Robust, Guaranteed-Quality Anisotropic Mesh Generation

by Jessica Schoen

Resear ch Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan 1.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Jonathan Shewchuk
Research Advisor

(Date)

* %k x *k k % %

Professor Satish Rao
Second Reader

(Date)

Contents

1 Introduction
1.1 AniSotropy o o e

1.2 Metric Tensors e e

2 Previous Work
2.1 Heuristic Approaches

2.2 Guaranteed-Quality Anisotropic Mesh Generation

3 Star-Based Anisotropic Mesh Generation Algorithm

3.1 Incomsistent Stars. L
3.2 Key Facts From Prior Work
3.3 Incremental Insertion Algorithm for Constructing a Single Star
3.4 Equivalence Theorem

4 Refinement

4.1 Voronoi Arc Heuristic e

4.2 Poisson Darts e e e e e e
5 Results

5.1 Voronoi Arc Heuristic

5.2 Poisson Darts e

6 Future Work

A Notes on Implementing Flips

12

14
14
16
17
19

29
29
31

33
33
34

38

39

Chapter 1

Introduction

Despite years of study, mesh generation remains a bottleneck in many finite element simulations
involving complex shapes. The difficultly arises in part because generating a high quality mesh
depends not only on the geometry but also on the equations governing the simulation themselves.
Under the right circumstances, anisotropic meshes can greatly reduce the number of elements, and
therefore the computation time, required for simulations. In computer graphics, anisotropic meshes
can accomplish similar goals for rendering. This work presents an algorithm for generating two-
dimensional anisotropic meshes with a guarantee on the quality of their elements.

Anisotropic meshes contain long, thin elements that have been stretched according to a preferred
direction inherent to a specific problem. Although most mesh generation algorithms endeavor to
avoid creating such triangles, “long and thin triangles can be good for linear interpolation,” as Rippa
observes in his aptly titled paper [22]. He finds that, for the linear interpolation of a function F' over
a triangulation, “triangles should be long in directions where the magnitude of the second directional
derivative of F'is small and thin in directions where the magnitude of the second directional derivative
of F' is large.”

Rippa studied the error in the value of the interpolated function, but that may not be one’s only
concern. For some applications, including rendering, the error in the gradient of the interpolated
solution can be even more important. With both of these considerations in mind, Apel [2] and
Shewchuk [23] provide in-depth looks at the benefits of anisotropic elements. Simulation problems
for which anisotropic meshes are appropriate are those whose solutions have different behaviors in
different directions. Types of simulations with this property include “boundary layers in viscous flow
problems and in various plate and shell models, shock phenomena in flow problems, and singularities
near edges in Poisson type problems like diffusion and linear elasticity” [2]. In computer graphics,

anisotropic meshes can be beneficial for rendering surfaces with differing curvatures in different

directions.

1.1 Anisotropy

For two-dimensional problems, anisotropy is often represented by a 2-by-2 symmetric positive definite
matrix called a metric tensor at each point of the domain. In practice the metric tensor might only
be known at discrete points, such as at the vertices of a background mesh or a mesh from a previous
timestep. In these cases, a metric tensor can be estimated at a point where it is not explicitly given
through interpolation.

A geometric interpretation of the metric tensor M), at a point p is that it describes how distances
and angles are measured from p’s point of view. As in the work of Labelle and Shewchuk [17], for a

2-by-2 metric tensor M, define a deformation tensor F, to be any 2-by-2 matrix such that
M,=FF, and det F,>0.

Then F,, maps the physical domain to a warped space where distances and angles can be mea-
sured as they are seen by p simply by measuring them in the usual Euclidean way. See Fig. 1.1, which
is from the paper by Labelle and Shewchuk. In the figure, thin arcs around p represent isocontours.
The isocontours of p are sets of points that are equidistant from p when measured from p’s point of
view. Likewise, the thin arcs around ¢ are ¢’s isocontours. The heavy arc is a Voronoi arc — the

set of points at the same distance from p and gq.

1.2 Metric Tensors

For the purposes of the anisotropic mesh generation algorithm given here, assume that the metric
tensor field is provided as user input. Let us consider how these metrics may be generated in practice.

Meshes used in finite element simulations commonly use solution-driven adaptivity; the metric
tensor field is generated from the Hessian of a numerically computed solution. With this approach,
how to generate the initial mesh when no numerical solution has been computed yet is not obvious.
In some cases, the user may have a priori knowledge of the behavior of the Hessian. Otherwise, a
coarse isotropic mesh may be used to get a rough estimate of the solution. Using the Hessian of this
approximate solution as a metric, a finer anisotropic mesh can then be generated. The simulation
then begins in earnest with the fine mesh.

The idea of using the Hessian as a metric in was popularized by results of D’Azevedo [11]
and D’Azevedo and Simpson [12] on the linear interpolation error in a function and its gradient,

respectively. In an unusual application, Courchesne et al. use the Hessian to generate meshes of

Physical space

Figure 1.1: The deformation tensors F}, and F} transform the domain according to the metric tensors
at p and q, respectively. The elliptical isocontours around p in the top row become circular when
space is warped according to F, (lower left), and likewise for ¢ (lower right).

MRI images [10]. They define a function over the pixels of an MRI scan whose value at each pixel
is equal to the intensity of the image at that pixel. Then they use the Hessian of this function as a
metric for anisotropic mesh generation.

In general, a pitfall of using the Hessian matrix to define a metric tensor field is that the Hessian
of the true solution to the problem is not known. An approximate Hessian must be “recovered” from
a numerical solution that has been computed. A variety of techniques for Hessian recovery have
been studied; see the work of Buscaglia and Dari [8], for example.

Another downside of generating a metric from the Hessian is that, depending on the mesh
generation algorithm, it may result in a mesh with neighboring elements of widely varying sizes.
Such poor grading is unacceptable in some engineering applications. To combat this difficulty, Li et
al. [18] give an anisotropy-preserving procedure to run before the mesh is generated, which smooths
out the metric tensor field. Their goal is to improve the grading of the mesh and avoid poor quality
elements that result from rapid changes in the metric tensors of adjacent elements.

Constructing a metric tensor field from the Hessian of a function is not the only option. Gruau
and Coupez [15] define two different metrics that they find especially useful for material processing.

The first allows the user to specify the number of layers of elements throughout the thickness of the

domain. Their second metric is concerned with interfaces between different materials. A common
method for handling such interfaces is to use a constrained Delaunay triangulation, which constrains
the mesh to include the edges of the interface. Gruau and Coupez instead define a metric which
causes the mesh to be very refined along the interface; see Fig. 1.2. They prefer to use this metric
with an anisotropic mesh generator rather than a constrained Delaunay triangulation because they

find that it simplifies the remeshing steps of their finite element simulations.

Figure 1.2: Gruau and Coupez use a metric tensor field that causes the mesh to be very refined
along interfaces between materials.

For surface meshing, Alliez et al. [1] and George and Borouchaki [14] among others, choose
to define metrics based on the curvature of a surface. Alliez et al. find that this choice of metric
produces visually pleasing results. George and Borouchaki show that it allows them to generate a
mesh that approximates the surface well.

Given the variety of options for defining a metric tensor field for mesh generation, researchers
have also devised ways of studying metrics themselves. Tchon et al. [25] develop a method for
visualizing metrics which is independent from any mesh generation algorithm; see Fig. 1.3. Lipnikov
and Vassilevski [20] derive error estimates which allow them to study the effects of different metric

modifications (such as the smoothing of Li et al. [18]) on the interpolation error.

SEREES
e
e i e
S . - - s S e AR R A
e 1 o == 8 o < e
S AR K]
e ey i

AR

i
O T

Figure 1.3: Tchon et al. compare their metric visualization technique (far right) with a more typical
metric visualization (far left) and triangular (second from left) and quadrilateral (second from right)
meshes based on the metric.

Chapter 2

Previous Work

2.1 Heuristic Approaches

The anisotropic mesh generation problem has been tackled with a variety of heuristic approaches.
In chronological order, summaries of these techniques are given here.

The anisotropic mesh generation algorithm described by Bossen and Heckbert [6] is a gener-
alization of an algorithm for isotropic mesh generation given in the same paper. Their isotropic

”

algorithm is what they refer to as a “pliant” mesh generation algorithm, one “in which smoothing,
insertion, and deletion take place in a loop.”

The isotropic algorithm first creates the constrained Delaunay triangulation of the input and
marks all of the vertices as active. It then proceeds iteratively by randomly choosing an active vertex
to reposition based on the locations of its neighbors. Neighbors that are too close repel the vertex,
and neighbors that are too far away attract it. If the vertex is not moved too far, it is marked
inactive. The vertices are then retriangulated so that the mesh is still constrained Delaunay. If the
density of the mesh around the repositioned vertex is too high, the vertex is deleted. Otherwise, a
new vertex is inserted. The algorithm continues until all of the vertices are inactive. However, an
inserted or deleted vertex causes all of its neighbors to become active, so the status of a vertex may
flip-flop several times during the course of the algorithm.

Bossen and Heckbert transform this algorithm into an anisotropic mesh generation algorithm by
replacing the Delaunay circumcircle test with an anisotropic version. To determine whether to flip
the edge between two triangles, the metric tensors at the four vertices of the triangles are averaged,
with an equal weight given to each vertex. The circumcircle test is performed with distances and
angles measured according to this average metric tensor. This algorithm is not guaranteed to
converge, although the authors only had difficulties on inputs with abrupt changes in the metric

tensor or when the user requested large edge lengths near small input features. They subjectively

Figure 2.1: Left: An anisotropic mesh generated by Bossen and Heckbert’s algorithm. Right:
Ellipses whose centers are the vertices of the mesh. Each ellipse represents the set of points at a
distance of 1 from its center as measured by the metric tensor at the center.

found their output meshes “attractive,” but could make no guarantee on their quality. See Fig. 2.1
for an example of a mesh generated by this algorithm.

Borouchaki, Frey, and George [4], in the same conference as Bossen and Heckbert, introduced a
different approach to the anisotropic mesh generation problem. The details of their method can be
found in later works by Borouchaki, George, and other authors [5, 14]. The method is an extention
of the Bowyer—Watson Delaunay triangulation algorithm [7, 26] to the anisotropic case. The original
Bowyer—Watson algorithm creates a sequence of Delaunay triangulations by adding vertices one at
a time. To add a vertex to the triangulation, all of the triangles whose circumcircles contain the
vertex are removed, leaving a star-shaped cavity that contains the new vertex. The cavity is then
triangulated by adding an edge between each of its vertices and the new vertex.

Borouchaki et al. call this process of advancing from one triangulation to the next the “Delaunay
kernel,” and they propose three anisotropic Delaunay kernels. The first computes the cavity based
only on the metric tensor at the vertex that is currently being added to the triangulation. The
second determines if a given triangle belongs in the cavity using the metric tensors at both the new
vertex and at one of the triangle’s vertices. The third uses the tensors at the new vertex and at all
three of the vertices of the triangle. The authors prefer their second option because they did not
notice a “significant difference” between the second and third kernels, and the second requires about
half of the computation needed for the third. Provided that one uses a depth first search to find

the triangles that form the cavity, they prove that all three kernels result in valid triangulations in

two dimensions. This result does not hold in higher dimensions, and there is no guarantee on the
quality of the mesh in any dimension.

The ellipsoidal bubble packing method of Shimada, Yamada, and Itoh [24] is similar to Bossen
and Heckbert’s method in that both are iterative schemes that reposition elements based on the
locations of their neighbors. In the bubble packing method, the authors define a “proximity-based
interbubble force” based on the van der Waals force. Although it is based on this physical force, which
implies that it can both attract and repel bubbles, the interbubble force is simplified and quicker
to compute than the true van der Waals force. One of the main differences between this algorithm
and that of Bossen and Heckbert is that here bubbles are packed in order of dimension: first on
vertices, then on edges, and finally on faces. Also, Shimada et al. work on parametric surfaces in
three dimensions, while Bossen and Heckbert only implemented their technique for two-dimensional
domains.

The ellipsoidal bubbles are packed by finding the forces acting on each bubble and then solving
the resulting system of equations of motion for a force-balancing configuration. The positions of the
bubbles are updated and bubbles are added or removed if an area is too sparsely or densely packed.

This process is repeated until the bubbles no longer move very far when their position is updated.

Y

&
’f///,/

IMNNHIN S S NN
\ LR “_"‘.J“"\:’\\'\:L ’ w.’\"'w) \\\\ A
R \\§\\\\\&Q‘ \\\\&‘\\\\‘Nﬂl\
LR
NNy

St NN s
LA
L

LB

e

S

Figure 2.2: Left: A bubble packing generated by the algorithm of Shimada et al. The bubbles are
allowed to overlap significantly. Right: The corresponding mesh.

Once the number of bubbles and their positions are finalized, their centers are triangulated.
Shimada et al. use an anisotropic version of the Delaunay circumcircle test, though not the same
version as that used by Bossen and Heckbert. Given four vertices that form a convex quadrilateral,

the authors perform the standard circumcircle test in the space given by the metric tensor at the

barycenter of the quadrilateral. Fig. 2.2 gives an example of a mesh generated with this algorithm.
The authors found that this method produced “high quality” meshes in practice, but do not
provide guarantees on mesh quality. They also determined that the initial distribution of bubbles
played a large role in the number of iterations required for the method to converge.
Li, Teng, and Ungér combine advancing front and ellipse packing schemes in their anisotropic
mesh generation algorithm [19]. Like the previous algorithms, this one consists of a vertex generation

phase followed by a triangulation phase.

' “—

Figure 2.3: Li et al.’s advancing front after biting one “layer” of ellipses.

First, all of the vertices of the mesh are generated by packing ellipses along an advancing front.
A key element of the algorithm is the “biting ellipse” of a vertex, which is the set of all points that
are within a predetermined constant distance from the vertex, as measured by the metric tensor at
the vertex. When a vertex is inserted, the boundary arc of its biting ellipse is added to the advancing
front, see Fig. 2.3. The vertices are then triangulated using a modified Delaunay edge-flip test which
takes anisotropy into account. The test used here is different from than that used by Bossen and
Heckbert, as well as that of Shimada et al.

Li et al. prove that their algorithm generates a “weak-[-ellipse-packing,” which implies that the
ellipses are neither too densely nor too sparsely packed. The algorithm also always terminates and
produces a valid mesh. Although the authors suggest measuring the quality of each triangle in the
mesh based on the metric tensor at the triangle’s barycenter, there is no guarantee on the quality
of the output mesh. Furthermore, the algorithm given in the paper is not complete — the authors
avoid the difficult question of how to maintain the advancing front. The algorithm also has never

been implemented.

10

Figure 2.4: An ellipse packing generated by Lo and Wang. The ellipses overlap only slightly.

The method of Lo and Wang [21] is similar to the other ellipse packing methods. Their contribu-
tion is an algorithm for unbounded domains. Rather than initially packing ellipses on the domain’s
boundary, they begin at an arbitrarily chosen point in the interior of the domain and grow their
ellipse packing radially outward. Once the front is far enough away from the interesting features of
the domain or once a user-defined number of ellipses have been created, the algorithm terminates.
See Fig. 2.4 for an ellipse packing created by this algorithm. As with the other ellipse-based schemes,
they generate satisfactory meshes in practice, but provide no guarantees.

Alliez et al. [1] focus on anisotropically remeshing scanned surfaces, with the anisotropy dictated
by the surface’s two principal directions of curvature. Their technique attempts to mimic the curva-
ture lines that an artist would naturally draw. The resulting mesh contains stretched quadrilaterals
in anisotropic regions and triangles in isotropic regions.

The remeshing algorithm first approximates the principal curvatures of the surface. Then a
discrete conformal parameterization is used to flatten the curvature tensor field from the three-
dimensional surface to a two-dimensional domain. Next, a Gaussian filter smoothes the two-
dimensional tensor field, and vertices where the tensor is roughly isotropic are flagged for special
treatment later. The algorithm then uses the principal curvatures to create a network of lines on
the surface. The interchapters of these lines, along with additional vertices in the isotropic regions,
become the vertices in the final quad-dominant mesh.

The algorithm is robust, but guarantees on the quality of the final meshes are not available.
The authors did successfully generate a variety of visually appealing meshes of complex surfaces,

including the heads of the Stanford bunny, see Fig. 2.5, and Michelangelo’s David. Several global

11

IR

Vo NIa \\‘

),
Zag

iz
N

Figure 2.5: The head of the Stanford bunny, meshed with the algorithm of Alliez et al.

properties of the output mesh can be dictated by the user, including the mesh density, the amount
of anisotropy, and the degree to which curvature of the surface is reflected in the mesh.

There are a number of other anisotropic meshing techniques that will not be discussed in de-
tail. From before Bossen and Heckbert’s paper through the present, anisotropic mesh modification
algorithms have appeared in the engineering literature [8, 13, 15]. These algorithms differ from the
anisotropic mesh generation algorithms in this chapter because their input is a preexisting mesh
which they modify to make anisotropic. The input mesh is often an isotropic mesh or a mesh
from the previous timestep of a simulation. The basic strategy of these algorithms is to make local
changes to the input mesh, such as edge flipping, edge collapsing, and vertex relocation, until the
mesh conforms to the metric tensor field “well enough.” Haimes and Aftosmis [16] take a different

approach in their algorithm, which generates structured anisotropic meshes for a restricted class of

CAD objects.

2.2 Guaranteed-Quality Anisotropic Mesh Generation

The first guaranteed-quality anisotropic mesh generation algorithm was given by Labelle and Shewchuk
[17]. This algorithm is based on the anisotropic Voronoi diagrams defined in the same paper; see
Fig. 2.6. The authors give conditions under which the anisotropic Voronoi diagram is dual to a
proper triangulation. They also prove that their algorithm generates a mesh in which no triangle
contains an angle smaller than 20° when measured with the metric tensor of any point in the trian-
gle. This proof is especially significant in light of the fact that no earlier anisotropic mesh generation

algorithm came with any guarantee on the quality of the mesh it produced, and termination was

12

Figure 2.6: An anisotropic Voronoi diagram. The bold curves are boundaries of the Voronoi cells,
and the light curves are isocontours.

not guaranteed for many of the iterative schemes. The vertices of an anisotropic Voronoi diagram
are interchapter points of conic chapters, and Labelle and Shewchuk’s algorithm is vulnerable to the
robustness of the computation of these interchapters. This vulnerability prevents an implementation
of this algorithm from being both fast and robust.

In addition to the present thesis, a number of others which are based on the work of Labelle and
Shewchuk have appeared. For instance, Boissonnat et al. [3] construct the d-dimensional anisotropic
Voronoi diagram by computing a power diagram in (d + 1)-dimensions. Although their approach
works in any dimension, they have proven only that their corresponding mesh generation algorithm
terminates in two dimensions. Cheng and co-authors [9] apply the work of Labelle and Shewchuk in

their three-dimensional anisotropic surface meshing algorithm.

13

Chapter 3

Star-Based Anisotropic Mesh
Generation Algorithm

As the name implies, the basic building block of this algorithm is a star.

Definition 1 Given a triangulation T, the star of a vertex v is the set of all simplices (vertices,

edges, faces, and triangles) in T having v for a face. See Fig. 3.1.

Figure 3.1: On the left, a triangulation containing vertex v. On the right, star(v) in that triangula-
tion.

One of the main ideas in this algorithm is that each site computes its own star independently
of all the other sites. Performing local computations rather than constructing the global anisotropic
Voronoi diagram allows us to avoid some of the numerical difficulties that Labelle and Shewchuk
[17] encountered. However, it also introduces a challenge: refinement is required to ensure that the

stars are consistent with each other.

3.1 Inconsistent Stars

A naive approach to anisotropic star construction demonstrates how two stars may be inconsistent.
Suppose the set of sites to be triangulated consists of four sites, a, b, ¢, and d, with isocontours at ¢

and d as shown in Fig. 3.2. To compute the star of ¢, one could imagine doing the following:

14

Figure 3.2: Sites a,b, ¢, and d, with isocontours shown at ¢ and d.

—_

. Apply F, to warp the positions of all the sites according to ¢’s perspective

2. Compute the Delaunay triangulation of the warped sites

w

. Apply F ! to the triangulation in order to undo the warping
4. Find star(c) in this triangulation

Likewise for d’s star, the process could be repeated, replacing F, with Fy and ¢ with d. This
procedure results in the warped Delaunay triangulations shown on the left side of Fig. 3.3 and the
corresponding stars shown on the right side of the same figure. These stars are inconsistent because

edge cd appears in d’s star but not in ¢’s star.

Delaunay triangulation Star
Cl C/
’s perspective %/ /B.b’
a a
d/
o’ !
d’s perspective a%. % a(% b
q! %

Figure 3.3: Points a’,V’,¢’,d’ represent the location of sites a,b,c,d as viewed by c. Similarly,
a’,b",c",d" represent the original four sites as seen from d’s perspective.

The star construction algorithm in section 3.3 guarantees that all four sites will always make

the same decision about which edge to include in their stars if they are faced with the same choice.

15

3.2 Key Facts From Prior Work

The following definitions, lemmas, and theorems from the work of Labelle and Shewchuk [17] are
also used here and are stated without proof.

The distance between two points ¢; and g2 as measured by p is

dy(a1, @) = 11 = Fypaallo = /(a1 — 42)7 My (1 — o).
The shorthand notations d,(q) = dp(p, ¢) and d(p, ¢) = min{d,(q),d,(p)} are also used.

Definition 2 (Anisotropic Voronoi diagram) Let V' be a set of sites. The Voronoi cell of a site
vinV is

Vor(v) = {p € E?: d,(p) < dy(p) for allw € V'}.
Any subset of sites W C V induces a Voronoi cell Vor(W) = Nyew Vor(w) of points equally close
to the sites in W and mo closer to any others. If it is not empty, such a cell has dimensionality of
dim(Vor(W)) > d+ 1 — |W/|, achieving equality if the sites are in general position. Every site in W
is said to own Vor(W). The anisotropic Voronoi diagram of V' is the arrangement of the Voronoi

cells {Vor(W) : W C V,W # 0, Vor(W) # 0}.

While the dual of the standard Voronoi diagram is the Delaunay triangulation of the sites, the

dual of an anisotropic Voronoi diagram may not be a triangulation at all.

Definition 3 Let v and w be two sites. Define the wedge between these two sites as the locus of
points q for which the angle Zquw as viewed from v is less than 90°, and the angle Zqwv as viewed

from w is less than 90°. (See Fig. 8.4.) Mathematically,

wedge(v,w) = {g € E*: (¢ —v)"My(w—v) >0 and (¢ —w)" My,(v—w) > 0}.

Figure 3.4: The wedge of two sites.

Using wedges, Labelle and Shewchuk proved many properties of anisotropic Voronoi diagrams.

16

Lemma 1 (Visibility Lemma) Let v and w be two sites in EY. If we restrict the two-site Voronoi

diagram of {v,w} to wedge(v,w), then v can see its entire cell, and w can see its entire cell as well.

Theorem 2 (Visibility Theorem) If every lower-dimensional face of a d-face of Vor(v) is wedged,

then the d-face is star-shaped and every point in the d-face is visible from v.

Lemma 3 (Triangle Orientation Lemma) Let q be a Voronoi vertez owned by the sites vy, vs, 3.
If q is wedged, then the orientation of the triangle vivavs matches the ordering of the cells Vor(vy),
Vor(vs), Vor(vs) locally around q. In other words, if at q the cells Vor(vy), Vor(vs), Vor(vs) occur

clockwise, then the sites v1,vq,vs occur clockwise in the plane, and vice versa.

Wedges are also used in the Dual Triangulation Theorem, which characterizes anisotropic

Voronoi diagrams that dualize to proper triangulations.

Theorem 4 (Dual Triangulation Theorem) Let the domain Q be a polygonal subset of the
plane, let V be a set of sites in Q that includes every vertex of Q, and let D be the anisotropic
Voronoi diagram of V. Let D|q be the restriction of D to Q). Suppose that each Voronoi arc cut by
the restriction operation is owned by the endpoints of the edge of 2 that cuts it. If all the Voronoi
arcs and vertices of D|q are wedged, then the geometric dual of D|q is a polygonalization of §)
(with strictly convex polygons), and is a triangulation of Q if V is in general position. Arbitrarily

triangulating each polygon yields what we call an anisotropic Delaunay triangulation of (V,).
3.3 Incremental Insertion Algorithm for Constructing a Single Star

w@

u@®

Figure 3.5: uw and w subtend Avzy

Given a set .S of sites, the star of a site v is constructed by considering all of the other sites one at
a time and inserting them into v’s star with the INSERTSITE routine if they pass the INSERTIONTEST.
Sites that have been inserted into v’s star may be removed at a later time, but each site will be

inserted at most once.

17

Definition 4 A site w subtends triangle Avzy € star(v) if w lies between the rays vy and vZ. See

Fig. 3.5.

Definition 5 The allowable region for sites w and v when w subtends Avxy is the set of all points

p in the plane such that x ¢ ANvwp and y ¢ Avwp. See Fig. 3.6.

Definition 6 Site v dominates point p over site w if [vp N Vor{v,w}| < |wp N Vor{v,w}| in the

two-site Voronoi diagram of {v,w}. See Fig. 3.7.

Figure 3.6: The allowable region for w and v consists of the entire plane except for the shaded
regions.

Figure 3.7: In both cases, v dominates the shaded regions over w

The incremental insertion algorithm is driven by two subroutines, INSERTIONTEST and

INSERTSITE.

CONSTRUCTSTAR(v, S) :
star(v) « empty star
for each site s € S
if (INSERTIONTEST (s, star(v)) returns YES
INSERTSITE(s, star(v))

18

INSERTIONTEST(w, star(v)) :
if (w is colinear with v and a site u € star(v) && wu lies between w and v)
return NO
else if (w is colinear with v and a site u € star(v) && w lies between u and v)
remove u from star(v)
else if (w is strictly inside a triangle in star(v))
return YES

if (there is a triangle Avzy € star(v) that w subtends)
C — the portion of the arc Vor({w,v}) that is visible to both w and v
and that lies within the allowable region for w and v
if (there is a point on C that w dominates over x and y and that v dominates over x and y)
return YES
else
return NO
else
return YES

INSERTSITE(w, star(v)) :

Add w to star(v)

if (star(v) contains fewer than 3 sites (other than v))
DonNE

Let x and y be w’s neighbors in star(v)

while (INSERTIONTEST(z, star(v)) returns NO)
z « 2’s neighbor in star(v) other than w
remove 2 from star(v)
T2z

while (INSERTIONTEST(y, star(v)) returns NO)
z < y’s neighbor in star(v) other than w
remove y from star(v)
Yz

3.4 Equivalence Theorem

If the spacing of the sites is dense enough, then the independently constructed star of v assembled
using the above algorithm contains the same sites as star(v) in the anisotropic Voronoi diagram of

V. Before proving this equivalence, we need a few lemmas and facts.

Lemma 5 Let w,v, and y be sites of an anisotropic Voronoi diagram for which y € Awuvp for some
point p on Vor({v,w}). If the ray py first passes through Vor(v) or Vor(w), then the Voronoi arcs

and vertices cannot all be wedged.

Proof: Assume that the Voronoi arcs and vertices are all wedged and seek a contradiction. Also

assume, without loss of generality, that w, v, p are in clockwise order.

19

There may be more than one site inside of Awwvp; choose which site to call y in the following
way: If there is only 1 site in Awuvp, let y be that site. Otherwise, let y be the site such that
sites w, y, u are in counterclockwise order for all sites u € Awwvp. There may be multiple sites on a
common line through w which satisfy this criterion. In this case, let y be the one farthest from w.

See Fig. 3.8.

Figure 3.8: If there is more than one site in Awwvp, choose y to be the site for which w,y,u are in
counterclockwise order for all u € Awwvp and that is farthest from w in the case of colinearities.

Let k& be the number of Voronoi cells intersected by the line segment py. Note that k& must be
at least 2 because py begins in Vor(w) or Vor(v) and ends in Vor(y). Assume that the sites have
been perturbed so that py does not intersect any Voronoi vertices. Now proceed by induction.

Base case: k = 2. Two cases are considered, one in which py intersects Vor(w) and Vor(y),
and the other in which Py intersects Vor(v) and Vor(y).

Case I: First suppose that py intersects Vor(w) and Vor(y). Let s be the point where wy
intersects puv.

Note that py must intersect Vor({w,y}). Imagine following Vor({w,y}) from its point of inter-

section with py away from w. The Visibility Theorem guarantees that this arc

e will not intersect py again, because the intersection point closest to y would block y’s view of

any other intersection points on py,
e will not intersect ps C pv since all of pv is in Vor(v),
e will not intersect s, since y would block w’s view of the intersection,

e is not an ellipse.

20

So, moving from the arc’s intersection with py away from w, the arc does not leave Apys. Since the
arc is also not an ellipse, there is a Voronoi vertex z on Vor({w,y}) in Apys.

Let uw be the site other than w and y that owns z. All of Vor({w,y}) must be visible to both
w and y, and wz C Vor(u). These two observations imply that z sees the Voronoi cells of w,y,u in

clockwise order.

Figure 3.9: z is the Voronoi vertex of w,y, and another unknown site w. s = wy N po.

By the Triangle Orientation Lemma, if the sites w,y,u are in counterclockwise order or are
colinear, then z is not wedged and the lemma holds. So suppose that the sites w,y,u are in
clockwise order. Then since u must be able to see z, u may not lie outside of Awwvp. This is because
wz would have to intersect either pw or pv, which are entirely contained in Vor(w) and Vor(v),
respectively. The site u must therefore be in Awsp. But y was chosen so that the sites w,y, u are
in counterclockwise order or are colinear for all sites u € Awwvp, and the desired contradiction has
been found.

Case II: Now suppose that py intersects Vor(v) and Vor(y). Let r be the point where vy
intersects pw. Let z be the Voronoi vertex on Vor({v,y}) that lies on the opposite side of py from
v. By the same reasoning as above, z exists and is in Apry. Let u be the site other than v and y
that owns z. The Voronoi cells of y, v, u are in clockwise order around z.

If the sites y,v,u are in counterclockwise order or are colinear, then z is not wedged and the
lemma holds. So suppose that the sites y, v, u are in clockwise order. Then since v must be able to
see z, u must be in Awwvp. Since y, v, u are in clockwise order, u is in Aprv. Note that requiring u
to see z and the fact that py does not enter Vor(u) prevents u from being in Apyv, and w is not in

Apry by the choice of y. Therefore v ¢ Aprv, and this contradiction concludes the base case.

21

Figure 3.10: z is the Voronoi vertex of v,y, and another unknown site u. r = vy N pw.

Induction: Assume that if py intersects k — 1 Voronoi cells, y € Awwvp, and triangles Apys
and Apyr contain no sites (where p € Vor({w,v}),s = wy Npv, and r = vy N pw as above), then
the Voronoi arcs and vertices cannot all be wedged.

It remains to show that if py intersects k cells, the Voronoi arcs and vertices cannot all be
wedged. As in the base case, there are two cases here, one where the first cell intersected by py is

Vor(w), and the other where the first cell intersected by py is Vor(v).

Figure 3.11: Possible locations for sites a and b. ¢ = py N Vor({a,b}),u = ay N gb,t = @ Nqa.

Case I: Suppose that the first cell intersected by py is Vor(w). The next step of the proof is
determined by whether or not py intersects a cell owned by a site that is on the opposite side of py
from w.

If py does intersect at least one cell owned by a site that is on the opposite side of py from w,

22

let Vor(b) be the first such cell. Let a be the site whose cell is intersected by py immediately before
b’s cell (it may be that a = w). Let ¢ = py N Vor({a,b}),u = ay N gb,t = @ Nqa.

To see that y is in Agab, first note that ¢ € Awsp, but there are no sites in the interior of
this triangle. The segment ga cannot intersect pw because ¢ is visible to a. Since a is on the same
side of py as w, ga must intersect wy. It is possible that ¢ may be colinear with w and y, so that
a € wy. Likewise, ¢b must intersect 5. However, b cannot be colinear with y and s, by the choice
of y. Therefore, y is strictly inside Aqgab.

Since aq intersects wy, the point u must be in Apys. By the choice of y, Apys contains no sites,
so Aqyu C Apys is also empty. Likewise, t € Awyp, and Awyp is empty, so Aqty is empty as well.

The segment gy passes through at most k — 1 cells, so the inductive hypothesis may be applied,
and the lemma holds.

Otherwise, py does not intersect any cell owned by a site that is on the opposite side of py from
w. Let ¢ be the site that owns the last cell intersected by 7y before Vor(y). Let v = ¢y Npo. As in
the base case, let z; be the Voronoi vertex on Vor({c,y}) on the opposite side of pg from c. Let dy
be the site other than ¢ and y that owns z; . Then z; sees the cells ¢, y,d; in clockwise order.

If the sites c¢,y,d; are not be in clockwise order, z; is not wedged and the lemma holds. So
suppose that sites ¢, y, d; are in clockwise order. Then d; must be in the shaded region in Fig. 3.12

since Apws is empty and d;z; may not intersect pw or pv by the Visibility Theorem.

Figure 3.12: c¢ is the site that owns the last cell intersected by py before Vor(y). d; must lie in the
shaded region.

There must be an arc Vor({d;,y}) incident to z; . Follow this arc away from z; . The same

23

reasoning that was used to show the existence of z in the base case shows that Vor({dy, y}) is not an
ellipse and does not leave Apyu;, where u; = cfy> Npu. Let zo be the Voronoi vertex of Vor({dy, y})
other than z; , and let dy be the third owner of z5 . Then z5 sees the cells dy,y,ds in clockwise
order. If the sites di,y,ds are in counterclockwise order or are colinear, then zs is not wedged and
we are done. So suppose d,y,ds are in clockwise order. By repeating the above argument, we can
generate sequences 21, 29, ... and dy,ds, ..., where z; = Vor({d;,y,d;+1}), 2 is visible to d;,y, d;+1,
z; sees the cells d;,y,d;11 in clockwise order, and the sites d;,y, d;+1 are in clockwise order.

Note that each site d; lies between yw and yTZl) . Therefore, each site in S appears at most once
in the sequence di,ds,.... The set S is finite, so the sequences will eventually terminate, say at
zn and dy. Let f be the site other than dy and y that owns zn . Then either dy,y, f are not in
clockwise order or f cannot see zy, because otherwise the sequences would not have stopped at zn
and dpy. In either case, zy is not wedged and the lemma holds.

Case II: Suppose, on the other hand, that the first cell intersected by py is Vor(v).

If py intersects at least one cell owned by a site on the opposite side of py from v, let Vor(a) be
the first such cell. Let b be the site whose cell is intersected by py immediately before a’s cell (it
may be that b = v). Then the same reasoning as in Case I can be used.

Otherwise, py does not intersect any cell owned by a site on the opposite side of py from wv.
The argument for the analogous situation from Case I can be applied with the modification that

d;,y,d;1+1 are counterclockwise. O

S1 @

Figure 3.13: All of the points on the ray that are beyond ¢ are dominated by sy over s;.

Lemma 6 In any anisotropic Voronoi diagram including sites a,b, and y for which y € Nabp for

some point p on Vor({a,b}) the Voronoi arcs and vertices cannot all be wedged.

24

Proof: Let u be the site whose Voronoi cell is first entered by ray py. If u = a or v = b, the result
follows from lemma 5. Otherwise, u is distinct from a and b. Assume that a, b, p are in clockwise
order. Then p must see the cells a,u, b in clockwise order. If the sites a, u, b are in counterclockwise
order or are colinear, then p is not wedged and the lemma holds. So assume that the sites a, u, b are
in clockwise order. Then u and p are on opposite sides of the line through a and b, and u is outside
of Aabp. The site u cannot be on py since either y would block u’s view of p and p would not be
wedged, or u would be on py, contradicting the fact that u is outside of Aabp.

The site u must either be on the same side of the ray py as a or on the same side of the ray
as b. Suppose u is on the same side of py as a. Then y € Aubp by the above reasoning about the
position of u. In this case, apply lemma 5 with w = v and v = b. Otherwise, u is on the same side

of pij as b and y € Aaup, so the result follows from lemma 5 with w = u and v = a. O

Fact 7 Let s1 and so be sites, and p1,ps points in the plane. Suppose that s; dominates py over sg
. If there is a point q on the ray pips that so dominates over si, then sy also dominates over sp
all of the points on p1ps that are beyond q. In other words, once a ray passes into so’s territory, it

never returns to s1’s. See Fig. 3.13.

Fact 8 Let s1, s9 be sites and let p1, pa be points such that s; dominates p1 over sa, and so dominates

po over s1. A direct consequence of Fact 7 is that $1p1 cannot cross Saps.

Lemma 9 After any iteration of the incremental insertion algorithm, let s1, 8o, ..., s, be the sites
of v’s star, labeled so that si,82,...,8, are in clockwise order around v. Let p; be a point on
Vor({v, s;}) that v and s; dominate over s;’s neighbors in v’s current star (since s; is currently in

v’s star, p; must exist). Then p1,pa,...,pn must also be in clockwise order around v.

Proof: Base case: n = 3. Fix the locations of sy, s, s3,p1, and ps anywhere in the plane such
that si,s2,s3 are clockwise around v, and s1,s2 ¢ Avssps, and s9,s3 ¢ Avsip;. Since s; and v
dominate p; over s, and since s3 and v dominate p3 over so, the path P = s1,p1, v, ps, s3 forms a
barrier that cannot be crossed by s3p2 or vps, by Fact 8. See Fig. 3.14.

Let R; be the region between and including vs; and vs3, sweeping counterclockwise around v
from vs;. Note that sq, S2, 3 appear in clockwise order around v, so that R; is on the opposite side
of P from s,. Let ¢ be any point in R;. Then either ¢ is not in the allowable region for sy and v,
or 53¢ intersects P. Therefore, ps cannot be in R;.

If vp; ¢ R, let Ry be the region between and including vp; and vsy, sweeping counterclockwise
around v from vp;. Let ¢ € Ry. Since sy ¢ Avs;py, either 537 intersects vpy or 51py, or vq intersects

51p1- By Fact 8 none of these crossings are allowed, so py ¢ Ra.

25

Likewise, if vps ¢ Ry, let R3 be the region between and including vs3 and vp3, sweeping clockwise

around v from vp3. By the same reasoning as above, py ¢ R3.

Figure 3.14: Examples of the regions R; and Ry in lemma 9.

So, the only portion of the plane the may contain py lies in the region between M and @,
sweeping clockwise around v from vp;. In other words, p1, p2, p3 must be in clockwise order around
.

Induction: Suppose that if v’s star contains n — 1 sites s; in clockwise order around v, the
corresponding points p; must also be in clockwise order around v.

If v’s star contains n sites, temporarily remove a site, say so from the star. Then for each
remaining site, choose a point p; € Vor({v, s;}) that s; dominates over its neighbors. For s;, choose
p1 such that s; also dominates p; over so. For sz, choose pg such that s3 also dominates p3 over ss.
Since the s;’s are able to coexist in v’s star, such p;’s must all exist. By the inductive hypothesis,
these n — 1 points p; are in clockwise order around v.

Now consider the star of v that contains only s1, s2, and s3. Let p; and p3 be the same points
as above. Find a point py that sy dominates over s; and s3. Again by the inductive hypothesis,
p1, P2, p3 are in clockwise order around v. Therefore, in the star with all n sites, all n of the p;’s are

also in clockwise order around v, as desired. O

Theorem 10 (Equivalence Theorem) If the set of sites S has been refined enough so that all
the arcs and vertices of the anisotropic Voronoi diagram are wedged and the dual of the anisotropic

Voronoi diagram is a triangulation, then the star of a site v produced by the incremental insertion

26

algorithm contains the same sites as star(v) in the dual of the anisotropic Voronoi diagram of S.

Proof: The proof proceeds by first showing that all of the sites that are in star(v) in the dual of
the anisotropic Voronoi diagram are inserted into the star of v created by the incremental insertion
algorithm and are never removed from it. Then it is shown that all of the sites which do not appear
in star(v) in the dual of the anisotropic Voronoi diagram also do not appear in the star output by
the algorithm.

Let = be a site in star(v) in the dual of the anisotropic Voronoi diagram of S. Then the arc
Vor({v,x}) appears in the anisotropic Voronoi diagram of S. Since all the Voronoi arcs are wedged,
this arc is visible to both x and v. Let p be a point on the arc. Since p € Vor(z) and p is visible
to z in the anisotropic Voronoi diagram of S, p is also in Vor(z) and is visible to z in any 2-site
anisotropic Voronoi diagram containing x. So x dominates p over any other site in S (except v).
Likewise, v dominates p over any other site in S (except z). Because all of the Voronoi arcs and
vertices are wedged, p must be in the allowable region of v and z by lemma 6. Therefore, the
incremental insertion algorithm will always insert and never remove a site that belongs in v’s star.

It remains to show that any site not in star(v) in the dual of the anisotropic Voronoi diagram
will not be in the star produced by the algorithm.

Let Avzy be a triangle in star(v) in the dual of the anisotropic Voronoi diagram of S. Then x
and y must each be inserted into v’s star at some point during the algorithm, and once they have
been inserted, neither of them will be removed. Suppose that z is inserted into v’s star before y,
and that sites wy,ws, ..., w, which subtend Avzy are also inserted before y. Further suppose that
the sites are oriented as in Fig. 3.15. Assume that when y is inserted into v’s star, the sites w; are
not removed from the star and seek a contradiction.

Since the sites y,wy,ws, ..., w,,x coexist in v’s star by assumption, there must be points
Pys D1, P2, -+, Pn, Dz such that p, € Vor({v,y}), pi € Vor({v,w;}), p» € Vor({v,z}), and each
site dominates the corresponding p over its neighbors. Since y,ws,ws, ..., w,,x are in clockwise
order around v, the points py,p1,p2,...,Pn, P, must also be in clockwise order around v, for any
choices of the p’s that satisfy the above criteria, by lemma 9. Let ¢ = Vor({v,z,y}), the Voronoi
vertex of v, z, and y, and let p, = p, = ¢. Then p;,1 < i < n, must lie between v and v¢ that is, on
vg. However, w; cannot dominate any points on o over z or y, and v cannot dominate any points
on vg beyond ¢ over z or y. Thus, the p; do not exist and the sites w1, ws, . .., w, cannot coexist in
v’s star with x and y, the desired contradiction. The incremental insertion algorithm will therefore
remove each w;, beginning with w;.

The incremental insertion algorithm inserts all of the sites that are in star(v) in the dual of the

27

Figure 3.15: The portion of v’s star between y and x, just after y has been inserted, but before
checking if y’s neighbors in the star should remain

anisotropic Voronoi diagram and removes or does not insert the sites that are not in star(v), so it

produces the desired output.

28

Chapter 4

Refinement

We saw in the previous chapter that given a set V of sites, the independently constructed stars are
guaranteed to agree with each other if all of the arcs and vertices of the anisotropic Voronoi diagram
of V are wedged. In most cases, the anisotropic Voronoi diagram of the input sites will not satisfy
this criterion. We must therefore refine by adding additional sites. Refinement will also ensure that
the triangles in each of the stars will be of high quality. Once all of the stars agree with each other
and the triangles in the stars are of suitable quality, the final mesh is obtained simply by combining
the stars into a single triangulation.

The goal of a refinement algorithm is to find a point p in the domain at which a new site may be
inserted. The point p should not be too close to any existing sites, because if it were, the refinement
algorithm might continue refining forever and never terminate.

Despite much effort, we were unable to devise a provably reliable algorithm for refinement. We
did however, find two heuristics that performed satisfactorily in practice, one using Voronoi arcs to

locate the positions of new sites and the other using Poisson darts.

4.1 Voronoi Arc Heuristic

The mesh generation algorithm begins by constructing the stars of the input sites. If any of the
stars do not agree with each other or contain poor quality elements, refinement begins.

First, encroachments are eliminated.

Definition 7 In the work of Labelle and Shewchuk [17], an input segment s (or a subsegment of an

input segment) is said to be encroached by a site w if Vor(w) intersects s and w is not an endpoint
of s.

Definition 8 Here, segment s = ab is defined to be encroached by w if w # a,b and w’s Voronoi

cell intersects s in the 3-site anisotropic Voronoi diagram of a,b, and w.

29

The second definition is simpler to implement with the star-based algorithm, since Vor(w) is
unknown. Also, a segment s is encroached according to the first definition if and only if it is
encroached according to the second definition. To see why, suppose s = ab is encroached by a site
w according to the first definition. Then Vor(w) must intersect s in the 3-site anisotropic Voronoi
diagram of a,b, and w, and so s is also encroached by the second definition. If w encroaches s by
the second definition, then Vor(w) N s is not owned by the endpoints of s in the true anisotropic
Voronoi diagram, so s is also encroached by the first definition.

If segment s = ab is encroached, we split s by inserting a new site at its “midpoint” m =
Vor({a,b}) N's. The resulting subsegments are split repeatedly until they are no longer encroached.

New sites are inserted as long as there are “bad” triangles. A triangle is “bad” if it is disagreeing
or contains an angle smaller than a user-supplied angle bound, when measured from the perspective
of any of the triangle’s vertices. Triangles with small angles are also referred to as poor quality

triangles.

Definition 9 Let t = Auzw be a triangle in u’s star. Then t is a disagreeing triangle if any of the

following hold:

edge ux does not appear in x’s star

edge ww does not appear in w’s star

Auzw does not appear in x’s star

Auzw does not appear in w’s star

Labelle and Shewchuk insert new sites at Voronoi vertices that dualize to poor quality triangles
and on unwedged portions of Voronoi arcs. In the star-based algorithm, the true Voronoi arcs are
not known, but this approach inspired our heuristic.

Given a bad triangle, the heuristic considers the 3-site anisotropic Voronoi diagram of the
triangle’s vertices. It will insert a site at a Voronoi vertex in this diagram if the new site would be
far enough away from all of the existing sites (not just the 3 sites in the diagram) and would be in
the domain. Otherwise, we insert at a point where one of the Voronoi arcs in the 3-site diagram
leaves its wedge, if that point is far enough away from all of the other sites and lies in the domain. If
neither of these approaches succeeds, the heuristic moves on to the next bad triangle. Also, new sites
are not permitted to encroach upon any subsegment. If a new site would encroach on a subsegment,

it is not inserted; instead the subsegment is split at its “midpoint.”

30

Formally, let t = Auwzx be a bad triangle, V' be the set of all the sites, and €2 be the input
domain. Then REFINE(¢, V, Q) will find a location where a new site may be inserted in an attempt

to eliminate ¢.

REFINE(t, V, Q) :
v1,...,0; (i <4) < Voronoi vertices in the 3-site {u, w,z} anisotropic Voronoi diagram
for k —1toi
if v, € Q and distance from all existing sites to vy > tol

return vg
Pi,...,pj (j < 6) « points where Voronoi arcs leave their wedges in the 3-site diagram
for k—1toj
if pr € Q and distance from all existing sites to py > tol
return pg

return FAILEDTOFINDNEWSITE

tol is a user-defined parameter that controls how closely the sites may be spaced. Note that it
is possible that a location for a new site is not found. When angle bounds of 15° or smaller were
requested, this was not a problem in our experiments; see chapter 5. Labelle and Shewchuk proved
that their algorithm terminates for angle bounds of up to 20 °, and so one would expect this heuristic
to perform similarly well in practice.

If a graded mesh is desired, the user would provide a routine that could be queried to see if
a given triangle is too large. Then the definition of a “bad” triangle can be extended to include
triangles that are too large. This extension will cause overly large triangles to be eliminated through

refinement.

4.2 Poisson Darts

The Poisson dart heuristic is quite similar to the Voronoi arc heuristic. The only difference between
these methods is the REFINE routine. Rather than use the structure of the stars to decide where to
insert a new site, “darts” are randomly thrown into the domain as long as there are disagreeing or
poor quality triangles. A dart is accepted as the location of a new site if, for each existing site, the
distance between the site and the dart is large enough as measured by both the dart and the existing
site. If a dart would encroach upon a segment, the segment is split as above unless splitting the
segment would result in a too-short segment, in which case the dart is discarded and the segment is
not split. If too many darts are rejected in a row, then the definition of “too close” is changed and
sites are allowed to be closer together.

Let V be the current set of sites and 2 the domain to be meshed.

31

REFINE(V, Q) :
rejected < 0

while TRUE
if (rejected < mazx_rejected)
tol = 0.85 tol

rejected «— 0

p < random point in 2

if distance from all existing sites to p > tol
return p

else
rejected++

maz_rejected is a user-defined parameter that controls how many sites in a row are rejected
before tol is reduced. In our experiments, we found that max_rejected = 100 worked well; see
chapter 5. One possible optimization to this heuristic is, given a bad triangle ¢, to throw darts only

in the vicinity of ¢, rather than at the entire domain. This optimization was used in the experiments.

32

Chapter 5

Results

In order to test the heuristics of the previous chapter, we generated a variety of triangulations. The
input to each experiment was a square domain with ten random points in its interior and an angle
bound. In practice, we found bounds of 20° and 10° to work well for the Voronoi arc and Poisson
dart heuristics, respectively. It is important to note that for any given angle bound, we have not
proven that refinement will terminate.

The swirl and sink metric tensors we used are described by Francois Labelle !; see Fig. 5.1 and

Fig. 5.2 for visualizations of these metric tensor fields.

5.1 Voronoi Arc Heuristic

The swirl and sink metric tensor fields were used to generate meshes with a variety of angle bounds,
5°,10°, 15°, and 20°. See Fig. 5.3 for the triangulations that used the swirl tensor and Fig. 5.4
for the triangulations that used the sink tensor.

In the swirl triangulations, the triangles near the center of the domain are fairly round, while
those near the edges of the square are much more stretched. The shapes of the triangles agrees
with the shapes indicated by the metric tensor. The sink triangulations exhibit similar behavior,
isotropic triangles near the center and triangles that are stretched according to the metric in the
rest of the domain.

As expected, more refinement is needed when a larger angle bound is requested for both metric

tensor fields.

Lhttp://www.eecs.berkeley.edu/ flab/cs294-5/project2/mesh.html

33

YNy
Py
EN==21

Figure 5.1: The swirl metric tensor field, with isocontours shown at select points

NN § 4
N

> D (o D >
EZ 2 I
PN B NN

Figure 5.2: The sink metric tensor field, with isocontours shown at select points

5.2 Poisson Darts

The same metric tensor fields were used with the Poisson darts heuristic. This refinement method
was much slower than the Voronoi arcs method, because many of that points were considered for
insertion were ultimately discarded.

The swirl triangulations (Fig. 5.5) and the sink triangulations (Fig. 5.6) show the same general
anisotropy as when the Voronoi arc heuristic was used. The sink examples illustrate that with the
Poisson darts method, restricting the locations of the darts to be near disagreeing or poor quality
triangles clearly restricts the refinement to those parts of the mesh as well. Notice that the top of
the triangulation on the left side of the figure and the right of the triangulation on the right side
of the figure are sparser than the rest of their respective triangulations because less refinement was

needed in those regions. In contrast, a Voronoi vertex that dualizes to a poor quality triangle may

34

| //’ VS N
AW‘\%&
s

=7V

Ny
4 74

B 7 o e N
Uy g A E SN
TR RN
RO 7 SR
NV

\%“ A

‘ 42{4’)

/
|

Figure 5.3: Triangulations generated from the swirl metric tensor and the Voronoi arc heuristic.
Angle bounds: Upper left: 5°; upper right: 10 °; lower left: 15°; lower right: 20 °.

be far away from the triangle itself.

35

Figure 5.4: Triangulations generated from the sink metric tensor and the Voronoi arc heuristic.
Angle bounds: Upper left: 5°; upper right: 10 °; lower left: 15°; lower right: 20 °.

36

5.5: Tria

bounds: left: 5°,

ngulations

Figure

right: 10°.

ristic. Angle bounds:

37

Chapter 6

Future Work

Although the heuristics for refinement presented in chapter 4 perform acceptably in practice, a
provably reliable refinement algorithm would be preferable. Finding such an algorithm has proven
to be challenging. Another logical step would be to extend the current work to anisotropically
mesh surfaces embedded in three dimensions. Anisotropic surface meshing is especially useful for

computer graphics.

38

Appendix A

Notes on Implementing Flips

Let Avzy be a triangle in v’s star and let w be a site that subtends Avxy. We must decide if w

should be inserted into v’s star.

1. Let C be the portion of Vor({v,w}) that is visible to both v and w in the 2-site v, w anisotropic

Voronoi diagram.
2. Find the sections of C that w dominates over y:

(a) Let B,y be the boundary that separates points dominated by w from those dominated
by y.
ompute C N By,. Ca e intersection points (if any) p1,pa,
b) C te C N Byy. Call the int ti ints (if
¢) Sort the p;’s along C. e p;’s divide C into sections Cy,Cs, ... alternatingly dominate
Sort the p;’s al C. The p;’s divide C int ti ¢, C 1t tingly dominated
by w and y.

(d) Determine which C;’s are dominated by w and which by y. This test can be accomplished
by selecting a point p on C; and if [wp N Vor({w,y})| < [gp N Vor({w,y})|, then w

dominates p over y.

3. For each C; that w dominates over y, find the sections of it that v also dominates over y by

repeating step 2 with v in place of w.

4. For each section of C that w and v dominate over y, find the subsections that w and v also

dominate over x by repeating steps 2 and 3 with = in place of y.

5. If any portion of the original C is dominated by both w and v over both y and z, then insert

w into v’s star. Otherwise, do not insert w.

39

Bibliography

1]

Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun,

Anisotropic Polygonal Remeshing, ACM Transactions on Graphics, 22 (2003), pp. 485-493.
Thomas Apel, Anisotropic Finite Elements: Local Estimates and Applications, 1999.

Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec, Anisotropic Diagrams: La-
belle Shewchuk Approach Revisited, in Seventeenth Canadian Conference on Computational

Geometry, 2005, pp. 266—-269.

Houman Borouchaki, Pascal J. Frey, and Paul-Louis George, Unstructured Triangular-
Quadrilateral Mesh Generation. Application to Surface Meshing, in Fifth International Meshing
Roundtable, October 1996, pp. 229-242.

Houman Borouchaki, Paul-Louis George, Frédéric Hecht, Patrick Laug, and Eric Saltel, Delau-
nay Mesh Generation Governed by Metric Specifications. Part 1. Algorithms, Finite Elements
in Analysis and Design, 25 (1997), pp. 61-83.

Frank J. Bossen and Paul S. Heckbert, A Pliant Method for Anisotropic Mesh Generation, in
Fifth International Meshing Roundtable, October 1996, pp. 63—74.

Adrian Bowyer, Computing Dirichlet Tessellations, Computer Journal, 24 (1981), pp. 162-166.

Gustavo C. Buscaglia and Enzo A. Dari, Anisotropic Mesh Optimization and its Application in
Adaptivity, International Journal for Numerical Methods in Engineering, 40 (1997), pp. 4119-
4136.

Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger, Anisotropic Surface
Meshing, in Seventeenth Annual Symposium on Discrete Algorithms, New York, NY, USA,
2006, ACM, pp. 202-211.

40

[10]

[16]

[17]

O. Courchesne, Frangois Guibault, Julien Dompierre, and Farida Cheriet, Adaptive Mesh Gen-
eration of MRI Images for 3D Reconstruction of Human Trunk, Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, 2007, pp. 1040-1051.

Eduardo F. D’Azevedo, Optimal Triangular Mesh Generation by Coordinate Transformation,

STAM Journal on Scientific and Statistical Computing, 12 (1991), pp. 755-786.

Eduardo F. D’Azevedo and R. Bruce Simpson, On Optimal Triangular Meshes for Minimizing
the Gradient Error, Numerische Mathematik, 59 (1991), pp. 321-348.

Pascal J. Frey and Frédéric Alauzet, Anisotropic Mesh Adaptation for Transient Flows Simu-

lations, in Twelfth International Meshing Roundtable, 2003, pp. 335-348.

Paul-Louis George and Houman Borouchaki, Delaunay Triangulation and Meshing: Application

to Finite Elements, Hermes, Paris, 1998.

Cyril Gruau and Thierry Coupez, 8D Tetrahedral, Unstructured and Anisotropic Mesh Gen-
eration with Adaptation to Natural and Multidomain Metric, Computer Methods in Applied
Mechanics and Engineering, 194 (2005), pp. 4951-4976.

Robert Haimes and Michael J. Aftosmis, Watertight Anisotropic Surface Meshing Using Quadri-
lateral Patches, in Thirteenth International Meshing Roundtable, 2004, pp. 311-322.

Francois Labelle and Jonathan Richard Shewchuk, Anisotropic Voronoi Diagrams and
Guaranteed-Quality Anisotropic Mesh Generation, in Nineteenth Annual Symposium on Com-

putational Geometry, New York, NY, USA, 2003, ACM, pp. 191-200.

Xiangrong Li, Jean-Francois Remacle, Nicolas Chevaugeon, and Mark S. Shephard, Anisotropic
Mesh Gradation Control, in Thirteenth International Meshing Roundtable, September 2004,
pp. 401-412.

Xiang-Yang Li, Shang-Hua Teng, and Alper Ungor, Biting Ellipses to Generate Anisotropic
Mesh, in Eighth International Meshing Roundtable, 1999, pp. 97-108.

Konstantin Lipnikov and Yuri Vassilevski, Error Estimates for Hessian-Based Mesh Adapta-
tion Algorithms with Control of Adaptivity, in Thirteenth International Meshing Roundtable,
September 2004, pp. 345-352.

H. Lo and X. Wang, Generation of Anisotropic Mesh by FEllipse Packing over an Unbounded
Domain, Engineering with Computers, 20 (2005), pp. 372-383.

41

[22]

[23]

24]

[25]

[26]

Shmuel Rippa, Long and Thin Triangles Can Be Good for Linear Interpolation, STAM Journal
on Numerical Analysis, 29 (1992), pp. 257-270.

Jonathan Richard Shewchuk, What is a Good Linear Finite Element? Interpolation, Condi-

tioning, Anisotropy, and Quality Measures. Manuscript in progress, 2002.

Kenji Shimada, Atsushi Yamada, and Takayuki Itoh, Anisotropic Triangular Meshing of Para-
metric Surfaces via Close Packing of FEllipsoidal Bubbles, in Sixth International Meshing
Roundtable, 1997, pp. 375-390.

Ko-Foa Tchon, Julien Dompierre, Marie-Gabrielle Vallet, and Ricardo Camarero, Visualizing
Mesh Adaptation Metric Tensors, in Thirteenth International Meshing Roundtable, September
2004, pp. 353-364.

David F. Watson, Computing the n-dimensional Delaunay Tesselation with Application to

Voronoi Polytopes, Computer Journal, 24 (1981), pp. 167-172.

42

