invariant to rotation, we use spher-
ical harmonics. The idea of using spherical harmonics to make object signatures rotation-
invariant was introduced by Kazhdan, Funkhouser, and Rusinkid®&@z(in the context
of querying databases of shapes). Spherical harmonics are a strong approach because they
maintain nearly all rotation-invariant information. Our use of spherical harmonics differs
from Kazhdan'’s in several important ways, described in Se@&ibn

The coarse registration stage itself consists of four steps. First, our algorithm computes
harmonic shape contexts at a random subset of sample points on each surface. Second,
pairs of signatures from different surfaces are tested to dordespondencespairs of
points that are likely to come from the same spot on a physical object or part. Correspon-
dences are indicated by highly correlated signature pairs. Cangdags—transforms

(translation and rotation) that align one scan with another—are computed from pairs of

148



Chapter 6. Registration

correspondences. Poses are evaluated by determining how close each point in one scan is
to its nearest neighbor in the other, transformed scan. We select the best candidate pose for
each pair of surfaces.

Third, for each pair of surfaces, our algorithm improves the pose (which is computed
from a single correspondence) by simultaneously considering all the “good” correspon-
dences between the two surfaces, and optimizing the least-squares distance between corre-
spondence pairs.

Fourth, we register all the scans in a single global coordinate system by choosing the

most reliable pairwise poses.

6.4 Shape Contexts as Signatures

A signature is a local description of the shape of a scan around a chosen sample pointin the
scan. Signatures are used to find correspondences between different scans. Ideal signatures
should be insensitive to any rotation or translation of a scan, because a single spot on an
object may be scanned from many different directions.

Our signatures begin with the notion stiape contexisuggested by Belongie, Malik,
and Puzichd12] for finding correspondences among two-dimensional images. Their idea
is to divide space into a collection of bins centered at a chosen sample point. Space is
subdivided by radial lines passing through the sample point, and also by concentric spheres
centered at the sample point. The concentric spheres have exponentially increasing radii,
making the signature more sensitive to nearby sample points than faraway onebapke
contextis a histogram listing how many sample points fall into each bin.

A three-dimensional shape context is based on a division of space into bins by choosing
a sample point and independently partitioning the radial, azimuthal, and polar dimensions
around the point.

There are several reasons why shape contexts in their original form are not suitable for
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scan registration. First, they are not invariant to rotation. Second, the number of sample
points in each bin is not a reliable measure for finding correspondences between scans.
Different scans may be taken from different distances, and therefore each scan samples
a different density of points on an object’s surface. A surface is typically scanned from
several different angles, so the spacing of sample points on the surface is often anisotropic,
and the anisotropy differs from scan to scan, influencing the number of sample points that
fall in each bucket. The remainder of this section discusses how we build signatures that
are invariant to sampling density and sampling anisotropy. Rotation invariance is discussed
in Section6.5.

Suppose we have a scan and a sample pamthat scan. Discretize the space around

p into v radial divisions between the rady = 0,4, ..., r,; v polar divisions between the
anglesf, = 0,6,,...,0, = m, as measured from the normal vecigrandw azimuthal
divisions between the angles = 0, ¢4,...,¢, = 27. The largest radius, is chosen

slightly larger than the diameter (i.e. the greatest inter-sample distance) of any scan, and
the smallest radius; is chosen to be somewhat greater than the resolution of the scans,
so that the innermost bins are not overly vulnerable to aliasing effects. The polar and

azimuthal divisions are equiangular, but the radii are geometrically spaced, with

1—1 . r,
TizeXp{lnrl—i— hl—}

u—1 n

Let b;;; be the value assigned to the bin covering the paint8, ¢) satisfyingr; <
r < Tjiy1, O <0 < Ok, andg; < ¢ < @1 As we have observed, it is a poor idea to
setb;; to be the number of sample points that fall into the corresponding bin. However,
range scanners sample points on a square grid (as viewed from the scanner), which forms
a natural triangulation. We treat the triangulation as a piecewise linear surface embedded
in three-dimensional space, and assign to each bin the amount of surface area lying in the

bin. This insulates the bin values against the effects of sampling density or anisotropic
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Figure 6.1: The bins of a three-dimensional shape context.

sampling.

In our implementation, we modify this idea in two ways. First, very long triangles ap-
pear where the scanner crosses a silhouette of the object being scanned, and these triangles
are rarely representative of the object’s shape. We compgte apacing/ equal to the
median length of the diagonal edges of the triangulated grid, and we discard any triangle
whose greatest edge length exce¢ds

Second, it is unnecessarily expensive to compute the area of intersection of a triangle
with a bin. As a heuristic, we compute the area of each triangle (that is not too long), and
assign its area once to each of the three bins containing the triangle’s vertices. Frequently,
all three vertices of a triangle are in one bin, so the bin is assigned thrice the triangle’s
area. In the end, the bin valg, is a reasonable approximation to thrice the amount of
triangulation surface area that falls in the bin.

Spin imaged54] are similar to shape contexts, but they use cylindrical coordinates
instead of spherical coordinates, their radial divisions are uniformly spaced, and most im-
portantly, they obtain rotation-invariance by not using divisions of the azimuthal coordinate
(i.e. each bin is ring-shaped). For this last reason, our harmonic shape contexts are more

descriptive than spin images.
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6.5 Coarse Registration, Step 1:
Harmonic Shape Contexts

In two dimensions, computing discrete Fourier transforms over a two-dimensional shape
context yields a rotation-invariant signature. For a ring of bins at a fixed radius interval, let
b be a vector whose components are the values of the bins in the ring\. hkeeta vector
whose components are the complex coefficients of the discrete Fourier expansidimef
magnitude of each component pfreflects the predominance of a particular frequency in
the ring of bins, whereas the phase (angle in the complex plane) of a component reflects
the phase of that frequency. If the scan is rotated, the phase of each component changes
accordingly, but (if the number of bins is large enough) the magnitude of each component
is virtually unaffected.

In three dimensions, we can build a rotation-invariant signature using normal estimation
and either Fourier expansions or spherical harmonics. We call these sigratures
shape contextand harmonic shape contextsespectively, and evaluate both of them in
Section6.9. Both signatures use normal estimation to provide rotation invariance in the
polar direction. Rotation invariance in the azimuthal direction is provided by the Fourier or
harmonic basis.

To compute a signature at a poptwe begin by estimating a normalto the surface
atp. These normals are computed from the triangulation of each range image. The normal
at each sample pointis given by an average of the normals of all faces incident.dive
then compute a shape context usinp specify the north pole of our coordinate system, so
the polar angl® is measured from, as illustrated in Figuré.5. Thus our signatures are
rotation invariant in the polar direction (except in the few parts of a scan where an accurate
normal computation is difficult).

Three-dimensional Fourier shape contexts confer azimuthal rotation invariance in the

same manner as their two-dimensional kin. The subset of bins covering a fixed radial

152



Chapter 6. Registration

Figure 6.2: The polar angle 6 of a point p is determined by the approximate nor-
mal n at a sample point s. The coordinate axes along the azimuth angle ¢ are
ambiguous.

interval and polar interval forms an azimuthal ring aroundVe compute a discrete Fourier
transform of the azimuthal bin values, and store the absolute magnitudes of the Fourier
coefficients.

Alternatively, spherical harmonics also confer rotational invariance. Spherical harmon-
ics are analogous to the Fourier basis functions, defined on the sphere. Whereas the Fourier
bases are univariate sine and cosine functions, spherical harmonics are inherently bivariate.
Our signatures treat each of the concentric spheres independently—spherical harmonics are
computed separately for each fixed radius. For a radilet f(6, ¢) be a function defined
over the sphere. In particular, we chog3é, ¢) to be the value assigned to the bin holding
the point(r, 6, ¢); but the following comments apply to any choicefof

Any square-integrable complex function on the sphere can be expressed as a linear

combination of spherical harmonic basis functidffs with m > 0 and—m < n < m.
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The basis functions are orthonormal; that is,

— 1 m=m'andn =n/,
/mmz (6.1)
s 0 otherwise,
whereS is the unit sphere anH_n’}Lf is the complex conjugate af",. The basis functions

are

Y = i PP (0)e™?,

where: = /—1, e is the base of the natural logarithm, th are the Legendre polyno-
mials, and the,,,, are normalization constants chosen so thaf) (holds. See Arfkerh10]
for the details of both Legendre polynomials and spherical harmonics.

We thus writef (0, ¢) in terms of spherical harmonics,

where the:, are complex coefficients. Intuitively, the subscripis roughly a specifier of

the “frequency” of a basis functioH, whereas the superscriptspecifies a mode within

a particular “frequency.”
An important property of the spherical harmonic basis is that if a fundtiisrirotated”

in the azimuthal coordinatg, the magnitude of the coefficient§, do not change, but their

phase (angle in the complex plane) changes to reflect the rotatipn Bherefore, if we

build a signature using the coefficients, we can make the signature invariant to rotations

in the azimuthal coordinate by storing only the absolute vélfjé of each coefficient.
Practically, we need to transform not a continuous function, but a funetilfined at

a discrete number of points, and we wish to compute only a finite humber of coefficients.

The standard discretization is to assume that there is a continuous furi¢igh) such
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Figure 6.3: Plots of |Y,"|? for small values of m. Observe that the magnitudes of
the basis functions do not depend on the azimuth angle ¢.

that the bin values are the valuesfoat the center of each bin:

byt = f (9k +2(9k+1’ ol +2¢z+1)

(for a fixed j), and there is a maximum bandwidthso thatf has no “high-frequency”
components withn > z.

Given this assumption, the coefficienty (for 0 < m < z, —m < n < m) can
be computed from the bin values alone by a combination of discrete Fourier transforms
and discrete Legendre transforms, for which we use the publicly available SpharmonicKit
software[48].

We define a signature to be a veciowherea, ., = |a, |, with a., being the complex
coefficients of the spherical harmonics for the shiel property of spherical harmonics is

that if the functionf is real-valued (as it is in our application), thef) = a.", so there is
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no need to separately store the coefficients for whichnegative.
An important difference between our signatures and those used by Kazhdafbé} al.
is that they obtain rotation invariance in the polar direction by summing the energies of
the modes within each frequency. Thus, Kazhdan’s signatures are the Yaltes, d?mn
for every0 < j < wand0 < m < z. In our application, we are able to obtain rotation
invariance by estimating surface normals, so our signatures maintain all the ualyes
separately. Therefore, our signatures can make much finer discriminations between shapes.
The representation of a function in the spherical harmonic basis is more expensive to
compute than the Fourier transform, but in Sect@f we see that signatures based on
spherical harmonics are more descriptive. We believe the difference in descriptive power
arises because the Fourier shape context does not change if one of its azimuthal rings is

rotated relative to another, whereas a harmonic shape context does.

6.6 Coarse Registration, Step 2:
Computing Correspondences and Poses

Here, we describe our method for determining a pose (translation and rotation) that attempts
to bring one scan into coarse alignment with another. The method usually succeeds if the
scans have a significant area of overlap (say, at least 20% of the surface area of each scan).
Because scan pairs sometimes yield very few correspondences, the coarse-grained stage is
designed to find a pose even if only two good correspondences exist. A pose improvement
step, described in Sectidh7, uses multiple correspondences to improve a pose if more
than two are available.

If the scans are large (collectively, hundreds of thousands of points or more), we sub-
sample the scans with a coarser rectangular grid. For our results in Sé@jome use

every second column and every second row of each scan, thereby reducing the data to a
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guarter. The grid spacingdiscussed in SectioB.4is computed from this coarser grid.

To further reduce the running time, we compute signatures for only 20% of the points
in each scan; these points are selected randomly.

Each point signature is a histogram, and {ehistogram difference operatbr4] de-
fines a distance measure for the signature vectors.y¥listance between each pairy

of signature vectors is given by

2 _ (i — ys)?
Cl,y) = Z TCRat
wherez; andy; are the components of the harmonic shape contexsdy. (We tried
several different scoring methods; this distance measure proved best.)

In one scan, we randomly choose 100 points (from the 20% whose signatures were
computed). For each of these points, we find the best matching signature in the other
scan. We treat each match as a correspondence. Typically, some of these correspondences
are good, some are erroneous, and the quality of most of them depends on how much the
two scans overlap. Of course, if the two scans do not overlap, all the correspondences are
poor. Unfortunately, it is difficult to recognize this circumstance from the correlation scores
alone. Occasionally, incorrect correspondences give the appearance of being excellent, and
the mistake is not realized until the global scan registration stage.

We use these candidate correspondences to compute a set of candidate poses, and we
test the quality of the candidate poses. Eetand.S, be two (subsampled) scans, andilet
be a transform (rotation and translation) that defines a pose.ofo judge the quality of

T, we assign it an overlap score of

O(T) _ Z exp _d(pv nn(p, T’(SQ)))Z7 (62)

wherenn(p, T'(S2)) is the nearest neighbor tain the transformed scdfi(S;), andd(p, q)
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denotes the Euclidean distance betweamdg. Note that the sum is over all points if,
and not just those for which signatures were computed. We ksiteee to efficiently find
the nearest neighbor of a point in a scan.

Observe that the overlap scat®7) is credited mainly by points that have very close
neighbors, and receives little credit from points that do nat; lasn points, the maximum
possible value of)(T') is n, achieved if every point iy, is matched by a point i§; with
the same coordinates.

How do we obtain candidate poses from the candidate correspondences? Pairs of scans
occasionally yield few good correspondences, so we choose a method that will find one
good pose even if there are only two good correspondence$pLet) and(q;, ¢2) be two
candidate correspondences, whgr@andg; are points in sca;. As a sanity check, we
do not compute a pose if the distan¢eg;; | and |p2g-| differ by more than 10%. (We find
that this check saves us 25-50% of the pose computations when the scans overlap well,
and 80-90% when there is little overlap.) To compute a transformue first translates,
so thatp, has the same coordinatesyas We then rotate5; aroundp, so that the normal
vectors top; andp, are parallel. Finally, we perform an azimuthal rotationSef(through
the ¢ coordinate, leaving the normal vector unchanged) so that the vegtors aligned
(azimuthally) with the vectop,gs.

Of course, a normal vector can point in either of two directions, so this procedure can
determine two different transforn¥s, 7”. We disambiguate by ensuring that every normal
points toward the range scanner. If this information were not available, we would test both
possibilities and calculate the overlap score of each.

For a pair of scans, we calculate 100 candidate correspondences, yielding 4,950 candi-
date transforms. We compute the score of all these transforms and choose the best—except
that if we find a transforn?” for which O(T") > 0.75n (i.e. three-quarters the maximum
possible score), we stop early and chods€This is usually the case, except whg&nand

Sy barely overlap at all.)
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There is a strong probabilistic justification for using a method that requires only two
good correspondences to yield a good pose, even though we could obtain much more ac-
curate poses using three. Assume a hypothetical model in which a pose is satisfactory if
and only if the correspondences used to calculate it are all good. For example, suppose
that for two scans with little overlap, the probability of any correspondence being good is
1%. Given 100 randomly generated correspondences, the probability of two being good
is about 26%, whereas the probability of three being good is less than 8%. Because it is
very difficult to determine whether a correspondence is good (correlation scores are an un-
reliable method of doing so), we might need to test 161,700 poses to find if each pose is
computed from three correspondences, as opposed to 4,950 poses that are computed from
two correspondences.

Thus, we follow the pose computations with a pose improvement step.

6.7 Coarse Registration, Step 3: Pose Improvement

The pose produced by the coarse-grained stage is sensitive to small misalignments in the
original correspondences, especially in the estimated normal vectors. To improve the pose,
we test the 100 original correspondence pairs to see which pairs have been brought together
by the coarse pose. If the distance between a pair of correspondence jpoants p,
does not exceed/ (where/ is the grid spacing discussed in Sectieod), we call the
correspondence “good”; otherwise we call it “bad.”

We compute an improved pose that minimizes the sum of the squares of the separa-
tions of the good correspondence pairs, using the standard method of3dhrithe pose

improvement step takes little time compared to the other steps.
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6.8 Coarse Registration, Step 4.
Global Scan Registration

We use standard methods to register all the scans within a single coordinate system. Let
G be a graph whose nodes represent the scans. For each pair of scans, we find a pairwise
registration using the methods of Sectié6 and6.7, and we connect the corresponding
nodes ofGG with an edge holding two pieces of information: the relative pose produced by
our pairwise registration algorithm, and the overlap sc6r8 for that pose.

Next, we compute a spanning tréeof G, and use the relative poses on the edges of
T to register all the scans in a global coordinate system. To comipuiee recommend
the sophisticated global registration algorithm of Huber and Hdb&t(Section 6). For
our implementation and results in Secti®®, however, we simply used Prim’s maximum
spanning tree algorithm to find the spanning tié¢hat maximizes the sum of overlap
scores.

Figure 6.9 shows the global coarse registration of several scans in each of four dif-
ferent models. It also shows the same scans after fine multiview registration by Pulli's
algorithm[73].

6.9 Signature Comparison and Results

We use precision-recall curves—popular in computational learning theory— to compare
signatures. The distance measure defined by a signature is a classifier that classifies each
correspondence as correct or wrong, depending on whether the distance measure is under
or over some threshold. To test this classifier, we give it two types of correspondences:
those we know to be correct (nearest neighbor points from correctly registered pairs of
scans), and pairs of points selected at random from two different scans. The histogram

in Figure6.4 shows distances between pairs of harmonic shape contexts obtained in these
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Il Matching pairs
Il Random pairs

Figure 6.4: A histogram showing the distances between harmonic shape contexts
for random pairs (right distribution) and correctly matched pairs (left distribution)
in scans from the Happy Buddha model. The dashed line represents the decision
boundary of a likelihood ratio classifier.

“]Jlllun

two ways from the Happy Buddha model. Observe that the distance measure is typically
smaller for true correspondences than for randomly chosen pair of points, but it is not a
perfect classifier.

Theprecisionof a classifier is the fraction of signature pairs labeled as matches (below
threshold) by the classifier that are true correspondences (i.e. 1 minus the number of false
positives). Therecall value is the fraction of true correspondences that were labeled as
matches by the classifier. Clearly, the precision and recall of a classifier depend on what
threshold the classifier chooses. We plot the precision and recall of signatures for different
values of the threshold. A good signature yields a classifier that has high precision for
increasing values of recall. For each signature, correct and random correspondences were
obtained from1000 pairs of scans in the Bunny, Dragon, Happy Buddha and Armadillo
models. We chose pairs of scans that overlap by at &6t

In Figure6.5a) we plot precision-recall curves for spin images of different sizes. No-

tice that spin images with6 planar divisions and6 cylindrical divisions have the best
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Figure 6.5: (a) Precision-recall curves for spin images of different sizes. In the

legend we show the number of planar divisions, the number of cylindrical divisions,
and the percentage of sample points with signatures. (b) Precision-recall curves
for spin images of same size but with increasing percentage of sample points with
signatures.

performance. Increasing the number of divisions makes the signature less effective as small
bins introduce aliasing effects. In Figusex(b) we plot precision-recall curves for spin im-
ages of fixed size and increase the number of sample points with signatures. Increasing the
number of sample points with signatures has little effect on the precision of the classifier.

In Figure 6.6(a) and Figure5.6(b) we plot precision-recall curves for fourier shape
contexts of different sizes. Fourier shape contexts withdial divisions8 polar divisions
and8 azimuthal divisions have the best precision-recall curves.

In Figure6.7(a) and Figures.7(b) we plot precision-recall curves of harmonic shape
contexts of different sizes. Harmonic shape contexts witdial divisions,16 polar divi-
sions and 6 azimuthal divisions have the best precision-recall curves.

The running time to register many scans is dominated by the cost of comparing sig-

natures, which is linear in the size of the signature. Therefore, we compare signatures of
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Figure 6.6: Precision-recall curves for fourier shape contexts of different sizes. In
the legend of each plot we show the number of radial divisions, the number of polar
divisions, the number of azimuthal divisions, and the percentage of sample points
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Figure 6.7: Precision-recall curves for harmonic shape contexts of different sizes.
In the legend of each plot we show the number of radial divisions, the number of
polar divisions, the number of azimuthal divisions, and the percentage of sample
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Figure 6.8: (a) Precision-recall curves of the three signatures computed for scans
with 50% overlap. (b) Precision-recall curves of the same three signatures com-
puted for scans with 75% overlap.

roughly equal sizes. Our spin images hagglanar divisions and6 cylindrical divisions,
yielding a point signature of siz&6. Our fourier shape contexts haseadial divisions,
8 polar divisions, an@ azimuthal divisions. Because the bin values are real, half the coef-
ficients of the Fourier shape contexts are complex conjugates of the other half, so we can
discard half of them, and the Fourier shape context is a vect@b®toefficients. The
harmonic shape contexts used in our experiments divide the radial, polar, and azimuthal
coordinates inta, = 8, v = 16, andw = 16 bins respectively. The maximum bandwidth of
the spherical harmonics is= 8, which means that each harmonic shape context signature
has288 coefficients.

In Figure6.8(a) we plot the precision-recall curves of the three signatures. Harmonic
shape contexts have the best precision-recall curves. In F8l® we show precision-
recall curves for the same signatures computed from pairs of scans with ati&agver-
lap. For pairs of scans with large overlap, harmonic shape contexts show a large increase

in precision compared to the other signatures. In our coarse registration implementation,
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Registration
(Seconds)

Bunny 10 | 362272 632

Dragon 61 | 1765913 5986

Buddha | 48 | 2643108 9201
Armadillo | 106 | 1706919 12089

Model | scans| points

Table 6.1: Running times of the coarse registration algorithm
we chose harmonic shape contexts with= 8, v = 16, andw = 16 bins. Table6.1we

shows the running times of the coarse registration algorithm. In Figy9ree show pairs

of registered scans from the four data sets.
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Coarse

Coarse Fine Coarse Fine

Figure 6.9: Scans in the four test models after coarse and fine registration. The
rippling effect in the coarsely aligned scans suggests that the scans are already
quite closely aligned.
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