
Robust, Guaranteed-Quality Anisotropic Mesh Generation

by Jessica Schoen

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Jonathan Shewchuk
Research Advisor

(Date)

* * * * * * *

Professor Satish Rao
Second Reader

(Date)

Contents

1 Introduction 2

1.1 Anisotropy . 3

1.2 Metric Tensors . 3

2 Previous Work 7

2.1 Heuristic Approaches . 7

2.2 Guaranteed-Quality Anisotropic Mesh Generation 12

3 Star-Based Anisotropic Mesh Generation Algorithm 14

3.1 Inconsistent Stars . 14

3.2 Key Facts From Prior Work . 16

3.3 Incremental Insertion Algorithm for Constructing a Single Star 17

3.4 Equivalence Theorem . 19

4 Refinement 29

4.1 Voronoi Arc Heuristic . 29

4.2 Poisson Darts . 31

5 Results 33

5.1 Voronoi Arc Heuristic . 33

5.2 Poisson Darts . 34

6 Future Work 38

A Notes on Implementing Flips 39

1

Chapter 1

Introduction

Despite years of study, mesh generation remains a bottleneck in many finite element simulations

involving complex shapes. The difficultly arises in part because generating a high quality mesh

depends not only on the geometry but also on the equations governing the simulation themselves.

Under the right circumstances, anisotropic meshes can greatly reduce the number of elements, and

therefore the computation time, required for simulations. In computer graphics, anisotropic meshes

can accomplish similar goals for rendering. This work presents an algorithm for generating two-

dimensional anisotropic meshes with a guarantee on the quality of their elements.

Anisotropic meshes contain long, thin elements that have been stretched according to a preferred

direction inherent to a specific problem. Although most mesh generation algorithms endeavor to

avoid creating such triangles, “long and thin triangles can be good for linear interpolation,” as Rippa

observes in his aptly titled paper [22]. He finds that, for the linear interpolation of a function F over

a triangulation, “triangles should be long in directions where the magnitude of the second directional

derivative of F is small and thin in directions where the magnitude of the second directional derivative

of F is large.”

Rippa studied the error in the value of the interpolated function, but that may not be one’s only

concern. For some applications, including rendering, the error in the gradient of the interpolated

solution can be even more important. With both of these considerations in mind, Apel [2] and

Shewchuk [23] provide in-depth looks at the benefits of anisotropic elements. Simulation problems

for which anisotropic meshes are appropriate are those whose solutions have different behaviors in

different directions. Types of simulations with this property include “boundary layers in viscous flow

problems and in various plate and shell models, shock phenomena in flow problems, and singularities

near edges in Poisson type problems like diffusion and linear elasticity” [2]. In computer graphics,

anisotropic meshes can be beneficial for rendering surfaces with differing curvatures in different

2

directions.

1.1 Anisotropy

For two-dimensional problems, anisotropy is often represented by a 2-by-2 symmetric positive definite

matrix called a metric tensor at each point of the domain. In practice the metric tensor might only

be known at discrete points, such as at the vertices of a background mesh or a mesh from a previous

timestep. In these cases, a metric tensor can be estimated at a point where it is not explicitly given

through interpolation.

A geometric interpretation of the metric tensor Mp at a point p is that it describes how distances

and angles are measured from p’s point of view. As in the work of Labelle and Shewchuk [17], for a

2-by-2 metric tensor Mp, define a deformation tensor Fp to be any 2-by-2 matrix such that

Mp = FT
p Fp and det Fp > 0.

Then Fp maps the physical domain to a warped space where distances and angles can be mea-

sured as they are seen by p simply by measuring them in the usual Euclidean way. See Fig. 1.1, which

is from the paper by Labelle and Shewchuk. In the figure, thin arcs around p represent isocontours.

The isocontours of p are sets of points that are equidistant from p when measured from p’s point of

view. Likewise, the thin arcs around q are q’s isocontours. The heavy arc is a Voronoi arc — the

set of points at the same distance from p and q.

1.2 Metric Tensors

For the purposes of the anisotropic mesh generation algorithm given here, assume that the metric

tensor field is provided as user input. Let us consider how these metrics may be generated in practice.

Meshes used in finite element simulations commonly use solution-driven adaptivity; the metric

tensor field is generated from the Hessian of a numerically computed solution. With this approach,

how to generate the initial mesh when no numerical solution has been computed yet is not obvious.

In some cases, the user may have a priori knowledge of the behavior of the Hessian. Otherwise, a

coarse isotropic mesh may be used to get a rough estimate of the solution. Using the Hessian of this

approximate solution as a metric, a finer anisotropic mesh can then be generated. The simulation

then begins in earnest with the fine mesh.

The idea of using the Hessian as a metric in was popularized by results of D’Azevedo [11]

and D’Azevedo and Simpson [12] on the linear interpolation error in a function and its gradient,

respectively. In an unusual application, Courchesne et al. use the Hessian to generate meshes of

3

Fp Fq

p

p

q

q

Physical space

FpFq
−1

Fp Fq
−1

Figure 1.1: The deformation tensors Fp and Fq transform the domain according to the metric tensors
at p and q, respectively. The elliptical isocontours around p in the top row become circular when
space is warped according to Fp (lower left), and likewise for q (lower right).

MRI images [10]. They define a function over the pixels of an MRI scan whose value at each pixel

is equal to the intensity of the image at that pixel. Then they use the Hessian of this function as a

metric for anisotropic mesh generation.

In general, a pitfall of using the Hessian matrix to define a metric tensor field is that the Hessian

of the true solution to the problem is not known. An approximate Hessian must be “recovered” from

a numerical solution that has been computed. A variety of techniques for Hessian recovery have

been studied; see the work of Buscaglia and Dari [8], for example.

Another downside of generating a metric from the Hessian is that, depending on the mesh

generation algorithm, it may result in a mesh with neighboring elements of widely varying sizes.

Such poor grading is unacceptable in some engineering applications. To combat this difficulty, Li et

al. [18] give an anisotropy-preserving procedure to run before the mesh is generated, which smooths

out the metric tensor field. Their goal is to improve the grading of the mesh and avoid poor quality

elements that result from rapid changes in the metric tensors of adjacent elements.

Constructing a metric tensor field from the Hessian of a function is not the only option. Gruau

and Coupez [15] define two different metrics that they find especially useful for material processing.

The first allows the user to specify the number of layers of elements throughout the thickness of the

4

domain. Their second metric is concerned with interfaces between different materials. A common

method for handling such interfaces is to use a constrained Delaunay triangulation, which constrains

the mesh to include the edges of the interface. Gruau and Coupez instead define a metric which

causes the mesh to be very refined along the interface; see Fig. 1.2. They prefer to use this metric

with an anisotropic mesh generator rather than a constrained Delaunay triangulation because they

find that it simplifies the remeshing steps of their finite element simulations.

Figure 1.2: Gruau and Coupez use a metric tensor field that causes the mesh to be very refined
along interfaces between materials.

For surface meshing, Alliez et al. [1] and George and Borouchaki [14] among others, choose

to define metrics based on the curvature of a surface. Alliez et al. find that this choice of metric

produces visually pleasing results. George and Borouchaki show that it allows them to generate a

mesh that approximates the surface well.

Given the variety of options for defining a metric tensor field for mesh generation, researchers

have also devised ways of studying metrics themselves. Tchon et al. [25] develop a method for

visualizing metrics which is independent from any mesh generation algorithm; see Fig. 1.3. Lipnikov

and Vassilevski [20] derive error estimates which allow them to study the effects of different metric

modifications (such as the smoothing of Li et al. [18]) on the interpolation error.

5

Figure 1.3: Tchon et al. compare their metric visualization technique (far right) with a more typical
metric visualization (far left) and triangular (second from left) and quadrilateral (second from right)
meshes based on the metric.

6

Chapter 2

Previous Work

2.1 Heuristic Approaches

The anisotropic mesh generation problem has been tackled with a variety of heuristic approaches.

In chronological order, summaries of these techniques are given here.

The anisotropic mesh generation algorithm described by Bossen and Heckbert [6] is a gener-

alization of an algorithm for isotropic mesh generation given in the same paper. Their isotropic

algorithm is what they refer to as a “pliant” mesh generation algorithm, one “in which smoothing,

insertion, and deletion take place in a loop.”

The isotropic algorithm first creates the constrained Delaunay triangulation of the input and

marks all of the vertices as active. It then proceeds iteratively by randomly choosing an active vertex

to reposition based on the locations of its neighbors. Neighbors that are too close repel the vertex,

and neighbors that are too far away attract it. If the vertex is not moved too far, it is marked

inactive. The vertices are then retriangulated so that the mesh is still constrained Delaunay. If the

density of the mesh around the repositioned vertex is too high, the vertex is deleted. Otherwise, a

new vertex is inserted. The algorithm continues until all of the vertices are inactive. However, an

inserted or deleted vertex causes all of its neighbors to become active, so the status of a vertex may

flip-flop several times during the course of the algorithm.

Bossen and Heckbert transform this algorithm into an anisotropic mesh generation algorithm by

replacing the Delaunay circumcircle test with an anisotropic version. To determine whether to flip

the edge between two triangles, the metric tensors at the four vertices of the triangles are averaged,

with an equal weight given to each vertex. The circumcircle test is performed with distances and

angles measured according to this average metric tensor. This algorithm is not guaranteed to

converge, although the authors only had difficulties on inputs with abrupt changes in the metric

tensor or when the user requested large edge lengths near small input features. They subjectively

7

Figure 2.1: Left: An anisotropic mesh generated by Bossen and Heckbert’s algorithm. Right:
Ellipses whose centers are the vertices of the mesh. Each ellipse represents the set of points at a
distance of 1 from its center as measured by the metric tensor at the center.

found their output meshes “attractive,” but could make no guarantee on their quality. See Fig. 2.1

for an example of a mesh generated by this algorithm.

Borouchaki, Frey, and George [4], in the same conference as Bossen and Heckbert, introduced a

different approach to the anisotropic mesh generation problem. The details of their method can be

found in later works by Borouchaki, George, and other authors [5, 14]. The method is an extention

of the Bowyer–Watson Delaunay triangulation algorithm [7, 26] to the anisotropic case. The original

Bowyer–Watson algorithm creates a sequence of Delaunay triangulations by adding vertices one at

a time. To add a vertex to the triangulation, all of the triangles whose circumcircles contain the

vertex are removed, leaving a star-shaped cavity that contains the new vertex. The cavity is then

triangulated by adding an edge between each of its vertices and the new vertex.

Borouchaki et al. call this process of advancing from one triangulation to the next the “Delaunay

kernel,” and they propose three anisotropic Delaunay kernels. The first computes the cavity based

only on the metric tensor at the vertex that is currently being added to the triangulation. The

second determines if a given triangle belongs in the cavity using the metric tensors at both the new

vertex and at one of the triangle’s vertices. The third uses the tensors at the new vertex and at all

three of the vertices of the triangle. The authors prefer their second option because they did not

notice a “significant difference” between the second and third kernels, and the second requires about

half of the computation needed for the third. Provided that one uses a depth first search to find

the triangles that form the cavity, they prove that all three kernels result in valid triangulations in

8

two dimensions. This result does not hold in higher dimensions, and there is no guarantee on the

quality of the mesh in any dimension.

The ellipsoidal bubble packing method of Shimada, Yamada, and Itoh [24] is similar to Bossen

and Heckbert’s method in that both are iterative schemes that reposition elements based on the

locations of their neighbors. In the bubble packing method, the authors define a “proximity-based

interbubble force” based on the van der Waals force. Although it is based on this physical force, which

implies that it can both attract and repel bubbles, the interbubble force is simplified and quicker

to compute than the true van der Waals force. One of the main differences between this algorithm

and that of Bossen and Heckbert is that here bubbles are packed in order of dimension: first on

vertices, then on edges, and finally on faces. Also, Shimada et al. work on parametric surfaces in

three dimensions, while Bossen and Heckbert only implemented their technique for two-dimensional

domains.

The ellipsoidal bubbles are packed by finding the forces acting on each bubble and then solving

the resulting system of equations of motion for a force-balancing configuration. The positions of the

bubbles are updated and bubbles are added or removed if an area is too sparsely or densely packed.

This process is repeated until the bubbles no longer move very far when their position is updated.

Figure 2.2: Left: A bubble packing generated by the algorithm of Shimada et al. The bubbles are
allowed to overlap significantly. Right: The corresponding mesh.

Once the number of bubbles and their positions are finalized, their centers are triangulated.

Shimada et al. use an anisotropic version of the Delaunay circumcircle test, though not the same

version as that used by Bossen and Heckbert. Given four vertices that form a convex quadrilateral,

the authors perform the standard circumcircle test in the space given by the metric tensor at the

9

barycenter of the quadrilateral. Fig. 2.2 gives an example of a mesh generated with this algorithm.

The authors found that this method produced “high quality” meshes in practice, but do not

provide guarantees on mesh quality. They also determined that the initial distribution of bubbles

played a large role in the number of iterations required for the method to converge.

Li, Teng, and Üngör combine advancing front and ellipse packing schemes in their anisotropic

mesh generation algorithm [19]. Like the previous algorithms, this one consists of a vertex generation

phase followed by a triangulation phase.

Figure 2.3: Li et al.’s advancing front after biting one “layer” of ellipses.

First, all of the vertices of the mesh are generated by packing ellipses along an advancing front.

A key element of the algorithm is the “biting ellipse” of a vertex, which is the set of all points that

are within a predetermined constant distance from the vertex, as measured by the metric tensor at

the vertex. When a vertex is inserted, the boundary arc of its biting ellipse is added to the advancing

front, see Fig. 2.3. The vertices are then triangulated using a modified Delaunay edge-flip test which

takes anisotropy into account. The test used here is different from than that used by Bossen and

Heckbert, as well as that of Shimada et al.

Li et al. prove that their algorithm generates a “weak-β-ellipse-packing,” which implies that the

ellipses are neither too densely nor too sparsely packed. The algorithm also always terminates and

produces a valid mesh. Although the authors suggest measuring the quality of each triangle in the

mesh based on the metric tensor at the triangle’s barycenter, there is no guarantee on the quality

of the output mesh. Furthermore, the algorithm given in the paper is not complete — the authors

avoid the difficult question of how to maintain the advancing front. The algorithm also has never

been implemented.

10

Figure 2.4: An ellipse packing generated by Lo and Wang. The ellipses overlap only slightly.

The method of Lo and Wang [21] is similar to the other ellipse packing methods. Their contribu-

tion is an algorithm for unbounded domains. Rather than initially packing ellipses on the domain’s

boundary, they begin at an arbitrarily chosen point in the interior of the domain and grow their

ellipse packing radially outward. Once the front is far enough away from the interesting features of

the domain or once a user-defined number of ellipses have been created, the algorithm terminates.

See Fig. 2.4 for an ellipse packing created by this algorithm. As with the other ellipse-based schemes,

they generate satisfactory meshes in practice, but provide no guarantees.

Alliez et al. [1] focus on anisotropically remeshing scanned surfaces, with the anisotropy dictated

by the surface’s two principal directions of curvature. Their technique attempts to mimic the curva-

ture lines that an artist would naturally draw. The resulting mesh contains stretched quadrilaterals

in anisotropic regions and triangles in isotropic regions.

The remeshing algorithm first approximates the principal curvatures of the surface. Then a

discrete conformal parameterization is used to flatten the curvature tensor field from the three-

dimensional surface to a two-dimensional domain. Next, a Gaussian filter smoothes the two-

dimensional tensor field, and vertices where the tensor is roughly isotropic are flagged for special

treatment later. The algorithm then uses the principal curvatures to create a network of lines on

the surface. The interchapters of these lines, along with additional vertices in the isotropic regions,

become the vertices in the final quad-dominant mesh.

The algorithm is robust, but guarantees on the quality of the final meshes are not available.

The authors did successfully generate a variety of visually appealing meshes of complex surfaces,

including the heads of the Stanford bunny, see Fig. 2.5, and Michelangelo’s David. Several global

11

Figure 2.5: The head of the Stanford bunny, meshed with the algorithm of Alliez et al.

properties of the output mesh can be dictated by the user, including the mesh density, the amount

of anisotropy, and the degree to which curvature of the surface is reflected in the mesh.

There are a number of other anisotropic meshing techniques that will not be discussed in de-

tail. From before Bossen and Heckbert’s paper through the present, anisotropic mesh modification

algorithms have appeared in the engineering literature [8, 13, 15]. These algorithms differ from the

anisotropic mesh generation algorithms in this chapter because their input is a preexisting mesh

which they modify to make anisotropic. The input mesh is often an isotropic mesh or a mesh

from the previous timestep of a simulation. The basic strategy of these algorithms is to make local

changes to the input mesh, such as edge flipping, edge collapsing, and vertex relocation, until the

mesh conforms to the metric tensor field “well enough.” Haimes and Aftosmis [16] take a different

approach in their algorithm, which generates structured anisotropic meshes for a restricted class of

CAD objects.

2.2 Guaranteed-Quality Anisotropic Mesh Generation

The first guaranteed-quality anisotropic mesh generation algorithm was given by Labelle and Shewchuk

[17]. This algorithm is based on the anisotropic Voronoi diagrams defined in the same paper; see

Fig. 2.6. The authors give conditions under which the anisotropic Voronoi diagram is dual to a

proper triangulation. They also prove that their algorithm generates a mesh in which no triangle

contains an angle smaller than 20◦ when measured with the metric tensor of any point in the trian-

gle. This proof is especially significant in light of the fact that no earlier anisotropic mesh generation

algorithm came with any guarantee on the quality of the mesh it produced, and termination was

12

Figure 2.6: An anisotropic Voronoi diagram. The bold curves are boundaries of the Voronoi cells,
and the light curves are isocontours.

not guaranteed for many of the iterative schemes. The vertices of an anisotropic Voronoi diagram

are interchapter points of conic chapters, and Labelle and Shewchuk’s algorithm is vulnerable to the

robustness of the computation of these interchapters. This vulnerability prevents an implementation

of this algorithm from being both fast and robust.

In addition to the present thesis, a number of others which are based on the work of Labelle and

Shewchuk have appeared. For instance, Boissonnat et al. [3] construct the d-dimensional anisotropic

Voronoi diagram by computing a power diagram in (d + 1)-dimensions. Although their approach

works in any dimension, they have proven only that their corresponding mesh generation algorithm

terminates in two dimensions. Cheng and co-authors [9] apply the work of Labelle and Shewchuk in

their three-dimensional anisotropic surface meshing algorithm.

13

Chapter 3

Star-Based Anisotropic Mesh

Generation Algorithm

As the name implies, the basic building block of this algorithm is a star.

Definition 1 Given a triangulation T , the star of a vertex v is the set of all simplices (vertices,

edges, faces, and triangles) in T having v for a face. See Fig. 3.1.

v
v

Figure 3.1: On the left, a triangulation containing vertex v. On the right, star(v) in that triangula-
tion.

One of the main ideas in this algorithm is that each site computes its own star independently

of all the other sites. Performing local computations rather than constructing the global anisotropic

Voronoi diagram allows us to avoid some of the numerical difficulties that Labelle and Shewchuk

[17] encountered. However, it also introduces a challenge: refinement is required to ensure that the

stars are consistent with each other.

3.1 Inconsistent Stars

A näıve approach to anisotropic star construction demonstrates how two stars may be inconsistent.

Suppose the set of sites to be triangulated consists of four sites, a, b, c, and d, with isocontours at c

and d as shown in Fig. 3.2. To compute the star of c, one could imagine doing the following:

14

a b

c

d

Figure 3.2: Sites a, b, c, and d, with isocontours shown at c and d.

1. Apply Fc to warp the positions of all the sites according to c’s perspective

2. Compute the Delaunay triangulation of the warped sites

3. Apply F−1
c to the triangulation in order to undo the warping

4. Find star(c) in this triangulation

Likewise for d’s star, the process could be repeated, replacing Fc with Fd and c with d. This

procedure results in the warped Delaunay triangulations shown on the left side of Fig. 3.3 and the

corresponding stars shown on the right side of the same figure. These stars are inconsistent because

edge cd appears in d’s star but not in c’s star.

a′a′
b′b′

c′c′

d′

a′′a′′ b′′b′′
c′′c′′

d′′d′′

d’s perspective

c’s perspective

Delaunay triangulation Star

Figure 3.3: Points a′, b′, c′, d′ represent the location of sites a, b, c, d as viewed by c. Similarly,
a′′, b′′, c′′, d′′ represent the original four sites as seen from d’s perspective.

The star construction algorithm in section 3.3 guarantees that all four sites will always make

the same decision about which edge to include in their stars if they are faced with the same choice.

15

3.2 Key Facts From Prior Work

The following definitions, lemmas, and theorems from the work of Labelle and Shewchuk [17] are

also used here and are stated without proof.

The distance between two points q1 and q2 as measured by p is

dp(q1, q2) = ||Fpq1 − Fpq2||2 =
√

(q1 − q2)T Mp(q1 − q2).

The shorthand notations dp(q) = dp(p, q) and d(p, q) = min{dp(q), dq(p)} are also used.

Definition 2 (Anisotropic Voronoi diagram) Let V be a set of sites. The Voronoi cell of a site

v in V is

Vor(v) = {p ∈ Ed : dv(p) ≤ dw(p) for allw ∈ V }.

Any subset of sites W ⊆ V induces a Voronoi cell Vor(W) = ∩w∈W Vor(w) of points equally close

to the sites in W and no closer to any others. If it is not empty, such a cell has dimensionality of

dim(Vor(W)) ≥ d + 1− |W |, achieving equality if the sites are in general position. Every site in W

is said to own Vor(W). The anisotropic Voronoi diagram of V is the arrangement of the Voronoi

cells {Vor(W) : W ⊆ V,W 6= ∅,Vor(W) 6= ∅}.

While the dual of the standard Voronoi diagram is the Delaunay triangulation of the sites, the

dual of an anisotropic Voronoi diagram may not be a triangulation at all.

Definition 3 Let v and w be two sites. Define the wedge between these two sites as the locus of

points q for which the angle ∠qvw as viewed from v is less than 90◦, and the angle ∠qwv as viewed

from w is less than 90◦. (See Fig. 3.4.) Mathematically,

wedge(v, w) = {q ∈ Ed : (q − v)T Mv(w − v) > 0 and (q − w)T Mw(v − w) > 0}.

Figure 3.4: The wedge of two sites.

Using wedges, Labelle and Shewchuk proved many properties of anisotropic Voronoi diagrams.

16

Lemma 1 (Visibility Lemma) Let v and w be two sites in Ed. If we restrict the two-site Voronoi

diagram of {v, w} to wedge(v, w), then v can see its entire cell, and w can see its entire cell as well.

Theorem 2 (Visibility Theorem) If every lower-dimensional face of a d-face of Vor(v) is wedged,

then the d-face is star-shaped and every point in the d-face is visible from v.

Lemma 3 (Triangle Orientation Lemma) Let q be a Voronoi vertex owned by the sites v1, v2, v3.

If q is wedged, then the orientation of the triangle v1v2v3 matches the ordering of the cells Vor(v1),

Vor(v2), Vor(v3) locally around q. In other words, if at q the cells Vor(v1),Vor(v2),Vor(v3) occur

clockwise, then the sites v1, v2, v3 occur clockwise in the plane, and vice versa.

Wedges are also used in the Dual Triangulation Theorem, which characterizes anisotropic

Voronoi diagrams that dualize to proper triangulations.

Theorem 4 (Dual Triangulation Theorem) Let the domain Ω be a polygonal subset of the

plane, let V be a set of sites in Ω that includes every vertex of Ω, and let D be the anisotropic

Voronoi diagram of V . Let D|Ω be the restriction of D to Ω. Suppose that each Voronoi arc cut by

the restriction operation is owned by the endpoints of the edge of Ω that cuts it. If all the Voronoi

arcs and vertices of D|Ω are wedged, then the geometric dual of D|Ω is a polygonalization of Ω

(with strictly convex polygons), and is a triangulation of Ω if V is in general position. Arbitrarily

triangulating each polygon yields what we call an anisotropic Delaunay triangulation of (V,Ω).

3.3 Incremental Insertion Algorithm for Constructing a Single Star

w

xy

v

u

Figure 3.5: u and w subtend △vxy

Given a set S of sites, the star of a site v is constructed by considering all of the other sites one at

a time and inserting them into v’s star with the InsertSite routine if they pass the InsertionTest.

Sites that have been inserted into v’s star may be removed at a later time, but each site will be

inserted at most once.

17

Definition 4 A site w subtends triangle △vxy ∈ star(v) if w lies between the rays −→vy and −→vx. See

Fig. 3.5.

Definition 5 The allowable region for sites w and v when w subtends △vxy is the set of all points

p in the plane such that x /∈ △vwp and y /∈ △vwp. See Fig. 3.6.

Definition 6 Site v dominates point p over site w if |vp ∩ Vor{v, w}| < |wp ∩ Vor{v, w}| in the

two-site Voronoi diagram of {v, w}. See Fig. 3.7.

w

xy

v

Figure 3.6: The allowable region for w and v consists of the entire plane except for the shaded
regions.

w

w
v

v

Figure 3.7: In both cases, v dominates the shaded regions over w

The incremental insertion algorithm is driven by two subroutines, InsertionTest and

InsertSite.

ConstructStar(v, S) :
star(v) ← empty star
for each site s ∈ S

if (InsertionTest(s, star(v)) returns Yes

InsertSite(s, star(v))

18

InsertionTest(w, star(v)) :
if (w is colinear with v and a site u ∈ star(v) && u lies between w and v)

return No

else if (w is colinear with v and a site u ∈ star(v) && w lies between u and v)
remove u from star(v)

else if (w is strictly inside a triangle in star(v))
return Yes

if (there is a triangle △vxy ∈ star(v) that w subtends)
C ← the portion of the arc Vor({w, v}) that is visible to both w and v

and that lies within the allowable region for w and v
if (there is a point on C that w dominates over x and y and that v dominates over x and y)

return Yes

else
return No

else
return Yes

InsertSite(w, star(v)) :
Add w to star(v)
if (star(v) contains fewer than 3 sites (other than v))

Done

Let x and y be w’s neighbors in star(v)
while (InsertionTest(x, star(v)) returns No)

z ← x’s neighbor in star(v) other than w
remove x from star(v)
x ← z

while (InsertionTest(y, star(v)) returns No)
z ← y’s neighbor in star(v) other than w
remove y from star(v)
y ← z

3.4 Equivalence Theorem

If the spacing of the sites is dense enough, then the independently constructed star of v assembled

using the above algorithm contains the same sites as star(v) in the anisotropic Voronoi diagram of

V . Before proving this equivalence, we need a few lemmas and facts.

Lemma 5 Let w, v, and y be sites of an anisotropic Voronoi diagram for which y ∈ △wvp for some

point p on Vor({v, w}). If the ray −→py first passes through Vor(v) or Vor(w), then the Voronoi arcs

and vertices cannot all be wedged.

Proof: Assume that the Voronoi arcs and vertices are all wedged and seek a contradiction. Also

assume, without loss of generality, that w, v, p are in clockwise order.

19

There may be more than one site inside of △wvp; choose which site to call y in the following

way: If there is only 1 site in △wvp, let y be that site. Otherwise, let y be the site such that

sites w, y, u are in counterclockwise order for all sites u ∈ △wvp. There may be multiple sites on a

common line through w which satisfy this criterion. In this case, let y be the one farthest from w.

See Fig. 3.8.

v

p

w

y

Figure 3.8: If there is more than one site in △wvp, choose y to be the site for which w, y, u are in
counterclockwise order for all u ∈ △wvp and that is farthest from w in the case of colinearities.

Let k be the number of Voronoi cells intersected by the line segment py. Note that k must be

at least 2 because py begins in Vor(w) or Vor(v) and ends in Vor(y). Assume that the sites have

been perturbed so that py does not intersect any Voronoi vertices. Now proceed by induction.

Base case: k = 2. Two cases are considered, one in which py intersects Vor(w) and Vor(y),

and the other in which py intersects Vor(v) and Vor(y).

Case I: First suppose that py intersects Vor(w) and Vor(y). Let s be the point where −→wy

intersects pv.

Note that py must intersect Vor({w, y}). Imagine following Vor({w, y}) from its point of inter-

section with py away from w. The Visibility Theorem guarantees that this arc

� will not intersect py again, because the intersection point closest to y would block y’s view of

any other intersection points on py,

� will not intersect ps ⊂ pv since all of pv is in Vor(v),

� will not intersect ys, since y would block w’s view of the intersection,

� is not an ellipse.

20

So, moving from the arc’s intersection with py away from w, the arc does not leave △pys. Since the

arc is also not an ellipse, there is a Voronoi vertex z on Vor({w, y}) in △pys.

Let u be the site other than w and y that owns z. All of Vor({w, y}) must be visible to both

w and y, and uz ⊆ Vor(u). These two observations imply that z sees the Voronoi cells of w, y, u in

clockwise order.

v

p

w

y

z

s

Figure 3.9: z is the Voronoi vertex of w, y, and another unknown site u. s = −→wy ∩ pv.

By the Triangle Orientation Lemma, if the sites w, y, u are in counterclockwise order or are

colinear, then z is not wedged and the lemma holds. So suppose that the sites w, y, u are in

clockwise order. Then since u must be able to see z, u may not lie outside of △wvp. This is because

uz would have to intersect either pw or pv, which are entirely contained in Vor(w) and Vor(v),

respectively. The site u must therefore be in △wsp. But y was chosen so that the sites w, y, u are

in counterclockwise order or are colinear for all sites u ∈ △wvp, and the desired contradiction has

been found.

Case II: Now suppose that py intersects Vor(v) and Vor(y). Let r be the point where −→vy

intersects pw. Let z be the Voronoi vertex on Vor({v, y}) that lies on the opposite side of py from

v. By the same reasoning as above, z exists and is in △pry. Let u be the site other than v and y

that owns z. The Voronoi cells of y, v, u are in clockwise order around z.

If the sites y, v, u are in counterclockwise order or are colinear, then z is not wedged and the

lemma holds. So suppose that the sites y, v, u are in clockwise order. Then since u must be able to

see z, u must be in △wvp. Since y, v, u are in clockwise order, u is in △prv. Note that requiring u

to see z and the fact that py does not enter Vor(u) prevents u from being in △pyv, and u is not in

△pry by the choice of y. Therefore u /∈ △prv, and this contradiction concludes the base case.

21

v

p

w

yz

r

Figure 3.10: z is the Voronoi vertex of v, y, and another unknown site u. r = −→vy ∩ pw.

Induction: Assume that if py intersects k − 1 Voronoi cells, y ∈ △wvp, and triangles △pys

and △pyr contain no sites (where p ∈ Vor({w, v}), s = −→wy ∩ pv, and r = −→vy ∩ pw as above), then

the Voronoi arcs and vertices cannot all be wedged.

It remains to show that if py intersects k cells, the Voronoi arcs and vertices cannot all be

wedged. As in the base case, there are two cases here, one where the first cell intersected by py is

Vor(w), and the other where the first cell intersected by py is Vor(v).

v

p

w

yq

s

a

b

u

t

Figure 3.11: Possible locations for sites a and b. q = py ∩ Vor({a, b}), u = −→ay ∩ qb, t =
−→
by ∩ qa.

Case I: Suppose that the first cell intersected by py is Vor(w). The next step of the proof is

determined by whether or not py intersects a cell owned by a site that is on the opposite side of py

from w.

If py does intersect at least one cell owned by a site that is on the opposite side of py from w,

22

let Vor(b) be the first such cell. Let a be the site whose cell is intersected by py immediately before

b’s cell (it may be that a = w). Let q = py ∩ Vor({a, b}), u = −→ay ∩ qb, t =
−→
by ∩ qa.

To see that y is in △qab, first note that q ∈ △wsp, but there are no sites in the interior of

this triangle. The segment qa cannot intersect pw because q is visible to a. Since a is on the same

side of py as w, qa must intersect wy. It is possible that a may be colinear with w and y, so that

a ∈ wy. Likewise, qb must intersect ys. However, b cannot be colinear with y and s, by the choice

of y. Therefore, y is strictly inside △qab.

Since aq intersects wy, the point u must be in △pys. By the choice of y, △pys contains no sites,

so △qyu ⊂ △pys is also empty. Likewise, t ∈ △wyp, and △wyp is empty, so △qty is empty as well.

The segment qy passes through at most k − 1 cells, so the inductive hypothesis may be applied,

and the lemma holds.

Otherwise, py does not intersect any cell owned by a site that is on the opposite side of py from

w. Let c be the site that owns the last cell intersected by py before Vor(y). Let u = −→cy ∩ pv. As in

the base case, let z1 be the Voronoi vertex on Vor({c, y}) on the opposite side of py from c. Let d1

be the site other than c and y that owns z1 . Then z1 sees the cells c, y, d1 in clockwise order.

If the sites c, y, d1 are not be in clockwise order, z1 is not wedged and the lemma holds. So

suppose that sites c, y, d1 are in clockwise order. Then d1 must be in the shaded region in Fig. 3.12

since △pws is empty and d1z1 may not intersect pw or pv by the Visibility Theorem.

v

p

w

y

s
u

c

z1

Figure 3.12: c is the site that owns the last cell intersected by py before Vor(y). d1 must lie in the
shaded region.

There must be an arc Vor({d1, y}) incident to z1 . Follow this arc away from z1 . The same

23

reasoning that was used to show the existence of z in the base case shows that Vor({d1, y}) is not an

ellipse and does not leave △pyu1, where u1 =
−→
d1y∩ pv. Let z2 be the Voronoi vertex of Vor({d1, y})

other than z1 , and let d2 be the third owner of z2 . Then z2 sees the cells d1, y, d2 in clockwise

order. If the sites d1, y, d2 are in counterclockwise order or are colinear, then z2 is not wedged and

we are done. So suppose d1, y, d2 are in clockwise order. By repeating the above argument, we can

generate sequences z1, z2, . . . and d1, d2, . . ., where zi = Vor({di, y, di+1}), zi is visible to di, y, di+1,

zi sees the cells di, y, di+1 in clockwise order, and the sites di, y, di+1 are in clockwise order.

Note that each site di lies between −→yw and
−−→
ydi1. Therefore, each site in S appears at most once

in the sequence d1, d2, The set S is finite, so the sequences will eventually terminate, say at

zN and dN . Let f be the site other than dN and y that owns zN . Then either dN , y, f are not in

clockwise order or f cannot see zN , because otherwise the sequences would not have stopped at zN

and dN . In either case, zN is not wedged and the lemma holds.

Case II: Suppose, on the other hand, that the first cell intersected by py is Vor(v).

If py intersects at least one cell owned by a site on the opposite side of py from v, let Vor(a) be

the first such cell. Let b be the site whose cell is intersected by py immediately before a’s cell (it

may be that b = v). Then the same reasoning as in Case I can be used.

Otherwise, py does not intersect any cell owned by a site on the opposite side of py from v.

The argument for the analogous situation from Case I can be applied with the modification that

di, y, di+1 are counterclockwise. ¤

q
p1

p2

s1
s2

Figure 3.13: All of the points on the ray that are beyond q are dominated by s2 over s1.

Lemma 6 In any anisotropic Voronoi diagram including sites a, b, and y for which y ∈ △abp for

some point p on Vor({a, b}) the Voronoi arcs and vertices cannot all be wedged.

24

Proof: Let u be the site whose Voronoi cell is first entered by ray −→py. If u = a or u = b, the result

follows from lemma 5. Otherwise, u is distinct from a and b. Assume that a, b, p are in clockwise

order. Then p must see the cells a, u, b in clockwise order. If the sites a, u, b are in counterclockwise

order or are colinear, then p is not wedged and the lemma holds. So assume that the sites a, u, b are

in clockwise order. Then u and p are on opposite sides of the line through a and b, and u is outside

of △abp. The site u cannot be on −→py since either y would block u’s view of p and p would not be

wedged, or u would be on py, contradicting the fact that u is outside of △abp.

The site u must either be on the same side of the ray −→py as a or on the same side of the ray

as b. Suppose u is on the same side of −→py as a. Then y ∈ △ubp by the above reasoning about the

position of u. In this case, apply lemma 5 with w = u and v = b. Otherwise, u is on the same side

of −→py as b and y ∈ △aup, so the result follows from lemma 5 with w = u and v = a. ¤

Fact 7 Let s1 and s2 be sites, and p1, p2 points in the plane. Suppose that s1 dominates p1 over s2

. If there is a point q on the ray −−→p1p2 that s2 dominates over s1, then s2 also dominates over s1

all of the points on −−→p1p2 that are beyond q. In other words, once a ray passes into s2’s territory, it

never returns to s1’s. See Fig. 3.13.

Fact 8 Let s1, s2 be sites and let p1, p2 be points such that s1 dominates p1 over s2, and s2 dominates

p2 over s1. A direct consequence of Fact 7 is that s1p1 cannot cross s2p2.

Lemma 9 After any iteration of the incremental insertion algorithm, let s1, s2, . . . , sn be the sites

of v’s star, labeled so that s1, s2, . . . , sn are in clockwise order around v. Let pi be a point on

Vor({v, si}) that v and si dominate over si’s neighbors in v’s current star (since si is currently in

v’s star, pi must exist). Then p1, p2, . . . , pn must also be in clockwise order around v.

Proof: Base case: n = 3. Fix the locations of s1, s2, s3, p1, and p3 anywhere in the plane such

that s1, s2, s3 are clockwise around v, and s1, s2 /∈ △vs3p3, and s2, s3 /∈ △vs1p1. Since s1 and v

dominate p1 over s2 and since s3 and v dominate p3 over s2, the path P = s1, p1, v, p3, s3 forms a

barrier that cannot be crossed by s2p2 or vp2, by Fact 8. See Fig. 3.14.

Let R1 be the region between and including −→vs1 and −→vs3, sweeping counterclockwise around v

from −→vs1. Note that s1, s2, s3 appear in clockwise order around v, so that R1 is on the opposite side

of P from s2. Let q be any point in R1. Then either q is not in the allowable region for s2 and v,

or s2q intersects P . Therefore, p2 cannot be in R1.

If −→vp1 /∈ R1, let R2 be the region between and including −→vp1 and −→vs1, sweeping counterclockwise

around v from −→vp1. Let q ∈ R2. Since s2 /∈ △vs1p1, either s2q intersects vp1 or s1p1, or vq intersects

s1p1. By Fact 8 none of these crossings are allowed, so p2 /∈ R2.

25

Likewise, if −→vp3 /∈ R1, let R3 be the region between and including −→vs3 and −→vp3, sweeping clockwise

around v from −→vp3. By the same reasoning as above, p2 /∈ R3.

v

p1

s1

s2

s3

p3

R1

R2

Figure 3.14: Examples of the regions R1 and R2 in lemma 9.

So, the only portion of the plane the may contain p2 lies in the region between
−→
vp1 and

−→
vp3,

sweeping clockwise around v from −→vp1. In other words, p1, p2, p3 must be in clockwise order around

v.

Induction: Suppose that if v’s star contains n − 1 sites si in clockwise order around v, the

corresponding points pi must also be in clockwise order around v.

If v’s star contains n sites, temporarily remove a site, say s2 from the star. Then for each

remaining site, choose a point pi ∈ Vor({v, si}) that si dominates over its neighbors. For s1, choose

p1 such that s1 also dominates p1 over s2. For s3, choose p3 such that s3 also dominates p3 over s2.

Since the si’s are able to coexist in v’s star, such pi’s must all exist. By the inductive hypothesis,

these n − 1 points pi are in clockwise order around v.

Now consider the star of v that contains only s1, s2, and s3. Let p1 and p3 be the same points

as above. Find a point p2 that s2 dominates over s1 and s3. Again by the inductive hypothesis,

p1, p2, p3 are in clockwise order around v. Therefore, in the star with all n sites, all n of the pi’s are

also in clockwise order around v, as desired. ¤

Theorem 10 (Equivalence Theorem) If the set of sites S has been refined enough so that all

the arcs and vertices of the anisotropic Voronoi diagram are wedged and the dual of the anisotropic

Voronoi diagram is a triangulation, then the star of a site v produced by the incremental insertion

26

algorithm contains the same sites as star(v) in the dual of the anisotropic Voronoi diagram of S.

Proof: The proof proceeds by first showing that all of the sites that are in star(v) in the dual of

the anisotropic Voronoi diagram are inserted into the star of v created by the incremental insertion

algorithm and are never removed from it. Then it is shown that all of the sites which do not appear

in star(v) in the dual of the anisotropic Voronoi diagram also do not appear in the star output by

the algorithm.

Let x be a site in star(v) in the dual of the anisotropic Voronoi diagram of S. Then the arc

Vor({v, x}) appears in the anisotropic Voronoi diagram of S. Since all the Voronoi arcs are wedged,

this arc is visible to both x and v. Let p be a point on the arc. Since p ∈ Vor(x) and p is visible

to x in the anisotropic Voronoi diagram of S, p is also in Vor(x) and is visible to x in any 2-site

anisotropic Voronoi diagram containing x. So x dominates p over any other site in S (except v).

Likewise, v dominates p over any other site in S (except x). Because all of the Voronoi arcs and

vertices are wedged, p must be in the allowable region of v and x by lemma 6. Therefore, the

incremental insertion algorithm will always insert and never remove a site that belongs in v’s star.

It remains to show that any site not in star(v) in the dual of the anisotropic Voronoi diagram

will not be in the star produced by the algorithm.

Let △vxy be a triangle in star(v) in the dual of the anisotropic Voronoi diagram of S. Then x

and y must each be inserted into v’s star at some point during the algorithm, and once they have

been inserted, neither of them will be removed. Suppose that x is inserted into v’s star before y,

and that sites w1, w2, . . . , wn which subtend △vxy are also inserted before y. Further suppose that

the sites are oriented as in Fig. 3.15. Assume that when y is inserted into v’s star, the sites wi are

not removed from the star and seek a contradiction.

Since the sites y, w1, w2, . . . , wn, x coexist in v’s star by assumption, there must be points

py, p1, p2, . . . , pn, px such that py ∈ Vor({v, y}), pi ∈ Vor({v, wi}), px ∈ Vor({v, x}), and each

site dominates the corresponding p over its neighbors. Since y, w1, w2, . . . , wn, x are in clockwise

order around v, the points py, p1, p2, . . . , pn, px must also be in clockwise order around v, for any

choices of the p’s that satisfy the above criteria, by lemma 9. Let q = Vor({v, x, y}), the Voronoi

vertex of v, x, and y, and let py = px = q. Then pi, 1 ≤ i ≤ n, must lie between −→vq and −→vq that is, on

−→vq. However, wi cannot dominate any points on vq over x or y, and v cannot dominate any points

on −→vq beyond q over x or y. Thus, the pi do not exist and the sites w1, w2, . . . , wn cannot coexist in

v’s star with x and y, the desired contradiction. The incremental insertion algorithm will therefore

remove each wi, beginning with w1.

The incremental insertion algorithm inserts all of the sites that are in star(v) in the dual of the

27

v

y x

w1

w2

wn. . .

Figure 3.15: The portion of v’s star between y and x, just after y has been inserted, but before
checking if y’s neighbors in the star should remain

anisotropic Voronoi diagram and removes or does not insert the sites that are not in star(v), so it

produces the desired output.

¤

28

Chapter 4

Refinement

We saw in the previous chapter that given a set V of sites, the independently constructed stars are

guaranteed to agree with each other if all of the arcs and vertices of the anisotropic Voronoi diagram

of V are wedged. In most cases, the anisotropic Voronoi diagram of the input sites will not satisfy

this criterion. We must therefore refine by adding additional sites. Refinement will also ensure that

the triangles in each of the stars will be of high quality. Once all of the stars agree with each other

and the triangles in the stars are of suitable quality, the final mesh is obtained simply by combining

the stars into a single triangulation.

The goal of a refinement algorithm is to find a point p in the domain at which a new site may be

inserted. The point p should not be too close to any existing sites, because if it were, the refinement

algorithm might continue refining forever and never terminate.

Despite much effort, we were unable to devise a provably reliable algorithm for refinement. We

did however, find two heuristics that performed satisfactorily in practice, one using Voronoi arcs to

locate the positions of new sites and the other using Poisson darts.

4.1 Voronoi Arc Heuristic

The mesh generation algorithm begins by constructing the stars of the input sites. If any of the

stars do not agree with each other or contain poor quality elements, refinement begins.

First, encroachments are eliminated.

Definition 7 In the work of Labelle and Shewchuk [17], an input segment s (or a subsegment of an

input segment) is said to be encroached by a site w if Vor(w) intersects s and w is not an endpoint

of s.

Definition 8 Here, segment s = ab is defined to be encroached by w if w 6= a, b and w’s Voronoi

cell intersects s in the 3-site anisotropic Voronoi diagram of a, b, and w.

29

The second definition is simpler to implement with the star-based algorithm, since Vor(w) is

unknown. Also, a segment s is encroached according to the first definition if and only if it is

encroached according to the second definition. To see why, suppose s = ab is encroached by a site

w according to the first definition. Then Vor(w) must intersect s in the 3-site anisotropic Voronoi

diagram of a, b, and w, and so s is also encroached by the second definition. If w encroaches s by

the second definition, then Vor(w) ∩ s is not owned by the endpoints of s in the true anisotropic

Voronoi diagram, so s is also encroached by the first definition.

If segment s = ab is encroached, we split s by inserting a new site at its “midpoint” m =

Vor({a, b}) ∩ s. The resulting subsegments are split repeatedly until they are no longer encroached.

New sites are inserted as long as there are “bad” triangles. A triangle is “bad” if it is disagreeing

or contains an angle smaller than a user-supplied angle bound, when measured from the perspective

of any of the triangle’s vertices. Triangles with small angles are also referred to as poor quality

triangles.

Definition 9 Let t = △uxw be a triangle in u’s star. Then t is a disagreeing triangle if any of the

following hold:

� edge ux does not appear in x’s star

� edge uw does not appear in w’s star

� △uxw does not appear in x’s star

� △uxw does not appear in w’s star

Labelle and Shewchuk insert new sites at Voronoi vertices that dualize to poor quality triangles

and on unwedged portions of Voronoi arcs. In the star-based algorithm, the true Voronoi arcs are

not known, but this approach inspired our heuristic.

Given a bad triangle, the heuristic considers the 3-site anisotropic Voronoi diagram of the

triangle’s vertices. It will insert a site at a Voronoi vertex in this diagram if the new site would be

far enough away from all of the existing sites (not just the 3 sites in the diagram) and would be in

the domain. Otherwise, we insert at a point where one of the Voronoi arcs in the 3-site diagram

leaves its wedge, if that point is far enough away from all of the other sites and lies in the domain. If

neither of these approaches succeeds, the heuristic moves on to the next bad triangle. Also, new sites

are not permitted to encroach upon any subsegment. If a new site would encroach on a subsegment,

it is not inserted; instead the subsegment is split at its “midpoint.”

30

Formally, let t = △uwx be a bad triangle, V be the set of all the sites, and Ω be the input

domain. Then Refine(t, V,Ω) will find a location where a new site may be inserted in an attempt

to eliminate t.

Refine(t, V,Ω) :
v1, . . . , vi (i ≤ 4) ← Voronoi vertices in the 3-site {u,w, x} anisotropic Voronoi diagram
for k ← 1 to i

if vk ∈ Ω and distance from all existing sites to vk > tol
return vk

p1, . . . , pj (j ≤ 6) ← points where Voronoi arcs leave their wedges in the 3-site diagram
for k ← 1 to j

if pk ∈ Ω and distance from all existing sites to pk > tol
return pk

return FailedToFindNewSite

tol is a user-defined parameter that controls how closely the sites may be spaced. Note that it

is possible that a location for a new site is not found. When angle bounds of 15 ◦ or smaller were

requested, this was not a problem in our experiments; see chapter 5. Labelle and Shewchuk proved

that their algorithm terminates for angle bounds of up to 20 ◦, and so one would expect this heuristic

to perform similarly well in practice.

If a graded mesh is desired, the user would provide a routine that could be queried to see if

a given triangle is too large. Then the definition of a “bad” triangle can be extended to include

triangles that are too large. This extension will cause overly large triangles to be eliminated through

refinement.

4.2 Poisson Darts

The Poisson dart heuristic is quite similar to the Voronoi arc heuristic. The only difference between

these methods is the Refine routine. Rather than use the structure of the stars to decide where to

insert a new site, “darts” are randomly thrown into the domain as long as there are disagreeing or

poor quality triangles. A dart is accepted as the location of a new site if, for each existing site, the

distance between the site and the dart is large enough as measured by both the dart and the existing

site. If a dart would encroach upon a segment, the segment is split as above unless splitting the

segment would result in a too-short segment, in which case the dart is discarded and the segment is

not split. If too many darts are rejected in a row, then the definition of “too close” is changed and

sites are allowed to be closer together.

Let V be the current set of sites and Ω the domain to be meshed.

31

Refine(V,Ω) :
rejected ← 0
while True

if (rejected ← max rejected)
tol = 0.85 tol
rejected ← 0

p ← random point in Ω
if distance from all existing sites to p > tol

return p
else

rejected++

max rejected is a user-defined parameter that controls how many sites in a row are rejected

before tol is reduced. In our experiments, we found that max rejected = 100 worked well; see

chapter 5. One possible optimization to this heuristic is, given a bad triangle t, to throw darts only

in the vicinity of t, rather than at the entire domain. This optimization was used in the experiments.

32

Chapter 5

Results

In order to test the heuristics of the previous chapter, we generated a variety of triangulations. The

input to each experiment was a square domain with ten random points in its interior and an angle

bound. In practice, we found bounds of 20 ◦ and 10 ◦ to work well for the Voronoi arc and Poisson

dart heuristics, respectively. It is important to note that for any given angle bound, we have not

proven that refinement will terminate.

The swirl and sink metric tensors we used are described by François Labelle 1; see Fig. 5.1 and

Fig. 5.2 for visualizations of these metric tensor fields.

5.1 Voronoi Arc Heuristic

The swirl and sink metric tensor fields were used to generate meshes with a variety of angle bounds,

5 ◦, 10 ◦, 15 ◦, and 20 ◦. See Fig. 5.3 for the triangulations that used the swirl tensor and Fig. 5.4

for the triangulations that used the sink tensor.

In the swirl triangulations, the triangles near the center of the domain are fairly round, while

those near the edges of the square are much more stretched. The shapes of the triangles agrees

with the shapes indicated by the metric tensor. The sink triangulations exhibit similar behavior,

isotropic triangles near the center and triangles that are stretched according to the metric in the

rest of the domain.

As expected, more refinement is needed when a larger angle bound is requested for both metric

tensor fields.

1http://www.eecs.berkeley.edu/ flab/cs294-5/project2/mesh.html

33

Figure 5.1: The swirl metric tensor field, with isocontours shown at select points
.

Figure 5.2: The sink metric tensor field, with isocontours shown at select points
.

5.2 Poisson Darts

The same metric tensor fields were used with the Poisson darts heuristic. This refinement method

was much slower than the Voronoi arcs method, because many of that points were considered for

insertion were ultimately discarded.

The swirl triangulations (Fig. 5.5) and the sink triangulations (Fig. 5.6) show the same general

anisotropy as when the Voronoi arc heuristic was used. The sink examples illustrate that with the

Poisson darts method, restricting the locations of the darts to be near disagreeing or poor quality

triangles clearly restricts the refinement to those parts of the mesh as well. Notice that the top of

the triangulation on the left side of the figure and the right of the triangulation on the right side

of the figure are sparser than the rest of their respective triangulations because less refinement was

needed in those regions. In contrast, a Voronoi vertex that dualizes to a poor quality triangle may

34

Figure 5.3: Triangulations generated from the swirl metric tensor and the Voronoi arc heuristic.
Angle bounds: Upper left: 5 ◦; upper right: 10 ◦; lower left: 15 ◦; lower right: 20 ◦.

be far away from the triangle itself.

35

Figure 5.4: Triangulations generated from the sink metric tensor and the Voronoi arc heuristic.
Angle bounds: Upper left: 5 ◦; upper right: 10 ◦; lower left: 15 ◦; lower right: 20 ◦.

36

Figure 5.5: Triangulations using the swirl metric tensor and the Poisson dart heuristic. Angle
bounds: left: 5 ◦, right: 10 ◦.

Figure 5.6: Triangulations using the sink metric tensor and the Poisson dart heuristic. Angle bounds:
left: 5 ◦, right: 10 ◦.

37

Chapter 6

Future Work

Although the heuristics for refinement presented in chapter 4 perform acceptably in practice, a

provably reliable refinement algorithm would be preferable. Finding such an algorithm has proven

to be challenging. Another logical step would be to extend the current work to anisotropically

mesh surfaces embedded in three dimensions. Anisotropic surface meshing is especially useful for

computer graphics.

38

Appendix A

Notes on Implementing Flips

Let △vxy be a triangle in v’s star and let w be a site that subtends △vxy. We must decide if w

should be inserted into v’s star.

1. Let C be the portion of Vor({v, w}) that is visible to both v and w in the 2-site v, w anisotropic

Voronoi diagram.

2. Find the sections of C that w dominates over y:

(a) Let Bwy be the boundary that separates points dominated by w from those dominated

by y.

(b) Compute C ∩ Bwy. Call the intersection points (if any) p1, p2,

(c) Sort the pi’s along C. The pi’s divide C into sections C1, C2, . . . alternatingly dominated

by w and y.

(d) Determine which Ci’s are dominated by w and which by y. This test can be accomplished

by selecting a point p on Ci and if |wp ∩ Vor({w, y})| < |yp ∩ Vor({w, y})|, then w

dominates p over y.

3. For each Ci that w dominates over y, find the sections of it that v also dominates over y by

repeating step 2 with v in place of w.

4. For each section of C that w and v dominate over y, find the subsections that w and v also

dominate over x by repeating steps 2 and 3 with x in place of y.

5. If any portion of the original C is dominated by both w and v over both y and x, then insert

w into v’s star. Otherwise, do not insert w.

39

Bibliography

[1] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun,

Anisotropic Polygonal Remeshing, ACM Transactions on Graphics, 22 (2003), pp. 485–493.

[2] Thomas Apel, Anisotropic Finite Elements: Local Estimates and Applications, 1999.

[3] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec, Anisotropic Diagrams: La-

belle Shewchuk Approach Revisited, in Seventeenth Canadian Conference on Computational

Geometry, 2005, pp. 266–269.

[4] Houman Borouchaki, Pascal J. Frey, and Paul-Louis George, Unstructured Triangular-

Quadrilateral Mesh Generation. Application to Surface Meshing, in Fifth International Meshing

Roundtable, October 1996, pp. 229–242.

[5] Houman Borouchaki, Paul-Louis George, Frédéric Hecht, Patrick Laug, and Eric Saltel, Delau-

nay Mesh Generation Governed by Metric Specifications. Part I. Algorithms, Finite Elements

in Analysis and Design, 25 (1997), pp. 61–83.

[6] Frank J. Bossen and Paul S. Heckbert, A Pliant Method for Anisotropic Mesh Generation, in

Fifth International Meshing Roundtable, October 1996, pp. 63–74.

[7] Adrian Bowyer, Computing Dirichlet Tessellations, Computer Journal, 24 (1981), pp. 162–166.

[8] Gustavo C. Buscaglia and Enzo A. Dari, Anisotropic Mesh Optimization and its Application in

Adaptivity, International Journal for Numerical Methods in Engineering, 40 (1997), pp. 4119–

4136.

[9] Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger, Anisotropic Surface

Meshing, in Seventeenth Annual Symposium on Discrete Algorithms, New York, NY, USA,

2006, ACM, pp. 202–211.

40

[10] O. Courchesne, François Guibault, Julien Dompierre, and Farida Cheriet, Adaptive Mesh Gen-

eration of MRI Images for 3D Reconstruction of Human Trunk, Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, 2007, pp. 1040–1051.

[11] Eduardo F. D’Azevedo, Optimal Triangular Mesh Generation by Coordinate Transformation,

SIAM Journal on Scientific and Statistical Computing, 12 (1991), pp. 755–786.

[12] Eduardo F. D’Azevedo and R. Bruce Simpson, On Optimal Triangular Meshes for Minimizing

the Gradient Error, Numerische Mathematik, 59 (1991), pp. 321–348.

[13] Pascal J. Frey and Frédéric Alauzet, Anisotropic Mesh Adaptation for Transient Flows Simu-

lations, in Twelfth International Meshing Roundtable, 2003, pp. 335–348.

[14] Paul-Louis George and Houman Borouchaki, Delaunay Triangulation and Meshing: Application

to Finite Elements, Hermès, Paris, 1998.

[15] Cyril Gruau and Thierry Coupez, 3D Tetrahedral, Unstructured and Anisotropic Mesh Gen-

eration with Adaptation to Natural and Multidomain Metric, Computer Methods in Applied

Mechanics and Engineering, 194 (2005), pp. 4951–4976.

[16] Robert Haimes and Michael J. Aftosmis, Watertight Anisotropic Surface Meshing Using Quadri-

lateral Patches, in Thirteenth International Meshing Roundtable, 2004, pp. 311–322.

[17] François Labelle and Jonathan Richard Shewchuk, Anisotropic Voronoi Diagrams and

Guaranteed-Quality Anisotropic Mesh Generation, in Nineteenth Annual Symposium on Com-

putational Geometry, New York, NY, USA, 2003, ACM, pp. 191–200.

[18] Xiangrong Li, Jean-François Remacle, Nicolas Chevaugeon, and Mark S. Shephard, Anisotropic

Mesh Gradation Control, in Thirteenth International Meshing Roundtable, September 2004,

pp. 401–412.

[19] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör, Biting Ellipses to Generate Anisotropic

Mesh, in Eighth International Meshing Roundtable, 1999, pp. 97–108.

[20] Konstantin Lipnikov and Yuri Vassilevski, Error Estimates for Hessian-Based Mesh Adapta-

tion Algorithms with Control of Adaptivity, in Thirteenth International Meshing Roundtable,

September 2004, pp. 345–352.

[21] H. Lo and X. Wang, Generation of Anisotropic Mesh by Ellipse Packing over an Unbounded

Domain, Engineering with Computers, 20 (2005), pp. 372–383.

41

[22] Shmuel Rippa, Long and Thin Triangles Can Be Good for Linear Interpolation, SIAM Journal

on Numerical Analysis, 29 (1992), pp. 257–270.

[23] Jonathan Richard Shewchuk, What is a Good Linear Finite Element? Interpolation, Condi-

tioning, Anisotropy, and Quality Measures. Manuscript in progress, 2002.

[24] Kenji Shimada, Atsushi Yamada, and Takayuki Itoh, Anisotropic Triangular Meshing of Para-

metric Surfaces via Close Packing of Ellipsoidal Bubbles, in Sixth International Meshing

Roundtable, 1997, pp. 375–390.

[25] Ko-Foa Tchon, Julien Dompierre, Marie-Gabrielle Vallet, and Ricardo Camarero, Visualizing

Mesh Adaptation Metric Tensors, in Thirteenth International Meshing Roundtable, September

2004, pp. 353–364.

[26] David F. Watson, Computing the n-dimensional Delaunay Tesselation with Application to

Voronoi Polytopes, Computer Journal, 24 (1981), pp. 167–172.

42

