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Summary. Constrained Delaunay tetrahedralizations (CDTs) are valuable for gen-
erating meshes of nonconvex domains and domains with internal boundaries, but
they are difficult to maintain robustly when finite-precision coordinates yield vertices
on a line that are not perfectly collinear and polygonal facets that are not perfectly
flat. We experimentally compare two recent algorithms for inserting a polygonal
facet into a CDT: a bistellar flip algorithm of Shewchuk (Proc. 19th Annual Sympo-
sium on Computational Geometry, June 2003) and a cavity retriangulation algorithm
of Si and Gärtner (Proc. Fourteenth International Meshing Roundtable, September
2005). We modify these algorithms to succeed in practice for polygons whose vertices
deviate from exact coplanarity.

1 Introduction

A constrained Delaunay triangulation (CDT) is a variation of a Delaunay tri-
angulation that is constrained to respect the boundary of a domain. CDTs in
the plane were introduced by Lee and Lin [10]. Shewchuk [15, 20] generalized
them to three or more dimensions. CDTs have optimality properties similar
to those of Delaunay triangulations [10, 20]. Their ability to conform to do-
main boundaries makes them valuable for applications such as finite element
simulation, computer graphics, and geographic information systems. Several
algorithms for constructing CDTs have been proposed [17, 18, 19, 21, 22].
Some of them operate by constructing an ordinary Delaunay triangulation
and then inserting polygonal boundaries one by one.

In this paper, we study how to incrementally update a three-dimensional
CDT by inserting a polygon. This operation suffices to incrementally construct
a CDT from a Delaunay triangulation of the vertices. We have implemented
two such polygon insertion algorithms in the program TetGen: Shewchuk’s
flip-based algorithm [19] and Si and Gärtner’s cavity retriangulation algo-
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Abstract
I discuss algorithms based on bistellar flips for inserting and delet-
ing constraining (d − 1)-facets in d-dimensional constrained De-
launay triangulations (CDTs) and weighted CDTs, also known as
constrained regular triangulations. The facet insertion algorithm is
likely to outperform other known algorithms on most inputs. The
facet deletion algorithm is the first proposed for d > 2, short of
recomputing the CDT from scratch. An incremental facet insertion
algorithm that begins with an unconstrained Delaunay triangula-
tion can construct the CDT of a ridge-protected piecewise linear
complex with nv vertices in O(n

!d/2"+1
v log nv) time. Hence, in

odd dimensions, CDT construction by incremental facet insertion
is within a factor of log nv of worst-case optimal. Perhaps the most
important feature of these algorithms is that they are relatively easy
to implement.
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1. Introduction
A constrained Delaunay triangulation (CDT) is a variation of a

Delaunay triangulation that is constrained to respect the shape of a
domain—perhaps an object to be rendered, or a domain to be simu-
lated by a numerical method like the finite element method. CDTs
have desirable properties that make them useful in interpolation and
numerical analysis, including their tendency to favor “round” tetra-
hedra over “skinny” (high aspect ratio) tetrahedra, their suitability
for interpolation [25], and their mathematical properties that allow
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Delaunay refinement algorithms [4, 22] to generate meshes that
have provably good characteristics.
A regular triangulation is a triangulation that can arise as a side

view of a convex polytope. Delaunay triangulations are a special
case of regular triangulations. A constrained regular triangulation
is a triangulation that arises as a side view of a polytope that is
locally convex everywhere except at the faces that are constrained
to be part of the triangulation. (This notion is formalized shortly.)
Cheng et al. [2] have shown that regular triangulations are useful

in three-dimensional mesh generation. Constrained regular trian-
gulations are even more useful because of their ability to respect
the shape of a domain. Another use for constrained regular trian-
gulations, as this paper shows, is that they help in reasoning about
algorithms for updating CDTs based on elementary geometric op-
erations known as bistellar flips.
This paper discusses flip-based algorithms for updating and con-

structing CDTs and constrained regular triangulations. The algo-
rithms are relatively simple (as compared to sweep algorithms [23]),
yet are fast in odd dimensions, and are probably the best exist-
ing choice for practical three-dimensional CDT construction. Flip-
based CDT construction takesO(n

!d/2"+1
v log nv) time, where nv

is the number of vertices in the input and d is the dimension. This is
within a factor of log nv of worst-case optimal in odd dimensions.
A CDT is a triangulation of an underlying input called a piece-

wise linear complex (PLC), following Miller, Talmor, Teng, Walk-
ington, and Wang [17]. A PLC X is a set of facets of dimensions
0 through d. The 0-facets are vertices, and every vertex of a CDT
ofX is a vertex inX . Each higher-dimensional facet is a polytope
(roughly speaking), possibly with holes, slits, and isolated vertices
in it, as Figure 1 shows. Formally, a k-facet is a union of open con-
vex k-polytopes lying in a common k-flat, although sometimes it is
more convenient to think of the closure of the k-facet. A facet may
be nonconvex and may have any number of faces. A facet need not
be connected.

Figure 1: Each facet of a PLC (left) may have holes, slits, and inte-
rior vertices, which may be used to enforce the presence of specific
faces (perhaps so that boundary conditions may be applied) or to
support intersections with other facets. The right illustration is the
constrained Delaunay tetrahedralization of the PLC.
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Fig. 1. A piecewise linear complex and its constrained Delaunay triangulation.

rithm [22]. We propose solutions to several issues that have been ignored in
more theoretical papers, particularly the fact that vertices inserted on a com-
mon line are not always perfectly collinear, and the vertices of a polygonal
facet are not always perfectly coplanar. We also suggest fixes to problems
that arise when roundoff error causes the flip algorithm to perform flips in
the wrong order. We experimentally compare the speed and robustness of the
two polygon insertion algorithms.

2 Constrained Delaunay Triangulations

We assume that the reader is familiar with simplicial complexes and Delaunay
triangulations of point sets in two and three dimensions. We model domains
as piecewise linear complexes (PLCs), introduced by Miller et al. [11], which
generalize polyhedra to permit interior boundaries and other constraints. In
three dimensions, a PLC X is a set of vertices, edges, polygons, and polyhedra
(not necessarily convex), collectively called cells, that satisfies the following
properties. (1) The boundary of each cell in X is a union of cells in X . (2) If
two distinct cells f, g ∈ X intersect, their intersection is a union of cells in X ,
all having lower dimension than at least one of f or g.

These conditions are intentionally permissive; for instance, they permit
polygons, edges, and vertices to float in a polyhedral domain, or edges and
vertices to float in a polygon, as Figure 1 shows. One purpose of these float-
ing cells is to constrain how the PLC can be triangulated, so that boundary
conditions may be accurately applied at those cells. The purpose of the poly-
hedra in X is to indicate which portions of space are interior to the domain
and should be filled with tetrahedra.

The underlying space of a PLC X , denoted |X |, is
⋃

f∈X f , which is usually
the domain to be triangulated. A triangulation of X , also known in three
dimensions as a tetrahedralization of X , is a simplicial complex T such that
(1) X and T have the same vertices, (2) every cell in X is a union of simplices
in T , and (3) |T | = |X |. An example appears in Figure 1.

A mesh of X , also known as a Steiner triangulation of X or a conforming
triangulation of X , is a triangulation of X ∪S, where S ⊂ |X | is a finite set of
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Steiner points disjoint from the vertices in X . In our parlance, a triangulation
of X does not permit added vertices, whereas a mesh of X does.

A mesh T of X subdivides each polygon in X into triangles in T , and each
edge in X into edges in T . We call the edges in a PLC segments to distinguish
them from the edges in a mesh of the PLC. An edge in T included in a segment
in X is called a subsegment. A triangle in T included in a polygon in X is
called a subpolygon.

There are several definitions of constrained Delaunay triangulation [20].
For brevity, we omit the primary definition and give an equivalent, simpler
definition. The circumsphere of a tetrahedron t is the unique sphere that
passes through all four vertices of t. A circumsphere of a triangle s is any
sphere that passes through all three vertices of s; there are infinitely many
such circumspheres. A triangle s in a tetrahedralization T is said to be locally
Delaunay if it is a face of fewer than two tetrahedra in T , or it is a face of
exactly two tetrahedra t1 and t2 and it has a circumsphere that encloses no
vertex of t1 nor t2. Equivalently, the circumsphere of t1 encloses no vertex of
t2. Equivalently, the circumsphere of t2 encloses no vertex of t1.

A triangulation T of a PLC X is a constrained Delaunay triangulation
(CDT) of X if every triangle in T not included in a polygon in X is locally
Delaunay. A crucial difference between an ordinary Delaunay triangulation
and a CDT is that triangles included in PLC polygons are not required to be
locally Delaunay, which frees the CDT to respect the PLC’s polygons.

A Steiner CDT of X is a CDT of X ∪ S, where S ⊂ |X | is a set of Steiner
points. Our meshing algorithms construct Steiner CDTs of input PLCs.

Every PLC in the plane has a CDT, which has no extra vertices not in the
PLC. This fact gives CDTs an advantage over purely Delaunay meshes, which
may require many extra vertices to force them to respect their domains. In
three dimensions, the comparison between CDTs and Delaunay triangulations
is more complicated. A difficulty of working with CDTs is that not every PLC
has one; there even exist simple polyhedra that have no tetrahedralization
at all. However, every PLC has Steiner CDTs; we can usually create one
by adding a modest number of Steiner points; and the number required is
typically far less than a purely Delaunay mesh of the PLC would require.
In particular, for domains in which polygons meet at small dihedral angles,
purely Delaunay meshes often have far more vertices than desired.

Updating a CDT is in some ways like updating a Delaunay tetrahedraliza-
tion, but there are catches. The first catch is that every modification is done in
the context of an underlying PLC. It is not usually possible to determine how
a CDT will change when a vertex or polygon is inserted or deleted without
knowing the PLC that determines it. Every incremental operation changes
the PLC and the CDT together. The second catch is that the modified PLC
might not have a CDT (or even a tetrahedralization).

Our algorithms rely on the CDT Theorem, which provides a useful suffi-
cient condition for a PLC (or a polyhedron) to have a CDT. An edge e ∈ T
is strongly Delaunay if there exists a ball whose boundary passes through the
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Fig. 2. Left: the parabolic lifting map. In this example, a two-dimensional vertex
set V is lifted to a paraboloid in R3. The underside of the convex hull of the lifted
vertices projects down to a Delaunay triangulation of V . Right: a lifted CDT, with
the paraboloid inverted to more clearly show its topography. The bold edges are
constraining edges that are not locally Delaunay. They are mapped to reflex edges
of the lifted surface.

two vertices of e, but no other vertex of T lies in that ball. (This is a slightly
stronger condition than e being Delaunay, which requires only that no ver-
tex lie in the ball’s interior.) A PLC is edge-protected if all its segments are
strongly Delaunay. The CDT Theorem states that every edge-protected PLC
has a CDT [20].

If a PLC is not edge-protected, it can be made edge-protected with the ad-
dition of carefully chosen Steiner points that subdivide its segments, yielding
an augmented PLC Y that has a CDT. Some meshing algorithms choose these
Steiner points so that Y does not have unreasonably short edges [18, 22]. One
way to construct the CDT of Y is to construct a Delaunay triangulation of Y’s
vertices, then insert Y’s polygons one by one. The CDT Theorem guarantees
that these polygon insertions will succeed.

Delaunay triangulations and convex hulls are connected through the well-
known parabolic lifting map of Seidel [13]. Let V be a set of vertices in R3 for
which a Delaunay triangulation is sought. The lifting map sends each vertex
in V to a vertex on a paraboloid in four-dimensional space, as Figure 2 (left)
illustrates. Specifically, each vertex v = (vx, vy, vz) ∈ V maps to a point
v+ = (vx, vy, vz, v

2
x + v2y + v2z) ∈ R4. The vertex v+ is the lifted companion of

v. Let V + be the set of lifted companions of the vertices in V . The Delaunay
triangulation of V has the same combinatorial structure as the underside of
the convex hull of V +. Each tetrahedron on the underside of the convex hull of
V + projects down to a tetrahedron in the Delaunay triangulation of V . This
connection is used routinely to transform any (d+ 1)-dimensional convex hull
algorithm into a d-dimensional Delaunay triangulation algorithm.

For a simplex s in R3, its lifted companion s+ is the simplex embedded
in R4 whose vertices are the lifted companions of the vertices of s. Let T + =
{s+ : s ∈ T } be a tetrahedralization T lifted to the parabolic lifting map, as
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Figure 13: Two- and three-dimensional examples of
inserting a facet into a CDT.

segment inX is strongly Delaunay, so T is the CDT ofX.

Next, insert the facets of Y into X, one by one. With each
facet insertion, update T so it is still the CDT of X. The
key observation is that because X always remains edge-

protected, this update is always possible. When all the facets

have been inserted, X = Y and T is the CDT of Y—or
would be if T didn’t cover the entire convex hull of the tri-

angulation domain. The final step is to remove from T any

tetrahedra that do not lie in the triangulation domain.

Let us consider an algorithm for recovering a facet f . How
does T transform into T f? First, find all the tetrahedra in

T that intersect the relative interior of f . It may be that
f is already represented as a union of triangular faces, in

which case there is nothing to do. Otherwise, the next step is

to delete from T each tetrahedron whose interior intersects

f , as Figure 13 illustrates. (Tetrahedra that intersect f only
on their boundaries stay put.) It is easy to verify that every

other tetrahedron is still constrained Delaunay, and so must

be present in the new CDT.

Next, use the naı̈ve gift-wrapping algorithm to retriangulate

the polygonal cavities created on each side of f . Be fore-
warned that there may be more than one polygonal cavity on

each side of f , because some triangular faces of the tetrahe-
dralization might already conform to f before f is inserted.

For most domains, the polygonal cavities will be bounded

by a small number of triangular faces, so the poor time com-

plexity of naı̈ve gift wrapping is unlikely to be a burden. Of

course, it is possible to design examples where the cavities

have many faces, so the incremental facet insertion algorithm

may be even slower than gift wrapping the whole PLC from

scratch. Such examples are likely to be the exception in prac-

tice.

To retriangulate a cavity, let Z be a PLC consisting only of

the triangular faces that bound one cavity, plus their edges

and vertices. Happily, the naı̈ve gift-wrapping algorithm

works correctly even if some or all of the facets on the con-

vex hull of the region being triangulated are left unspecified.

So when a polygonal cavity is triangulated, f may be omit-
ted from the description of the cavity. Therefore, there is

no need to precompute the two-dimensional CDT of f be-
fore inserting it. When the cavity is tetrahedralized, the two-

deletion

insertion

t

v

PG

t

T’T

Figure 14: Inserting or deleting a vertex v. This ex-
ample is two-dimensional for clarity, but the same prin-
ciples operate in three dimensions. Bold edges are
segments. The polygon P is the union of the trian-
gles adjoining v. Triangles outside P are constrained
Delaunay in both triangulations. The graph G is used
as a search structure to identify P when v is inserted.
Note that although v lies inside the circumcircle of t, t
is not deleted when v is inserted because G does not
connect it to any triangle in P .

dimensional CDT of f appears automatically on the surface
of the cavity tetrahedralization.

8 Vertex Insertion and Deletion

Once a domain has been tetrahedralized with constrained

Delaunay elements (collectively forming a CCDT of the in-

put PLC), some of these elements will be of poor qual-

ity and need to be improved. Delaunay meshing algo-

rithms [6, 11, 21, 22, 29] insert additional vertices to replace

bad elements with better ones, while maintaining the Delau-

nay (or “almost Delaunay”) property throughout the inser-

tions. Fortunately, inserting a vertex into, or deleting a vertex

from, a constrained Delaunay tetrahedralization is almost as

easy as in an ordinary Delaunay tetrahedralization.

Consider vertex deletion first. Suppose we have the CDT

T v of a PLCXv . Let X be the PLC obtained by deleting a

vertex v fromXv . (Assume that v is not the endpoint of any
segment, because endpoints cannot be deleted.) We wish to

transform T v into the CDT T ofX.

The first step is to delete every tetrahedron that has v for a
vertex. Let P be the union of these tetrahedra. As Figure 14

shows, P is a star-shaped polyhedron whose points are all

visible from v. No other tetrahedron is deleted.

The polytope is retriangulated by a simple sweep algorithm

for constructing CDTs of star-shaped polyhedra, described

elsewhere [23]. The algorithm, based on a similar algorithm

of Devillers [5], runs in O(ns log nv) time, where ns is the

Fig. 3. Inserting a polygon (shaded) into a CDT. The simplices whose interiors
intersect the polygon (left) are deleted; their union is a polyhedral cavity, which the
polygon subdivides into two cavities (center). We retriangulate these cavities with
their CDTs (right).

illustrated at right in Figure 2. If a triangular face s of two tetrahedra t1 and
t2 in T is locally Delaunay, then the lifted triangle s+ is locally convex in the
sense that t+1 and t+2 meet at a dihedral angle, measured from above, of at
most 180◦.

The flip-based polygon insertion algorithm discussed in Section 3 requires
the idea of a weighted CDT, which is similar to a CDT, but each vertex
v ∈ X is assigned a real-valued weight wv. A vertex v is lifted to a point
v+ = (vx, vy, vz, v

2
x + v2y + v2z −wv); thus the weight wv signifies the distance

of v+ below the paraboloid. A triangulation T of a PLC X is a weighted CDT
of X if every triangle s ∈ T not included in a polygon in X lifts to a locally
convex triangle s+. A triangle included in a PLC polygon is exempt from the
requirement that it be locally convex; see the reflex ridges in T + in Figure 2.
A weighted CDT is identical to an ordinary CDT if all the weights are zero,
but it can differ if some weights are nonzero. The flip-based polygon insertion
algorithm linearly varies the weights of a PLC’s vertices while using bistellar
flips to maintain a weighted CDT of the PLC; see Section 3.2.

3 Polygon Insertion

To “insert a polygon into a CDT” is to take as input the CDT T of some PLC
X and a new polygon f to insert, and produce the CDT T f of X f = X ∪{f}.
It is only meaningful if X f is a valid PLC—which implies that f ’s boundary
is a union of segments in X , among other things. It is only possible if X f has
a CDT.

A key observation is that when a polygon f is inserted, every simplex
in T that respects f remains in T f . Let R be the union of tetrahedra in T
whose interiors intersect f , as illustrated at left in Figure 3. Typically, R is a
polyhedron which might not be convex; it might even have handles. A polygon
insertion operation retriangulates the region R to respect f .

The new polygon f subdivides R into two cavities C1 and C2. In principle,
we could construct T f by computing CDTs of C1 and C2 and using them to
replace the tetrahedra in R. Neither of the two algorithms we implemented
are that straightforward, but they strive to achieve the same outcome.
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d f

q

c

b

Fig. 4. A problem caused by a polygon f that is not perfectly flat: neither ab nor
cd is a legal diagonal. The blue sphere is the circumsphere of abcd.

There is a notable difference between polygon insertion in theory and in
practice, whose resolution is one of the main goals of this paper. Polygon in-
sertion algorithms assume that polygons are flat—that is, all the vertices of
a polygon are coplanar. However, in most implementations the vertex coor-
dinates are floating-point numbers of fixed precision, and often a polygon’s
vertices are only approximately coplanar. This can cause a vexing problem
illustrated in Figure 4. In this example, f is a polygon containing the vertices
a, b, c, and d, which are not exactly coplanar but are nearly so. The vertices
p and q lie above and below f , respectively. Moreover, p and q both lie inside
the circumsphere of the tetrahedron abcd. The edge ab cannot be in a CDT
because of the vertices c, d, and p; for example, if we construct tetrahedra
abcp and abdp, the face abp will not be locally Delaunay. Symmetrically,
the edge cd cannot be in a CDT because of the vertices a, b, and q; if we
construct acdq and bcdq, cdq will not be locally Delaunay. There is no way
to triangulate the shaded quadrilateral region of f that is compatible with
completing a three-dimensional CDT on both sides of f .

In this section, we describe two polygon insertion algorithms and compare
their performance in practice. Neither algorithm explicitly computes a two-
dimensional triangulation of f in advance; in both algorithms, a CDT of f
emerges naturally as a byproduct of the three-dimensional triangulation.

3.1 Polygon Insertion by Cavity Retriangulation

The faces bounding the cavities C1 and C2 are triangles, except f . The cavity
retriangulation algorithm [22] retriangulates C1 and C2 separately.

In principle, we could construct a CDT of each cavity by gift-wrapping [17].
However, the incremental vertex insertion algorithm is faster in practice.
Unfortunately, the latter algorithm constructs Delaunay triangulations, not
CDTs. In practice, the CDT and the Delaunay triangulation are identical
sufficiently often that it pays to use the incremental algorithm and fix the
violated constraints when they occur.

The cavity retriangulation algorithm of Si and Gärtner [22] first constructs
a Delaunay triangulation (unconstrained) D of the vertices of a cavity C. The
algorithm identifies which triangular faces of C are included in D. Because
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Fig. 5. The cavity retriangulation algorithm, illustrated in two dimensions. From
left to right, the two initial cavities C1 and C2 separated by a segment; the initial
Delaunay triangulations D1 and D2; triangles of D1 and D2 are classified as “inside”
or “outside”; and the new triangulations of C1 and C2.

f lies on the boundary of the convex hull of C, and because every edge of
f is strongly Delaunay, we can also identify a subset of triangles in D that
constitute a triangulation of f .

In practice, the cavity triangulation D often contains every triangular face
of the cavity C. Frequently C is not convex; by removing from D the simplices
that lie outside C, we reveal a triangulation {t ∈ D : t ⊆ C} that fills the
cavity, as illustrated in Figure 5. We graft this triangulation onto the main
mesh T .

Occasionally, the Delaunay triangulation D of C’s vertices fails to include
a CDT of C. The first solution one would think of is to repair D to make it
a CDT, but we forgo that for a solution that is easier to implement robustly.
Our strategy is to enlarge the cavity C until all its boundary triangles are
included in a Delaunay triangulation of its vertices, and use subsequent calls
to the polygon insertion algorithm to repair the deviations of the Delaunay
triangulation from the CDT.

Let s be a triangular face of C that is absent from the Delaunay triangula-
tion D. Let t be the tetrahedron of the complete mesh T that has s for a face
and lies outside the cavity C. We enlarge the cavity by setting C → C ∪ t,
and update the list of C’s boundary faces, which no longer contains s. If t
has a vertex not already in the triangulation D, we update D by inserting
that vertex. Again, we test whether D contains every triangular face of C; if
not, we repeat the process of enlarging C at a missing face until every face
is included. This loop must terminate eventually because T has only a finite
number of vertices, and the loop succeeds when C is the convex hull of C’s
vertices. We graft {t ∈ D : t ⊆ C} into T .

The Delaunay triangulation D does not necessarily respect the polygons
that pass through its interior, so this cavity retriangulation algorithm some-
times removes polygons that had previously been inserted. These polygons are
added again to the queue, and are reinserted immediately after f is inserted.

If f ’s vertices are not exactly coplanar, practical problems arise that do
not exist in the idealized algorithm where f is perfectly flat. D can include
extremely thin tetrahedra whose four vertices all lie on f , which we call shim
tetrahedra. Moreover, some of f ’s vertices may lie slightly in the interior of C.
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Shim tetrahedra cannot be permitted to survive in the final mesh. We
delete from D all the shim tetrahedra necessary to expose all f ’s vertices on
the boundary of D. We can often remove all the other shim tetrahedra too,
but we must keep shim tetrahedra that appear in both cavity triangulations
D1 and D2 for the two cavities C1 and C2.

There are two problems that can arise because the cavity triangulations
D1 and D2 must be compatible where they meet each other. First, in Fig-
ure 4, the two cavity triangulations are incompatible because they triangulate
f differently. The cavity triangulation on the bottom side of f includes the tri-
angles abc and abd, whereas the cavity triangulation on the top side includes
the triangles acd and bcd; therefore, the two cavity triangulations overlap
each other, both occupying the space in the tetrahedron abcd. Second, if the
circumsphere of abcd were empty (neither p nor q were present), then the
shim tetrahedron abcd must be present to bridge the triangulations of the
two cavities. (The ideal circumstance would be to have only one of p or q
present. For instance, if p is present but no vertex lies in the bottom half of
the circumsphere of abcd, then the two cavity triangulations agree on the
shared boundary triangles acd and bcd, with no shim tetrahedron.)

We resolve both these problems by inserting a Steiner point on the poly-
gon f according to the usual encroachment rules of Delaunay refinement al-
gorithms [16], treating one of the triangular faces of abcd as an encroached
triangle. Typically we insert a new vertex at the circumcenter of a face of
abcd, but if that circumcenter encroaches upon an edge of f , the edge may
be split instead. (Note that the vertices of abcd are approximately cocircular,
so it does not matter much which face we choose; all four have approximately
the same circumcenter.)

3.2 Polygon Insertion by Bistellar Flips

The flip algorithm of Shewchuk [19] retriangulates R by performing a sequence
of tetrahedral bistellar flips, specifically 2-to-3, 3-to-2, and 4-to-4 flips, that
transform T into T f . We call a triangulation simplex a crossing simplex if it
is included in R and has at least one vertex on each side of f . Every simplex
deleted by a flip is a crossing simplex. When no crossing simplex survives, the
updated triangulation is T f .

The algorithm chooses flips that remove crossing triangles, but the order
in which it performs such flips is crucial: if the flips are performed in the
wrong sequence, the algorithm can get stuck in a configuration from which
no further progress is possible. To guide the flipping process, we maintain at
all times the invariant that the tetrahedra in R form a weighted CDT of the
vertices in R. The weights of the vertices change continuously and linearly as
a function of a time variable τ , and we dynamically update the weighted CDT
to reflect these weight changes. A priority queue stores flips keyed according to
the times when they occur. The algorithm operates by repeatedly dequeueing
the earliest flip and performing it if it is still possible.
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Fig. 6. A two-dimensional example: inserting a segment into a CDT.

Let h be the plane in R3 that includes f (and cuts R into two cavities).
Call the vertices on one side of h left vertices, and the vertices on the other
side right vertices. Vertices on h are neither. By definition, a crossing simplex
has at least one left vertex and at least one right vertex.

The flip algorithm decreases the weights of the left and right vertices at
a rate linearly proportional to the time τ and their distances from h. The
weights of the vertices on h remain fixed at zero, and simplices outside R are
ignored entirely. The vertices of f have weight zero, even if some of them do
not lie exactly on h. On the parabolic lifting map, the effect is that the heights
of the left and right vertices in R4 increase linearly, as illustrated in Figure 6.
The lifted left vertices in R4 undergo an affine transformation, so no flips occur
among simplices solely on the left side of h; symmetrically, the simplices on
the right side of h are stable. But crossing simplices cannot survive in the
weighted CDT in the limit as the heights of the lifted vertices go to infinity,
while the weights of f ’s vertices remain fixed at zero.

Whenever two crossing tetrahedra reach a state where their lifted compan-
ions in R4 lie on a common non-vertical hyperplane, the algorithm performs
a flip that replaces them, and perhaps some adjoining tetrahedra, with new
tetrahedra. When the time τ reaches infinity, no crossing simplex survives, so
f is represented as a union of mesh triangles and the algorithm is complete.

Figure 7 gives pseudocode for the flip algorithm. Lines 11 and 12 raise
several numerical issues. It suffices to change the weights of the left vertices
only, while fixing the weights of the right vertices at zero—this modification
yields an algorithm that is equivalent in theory, and suffers less from roundoff
error in practice. Let v = (vx, vy, vz) be a left vertex in T that lies in R. In
R4, the lifted companion of v is

v+ = (vx, vy, vz, v
2
x + v2y + v2z − wv),

whose weight and height change linearly with time according to the identity

wv = −τ · d(v, h),

where d(v, h) is a measure of the distance from v to h. We recommend not us-
ing the Euclidean distance, whose computation involves a square root and the
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FlipInsertPolygon(X , T , f)
{ X is a PLC. T is its CDT. f is a polygon to insert. }
1 Q← an empty priority queue
2 for each crossing triangle s in T
3 Certify(s)
4 while the priority queue Q is not empty
5 Remove 〈s′, τ〉 with minimum τ from Q
6 if s′ is still a triangle in T
7 Flip(T , s′)
8 for each crossing triangle s on the boundary of the flipped volume
9 Certify(s)

Certify(s)
10 Let t1 and t2 be the tetrahedra that share the face s
11 If the interior of t+1 will be below the affine hull of t+2 at time ∞
12 τ ← the time at which t+1 and t+2 are cohyperplanar
13 Insert 〈s, τ〉 into priority queue Q

Fig. 7. Algorithm for inserting a polygon into a CDT. Works if T is the CDT of
the initial PLC X , and the final PLC X f = X ∪ {f} is a valid complex. Line 12
uses Equation (1), and Line 11 checks whether the denominator of that expression is
positive. The subroutine Flip in Line 7 performs a 2-3, 3-2, or 4-4 flip that removes
the triangle s′ from T ; see Shewchuk [19] for pseudocode.

consequent roundoff error; instead, our implementation calculates the weight

wv = −τ ·Orient3D(a,b, c,v), where

Orient3D(a,b, c,v) = det

 ax − vx ay − vy az − vz

bx − vx by − vy bz − vz

cx − vx cy − vy cz − vz


and a, b, and c are three non-collinear vertices of f , oriented so that Ori-
ent3D returns a positive value if v is a left vertex. The quantity Ori-
ent3D(a,b, c,v) is six times the signed volume of the tetrahedron abcv,
and it is proportional to the Euclidean distance from v to h but can be cal-
culated more accurately. In our implementation, it benefits from the accuracy
of our orientation predicate [14]. The choice of the vertices a, b, and c can
make a difference, especially if f is not perfectly flat; we recommend choosing
them to approximately maximize the area of abc.

To compute the time τ when a flip takes place, let t1 = xyzv and t2 =
xyzw be two tetrahedra that share a crossing triangle s = xyz as a common
face. A flip might take place when the lifted companions of t1 and t2 lie on a
common hyperplane; thus

0 = Orient4D(x+,y+, z+,v+,w+)

= InSphere(x,y, z,v,w) + τ ·Orient4D(x‡,y‡, z‡,v‡,w‡)
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where Orient4D is a 4 × 4 determinant defined by analogy to Orient3D,
v‡ = (vx, vy, vz,Orient3D(a,b, c,v)) if v is a left vertex and v‡ = (vx, vy, vz, 0)
otherwise, and

InSphere(x,y, z,v,w) =

det


xx −wx xy −wy xz −wz (xx −wx)2 + (xy −wy)2 + (xz −wz)2

yx −wx yy −wy yz −wz (yx −wx)2 + (yy −wy)2 + (yz −wz)2

zx −wx zy −wy zz −wz (zx −wx)2 + (zy −wy)2 + (zz −wz)2

vx −wx vy −wy vz −wz (vx −wx)2 + (vy −wy)2 + (vz −wz)2

 .
Hence,

τ = − InSphere(x,y, z,v,w)

Orient4D(x‡,y‡, z‡,v‡,w‡)
. (1)

If the denominator Orient4D(x‡,y‡, z‡,v‡,w‡) is negative, then the tri-
angular face s+ will remain locally convex until (and including) time τ =∞,
so Line 11 of FlipInsertPolygon declines to enqueue the potential flip.
It is also possible that the denominator is zero, or so tiny that the quotient
overflows (yielding an infinity in IEEE floating point), in which case we can
also discard the potential flip, because some other flip will delete one of the
tetrahedra earlier.

When no crossing simplex survives and f is recovered, we implicitly restore
the weights of the left vertices to zero. If f is not perfectly flat, the two
problems described at the end of Section 3.1 can manifest for the flip algorithm
too. The flip algorithm can produce shim tetrahedra along f . More interesting
is the circumstance depicted in Figure 4. The flip algorithm increases the
weight of q to infinity while leaving the weights of the other five vertices at
zero, and it produces the tetrahedra acdp, bcdp, acdq, and bcdq. But when
we restore the weight of q to zero, we discover that the triangle cdq is not
locally Delaunay, and so T f is not a CDT.

Both problems (surviving shim tetrahedra and triangles that are not lo-
cally Delaunay) can sometimes be repaired by a 3-2 flip that removes one of
the edges cd or ab, or a 4-4 flip that removes one and creates the other. If
not, we resolve them by inserting Steiner points as described at the end of
Section 3.1. If a shim tetrahedron abcd genuinely belongs in the CDT of X f ,
a flip is no solution; we eliminate the tetrahedron by inserting a new vertex
on f . In the circumstance depicted in Figure 4, as we discuss in Section 3.1,
there exists no triangulation of X f whose unconstrained triangular faces are
all locally Delaunay, so we insert a new vertex on f .

3.3 Implementation Notes

We have implemented both algorithms in version 1.5.0 of the tetrahedral
Delaunay mesh generator TetGen (http://www.tetgen.org). We use a tetra-
hedron-based data structure [1] to represent the tetrahedralization, and a
triangle-edge data structure [12] to represent cavity boundaries as surface
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meshes. Each data structure has pointers into the other. For quick searching,
every vertex has a pointer to one of the tetrahedra adjoining it. The tetra-
hedron data structure has flags that indicate which edges and triangles are
subsegments or subpolygons, so we can quickly determine when a subsegment
or subpolygon is deleted.

A program switch selects one of the two polygon insertion algorithms. The
insertion of a polygon f begins with finding triangles in T whose three vertices
all lie on f . Each of these triangles is either inside or outside f ; they cannot
cross f ’s boundary because the edges of f are strongly Delaunay. The algo-
rithm then determines whether these triangles already form a triangulation
of f , by a depth-first search from f ’s edges. If they do, then Tf = T and the
algorithm is done. Otherwise, we compute one or more missing regions [21],
subsets of f with connected interiors. TetGen inserts one missing region at a
time, not one polygon at a time.

We use our correct implementations of the geometric predicates Ori-
ent3D, InSphere, and Orient4D [14] in both the flip and cavity retriangu-
lation algorithms; these suffice to guarantee the numerical robustness of the
latter algorithm. To compute a cavity R, we implemented a robust triangle-
edge intersection test [9] that relies on a combination of Orient3D tests. We
construct all Delaunay triangulations (of the initial vertex set and all cavities)
with the well-known incremental insertion algorithm [2, 23, 5] and the same
geometric predicates. A simple symbolic perturbation scheme [7, 19] perturbs
the vertex weights from zero to infinitesimal so that the InSphere test never
returns a zero; thus there is always one canonical Delaunay tetrahedralization
of any point set, and at most one canonical CDT of any PLC.

In the cavity retriangulation algorithm (Section 3.1), the incremental in-
sertion algorithm uses the simplest walking algorithm for point location [6],
because the cavities are usually small.

When the cavity retriangulation algorithm must insert a new vertex as
described at the end of Section 3.1 to cope with a polygon that is not perfectly
flat, it restores the original cavity triangulation before inserting the vertex.
Our implementation does not delete the original tetrahedra until a new cavity
triangulation is successfully computed without shim tetrahedra or triangles
that are not locally Delaunay.

Our implementation of the flip algorithm required several adjustments of
the algorithm to compensate for roundoff error in computing the flip times
in Equation (1). Unfortunately, it would be difficult to make these computa-
tions completely robust; a correct ordering of flips would require us to exactly
compare two quotients of the form (1) and to account properly for the in-
finitesimal vertex weight perturbations when two flips are simultaneous. This
can be done with exact arithmetic, but we are not willing to incur the compu-
tational cost. Exact predicates can be made much faster with floating-point
filters [8, 14], but we did not have time to derive the forward error bounds for
these complicated polynomials.
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One change we made was to ensure that the flip algorithm never removes
a tetrahedron not in the cavity R. Because of floating-point roundoff error or
our failure to account for the symbolic weight perturbations in our flip time
computations, the algorithm occasionally tries to remove a crossing triangle
with a 4-4 or 3-2 flip that also removes one or two tetrahedra that are not in
R. In theory, this should never happen; all tetrahedra not in R should survive
in the weighted CDT as the weights change. We modified the flip algorithm
to discard any flip that would remove a tetrahedron not in R.

A second change copes with our discovery that, because of roundoff error
or our unperturbed flip time computations, sometimes a pair of non-crossing
tetrahedra appear in the cavity R that share a triangular face that is not
locally Delaunay. In theory, this should never happen. We modified the flip
algorithm so that whenever it produces a non-crossing tetrahedron, it tests
the tetrahedron’s non-crossing neighbors to ensure the shared face is locally
Delaunay, and flips it if it is not.

A third, more complicated change compensates for flips that come off the
priority queue in the wrong order. Because we compute the flip times with
roundoff error, the flip with the least time sometimes cannot be performed
until another flip with slightly greater time is performed. When we remove
a flip from the priority queue that cannot be performed even though both
tetrahedra are still in the mesh, we place the invalid flip in a list L. Every
time we successfully perform a flip, we check every flip in L to see if it can
now be performed, and perform it if possible; we also discard from L any flip
whose two defining tetrahedra t1 and t2 do not both still exist. In practice,
the list L is usually empty and never grows long.

We implemented the priority queue with the C++ standard library tem-
plate std::priority_queue<T, Container, Compare>.

3.4 An Experimental Comparison

We compared the two polygon insertion algorithms in version 1.5.0 of TetGen,
compiled by version 4.4 of g++ with the -O3 optimization level. Tests were
performed on a laptop with a 2.8 GHz Intel CPU and 4 GB memory.

To measure how the two algorithms behave with respect to the number of
deleted tetrahedra, we randomly generate n vertices distributed near, but not
on, the x-y plane, and we specify a large rectangle in the x-y plane that cuts
entirely through their convex hull, as illustrated in Figure 8. We construct the
Delaunay tetrahedralization of the vertex set, including the four vertices of
the rectangle, then insert the rectangle.

Figure 9 shows the running times for the two algorithms to insert a rect-
angle into differently sized cavities. At this scale, the running times of both
algorithms appear to be linear in the number of crossing tetrahedra. For larger
cavities, the cavity retriangulation algorithm is about twice as fast as the flip
algorithm, but for very small cavities the flip algorithm is somewhat faster.
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Fig. 8. A test example: inserting a rectangle (shaded) into the Delaunay triangu-
lation of a random vertex set.

Fig. 9. Running times for the flip and cavity retriangulation algorithms to insert a
rectangle into a Delaunay triangulation of a random point set. The horizontal axis
shows the number of crossing tetrahedra deleted from the evacuated region R; in the
right plot this number varies from 102 to 1,840. The vertical axis shows the running
time in milliseconds.

Our second experiment measures the performance of the two algorithms in
constructing CDTs. The input PLCs are freely available from the mesh repos-
itory provided by INRIA’s GAMMA group (http://www-roc.inria.fr/gamma/
gamma/gamma.php). Statistics are tabulated in Table 1. The two shaded rows
(14) and (15) report the running times of polygon recovery by the cavity re-
triangulation and flip algorithms, respectively. The running times differ by
less than 6%, and less than 1% of the total CDT construction time.

The cavity retriangulation algorithm is slightly faster when the mean cav-
ity size, row (11), is large, but the flip algorithm is slightly faster when the
mean cavity size is small. To help explain this effect, Table 2 shows what
proportion of each algorithm’s running time was spent on several tasks. The
cavity retriangulation algorithm spends most of its time constructing De-
launay triangulations of cavities, but the smaller the cavity, the greater the
proportion of its time it spends on auxiliary tasks such as identifying cavity
faces in the cavity triangulation D and deleting from D the tetrahedra that
are not in the cavity.

Out of the 229 PLCs we tested, eight required that Steiner points be
inserted because of polygons that are not perfectly flat during the polygon
insertion stage (as distinct from the segment recovery stage, in which most
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DEMO04 DEMO05 anc101 monster4 mohne-a thru-maz cognit nasty_ch

1 1,180 1,128 1,378 1,392 2,760 2,781 2,992 8,630
2 2,372 2,280 2,772 2,784 5,560 5,622 5,792 17,782

3 2,615 1,551 249 1,024 6,995 749 8,490 42,408
4 11,810 7,470 5,654 7,198 27,956 8,378 39,386 149,757
5 7,602 5,382 3,270 4,832 19,550 7,120 23,000 102,604
6 24 25 60 71 41 87 148 112
7 9 5 15 11 6 15 9 14
8 133 206 386 730 296 167 232 290
9 169 261 391 860 397 266 460 456

10 55 49 63 159 100 28 23 54
11 28 24 33 41 19 7 5 9

12 0.0685 0.0631 0.0795 0.0724 0.1483 0.1496 0.0948 1.4972
13 0.1332 0.0806 0.0288 0.1399 0.3273 0.0436 0.3254 3.1978
14 0.0255 0.0184 0.0224 0.0432 0.0429 0.0293 0.0472 0.2311
15 0.0254 0.0195 0.0237 0.0440 0.0427 0.0285 0.0456 0.2300

16 0.2449 0.1759 0.1433 0.2701 0.5667 0.2476 0.5385 5.3380

Table 1. Statistics for CDT construction. The columns list input PLCs. The rows
report (1)-number of input vertices; (2)-number of input polygons; (3)-number
of Steiner points added; (4)-number of output tetrahedra; (5)-number of output
subpolygons (triangles covering input polygons); (6)-total number of recovered sub-
polygons; (7)-maximum number of recovered subpolygons in a single missing region;
(8)-total number of flips performed by the flip algorithm; (9)-total number of cross-
ing tetrahedra; (10)-maximum number of crossing tetrahedra for a single missing
region; (11)-mean crossing tetrahedra per missing region; (12)-time to construct
the initial Delaunay tetrahedralization (seconds); (13)-time for segment recovery;
(14)-total time used by the cavity retriangulation algorithm; (15)-total time used
by the flip algorithm; (16)-total time to construct the CDT, with the cavity retri-
angulation algorithm. All running times are in seconds.

PLCs require Steiner points to make them edge-protected). One PLC, called
90-Bend_cut in the INRIA GAMMA collection, required the insertion of 103
vertices during polygon insertion: 27 on polygons, and 76 on segments due to
encroachment. Our vertex insertion strategy was always successful at finding
a valid Steiner CDT.

We observed one PLC for which the flip algorithm failed because it got
stuck at a triangulation that was not a CDT, but none of the flips on the queue
could be performed. This configuration arose after flips occurred in the wrong
order because of rounding errors in the flip time computations or our failure to
account for the weight perturbations in these computations. The PLC includes
six vertices at the corners of a rectangular prism, with all six vertices lying
on a common sphere. A seventh vertex inside that sphere, but outside the
prism, anchors a set of tetrahedra that fan out to four of the prism’s facets.
Because of an out-of-order flip, the triangulation edges on the boundary of
the prism assume a configuration isomorphic to the boundary of a well-known
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DEMO04 DEMO05 anc101 monster4 mohne-a thru-maz cognit nasty_ch

1 74.7% 72.5% 79.0% 80.0% 72.1% 66.4% 60.5% 59.2%
2 8.5% 9.2% 6.5% 7.1% 8.4% 11.2% 11.2% 11.0%
3 0.7% 0.9% 0.5% 0.3% 1.0% 1.9% 2.5% 1.7%
4 3.4% 4.0% 2.4% 2.0% 5.0% 5.3% 7.3% 6.8%

5 65.8% 70.3% 64.4% 64.2% 58.6% 61.2% 55.5% 48.6%
6 25.5% 23.9% 29.1% 28.3% 33.4% 28.5% 31.3% 34.3%

Table 2. Proportion of the running time spent performing different tasks. For
the cavity retriangulation algorithm, the rows report time spent (1)-constructing
a Delaunay tetrahedralization of a cavity; (2)-identifying cavity faces in the tetra-
hedralization; (3)-identifying tetrahedralization faces on the polygon; (4)-removing
tetrahedra from nonconvex cavities and merging the cavity triangulation with the
mesh. For the flip algorithm, the rows report time spent (5)-computing flip times
and placing potential flips on the priority queue; (6)-dequeueing flips from the pri-
ority queue and performing them.

polyhedron that has no tetrahedralization, called Schönhardt’s polyhedron,
whereupon the flip algorithm becomes stuck; none of the remaining flips on
the priority queue can execute.

Because of this failure case, we recommend the cavity retriangulation al-
gorithm over the flip algorithm unless resources are available to implement
the latter algorithm’s priority queue comparisons with exact arithmetic and
symbolic weight perturbations.

4 Discussion

The two polygon insertion algorithms we have implemented—cavity retrian-
gulation and flipping—are fast and comparable in speed. As we have imple-
mented them, the cavity retriangulation algorithm has the advantage that it
has been entirely reliable, whereas the flip algorithm can fail because we have
not been willing to invest the effort to make its priority queue numerically
robust. The cavity retriangulation algorithm requires only orientation and
“insphere” tests, which are much easier to implement correctly for floating-
point coordinates than the priority queue comparisons of the flip algorithm.
The only strike against the cavity retriangulation algorithm is that we have
no guarantee that it runs in polynomial time, though we have never seen it
run slowly in practice.

Polygon vertices that are not perfectly coplanar introduce problems that
are not merely problems of accuracy and are not easily finessed away. It is
undesirable that we must sometimes insert new vertices on polygons when
roundoff yields a domain that does have a CDT, but the condition that each
unconstrained triangular face be locally Delaunay is a firm requirement that
we do not believe could be relaxed without risking the loss of any useful
structure as the mesh is refined. A promising direction of future research is to
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fix some of these problems without vertex insertions by instead maintaining
a weighted CDT and assigning small weights to vertices on polygons, in the
manner of sliver exudation algorithms [3], to ensure that a weighted CDT
exists despite deviations from flatness. We observe that the problems discussed
in Section 3 occur only where four vertices on a polygon are nearly cocircular
(albeit not perfectly coplanar). One could choose vertex weights so that no
four vertices on a polygon are close to having coplanar lifted companions in
R4 (the weighted equivalent of cocircularity).

We would also like to find an alternative to the flip algorithm that does
not require a priority queue or geometric predicates more complicated than
orientation and insphere tests, but has a good bound on its asymptotic running
time. We suspect that fast algorithms for vertex deletion related to Chew’s
algorithm [4] might be a basis for a fast polygon insertion algorithm.

Another problem with refining constrained Delaunay meshes is that the
addition of a vertex to a PLC can yield a new PLC that has no CDT. Some-
times it is necessary to insert multiple vertices to return the PLC to a state
where it has a CDT. The question is how to update the CDT quickly. We
believe that the cavity retriangulation algorithm can be modified to handle
this circumstance.

There are several open questions. We do not know a theoretical worst-
case running time for our cavity retriangulation algorithm. Nor do we know
an algorithm that guarantees that a three-dimensional PLC has a CDT by
inserting only a polynomial number of Steiner points on the PLC segments [18,
22]. These issues might not be very relevant in practice, as the algorithms are
nearly always quite efficient.
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