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Figure 1: An elastoplastic substance slowly drips from a horizontal surface. A dynamic meshing algorithm refines the drop while maintaining
high-quality tetrahedra. At the narrowest part of the tendril, the mesher creates small, anisotropic tetrahedra where the strain gradient is
anisotropic, so that a modest number are adequate. Work hardening causes the tendril to become brittle, whereupon it fractures. At right, we
animate a fine triangulated surface embedded in the mesh.

Abstract

We propose a finite element simulation method that addresses the
full range of material behavior, from purely elastic to highly plastic,
for physical domains that are substantially reshaped by plastic flow,
fracture, or large elastic deformations. To mitigate artificial plas-
ticity, we maintain a simulation mesh in both the current state and
the rest shape, and store plastic offsets only to represent the non-
embeddable portion of the plastic deformation. To maintain high
element quality in a tetrahedral mesh undergoing gross changes, we
use a dynamic meshing algorithm that attempts to replace as few
tetrahedra as possible, and thereby limits the visual artifacts and
artificial diffusion that would otherwise be introduced by repeat-
edly remeshing the domain from scratch. Our dynamic mesher also
locally refines and coarsens a mesh, and even creates anisotropic
tetrahedra, wherever a simulation requests it. We illustrate these
features with animations of elastic and plastic behavior, extreme
deformations, and fracture.
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1 Introduction
Finite element simulations are increasingly used to model physi-
cal phenomena such as fracture, cutting, and plastic flow that re-
quire the finite element mesh to evolve as time progresses. Meshes
are refined to capture detailed physical behavior, fractures are sim-
ulated by subdividing mesh elements, and plastic flow can be so
extreme that meshes must be periodically replaced to prevent the
discretization error from ballooning. See Figure 1 for an example.
In car crashes, muscle movements, shattering plates, explosions,
and melting candles, physical domains reshape themselves.

Traditional Lagrangian elastic simulations use a fixed material-
space mesh to represent an object, and a mapping from the material
mesh to world space to represent its deformation. Material strains
are determined by this mapping. Extreme deformations can make
the mesh elements become skinny or degenerate in world space, or
even turn them inside out, in which case the simulation becomes
meaningless. The addition of plastic flow to a simulation implies
that the elements change shape in material space as well. Sufficient
plastic flow can degrade the material space elements until their ac-
curacy is ruined, and reshape an object so completely that a new
mesh is obligatory.

A recent trend in plasticity modeling is to discard the material-space
mesh. A simulation maintains a world-space mesh of the object and
strain information, from which each element’s rest shape can be in-
ferred. When the elements in the world-space mesh are deformed
enough to threaten the simulation’s accuracy, the entire domain is
remeshed from scratch [Bargteil et al. 2007; Wojtan and Turk 2008;
Wojtan et al. 2009]. A disadvantage of wholesale remeshing is that
it quickly accumulates large numerical errors because of the fre-
quent need to resample physical properties such as velocity and
strain from an old mesh to a new mesh. This rapid accumulation
of error is called artificial diffusion, because the physical proper-
ties sampled on the mesh diffuse unnaturally through the material.
When artificial diffusion afflicts the strain field, it manifests exag-
gerated plastic-like behavior even for purely elastic objects. These



Figure 2: A rectangular bar is bent by the masticator. From left to right: purely elastic material behavior with adaptive refinement; purely
elastic without refinement; and with plastic flow and adaptive refinement.

methods succeed for highly plastic materials in part because large
plastic flows mask this error. Unfortunately, if an object undergoes
an extreme deformation but only a portion of the object undergoes
plastic flow, then remeshing from scratch will subtly change the rest
shape of the purely elastic portion of the object, creating unsightly
visual artifacts when it reverts to its new rest shape.

We propose an alternative that addresses the whole range of ma-
terial behavior from purely elastic to highly plastic, by the use of
dynamic meshing: a conservative local remeshing algorithm main-
tains high tetrahedron quality while limiting the accumulation of
numerical error and artificial diffusion. Our simulation retains
the traditional Lagrangian material-space mesh and its mapping to
world space, illustrated in Figure 3. The material-space mesh is not
changed by elastic deformations, but it is reshaped by plastic flow.
We use local remeshing to repair degraded tetrahedra in material
and not world space, so purely elastic regions of an object do not
lose their original shape. Our remesher is conservative and changes
as few tetrahedra as it can, so artificial diffusion is reduced every-
where.

Remeshing is triggered by mesh geometry in both the material and
world spaces. We impose a minimum bound on acceptable tetrahe-
dron quality in material space, and repair any tetrahedron that falls
below the threshold as a consequence of plastic flow. Although
purely elastic deformations do not deform the material space mesh,
local adaptive refinement of the mesh may be necessary to accom-
modate large deformations in world space (so the geometry is ac-
curately represented) or a strain field with a large gradient (so the
strain is accurately interpolated), as illustrated in Figure 2. We also
coarsen the mesh where it is unnecessarily fine, and use anisotropic
tetrahedra where the strain field warrants them.

2 Background
Physically-based simulation of deformable objects was introduced
to computer animation by Terzopoulos et al. [1987] and other con-
temporaneous work. A survey article by Gibson and Mirtich [1997]
details much of the early work on deformable modeling, while
Nealen et al. [2006] survey some more recent approaches.

Without remeshing, the finite element method is limited to a space
of possible deformations dictated by the simulation mesh. For sce-
narios involving only moderate deformation, it is easy to strike a
good compromise between having resolution fine enough to repre-
sent deformation accurately and coarse enough to allow fast com-
putation times. However, large deformations involving substantial
twisting, bending, and swirling require very fine meshes to repre-
sent the displacement function that maps the undeformed to the de-
formed configuration. This requirement is especially troublesome
when one does not know beforehand how fine the mesh must be, or
where the mesh must be finest.

For systems dominated by plastic flow (e. g. viscoelastic fluids or
highly elastoplastic solids), researchers have addressed extreme de-
formations with Eulerian methods that do not maintain an explicit
material-space reference configuration; instead, material advects
through a world-space mesh. This is the approach taken by Carlson

et al. [2002; 2004] and Goktekin et al. [2004]. Unfortunately, fre-
quent resampling of the field variables during advection introduces
substantial artificial diffusion that is clearly visible when modeling
less plastic materials.

As we discussed in the introduction, other researchers model pre-
dominantly plastic materials with Lagrangian formulations and
world-space meshes that are remeshed from scratch when necessary
[Bargteil et al. 2007; Wojtan and Turk 2008; Wojtan et al. 2009].
An advantage of this approach is that it takes into account that there
might not be a material-space mesh consistent with the object as a
whole—that is, if all external forces were removed and the object
settled to its equilibrium shape, it would still experience internal
strain. (Our method retains this advantage, even though we have
an explicit material-space mesh.) A disadvantage is that artificial
diffusion can introduce visual artifacts in purely elastic or barely-
plastic portions of an object.

Frequent remeshing from scratch is also used to model free or mov-
ing boundaries in Eulerian formulations of fluid dynamics on tetra-
hedral meshes [Klingner et al. 2006; Chentanez et al. 2007]. The ar-
tificial diffusion arising from resampling due to remeshing in these
methods is not worse than would otherwise be incurred through
resampling due to advection. In computational fluid dynamics,
volume-of-fluid and moment-of-fluid methods are used to prevent
diffusion due to resampling (see, e. g., Kucharik et al. [2010]). It
is not clear how well these formulations could support the more
complex resampling issues arising in continuum elasticity.

There is a huge literature on adaptive meshing to improve the accu-
racy of finite element methods. See Oden and Demkowicz [1989]
for a numerical survey, and Jones and Plassmann [1997] for a ge-
ometric survey, of hierarchical mesh refinement, also known as h-
adaptivity. See Budd, Huang, and Russell [2009] for a survey of
moving mesh methods, also known as r-adaptivity. Examples of
mesh refinement applied to problems in graphics include Shamir et
al. [2000], Ganovelli et al. [2001], Debunne et al. [2001], Grinspun
et al. [2002], and Capell et al. [2002]. Adaptive methods are a spe-
cialized form of dynamic meshing, and they are effective for adding
detail only where needed, but they have the drawback that the defor-
mation field is always anchored to the original coarse mesh. They
do not suffice to maintain high quality in a mesh undergoing gross
plastic flow, fracture, cutting, or other phenomena that fundamen-
tally reshape the simulation domain.

There are few examples of dynamic meshing that stretch beyond h-
and r-adaptivity. The most notable is the ballistic penetration sim-
ulation of Mauch et al. [2006]. Unfortunately, they provide little
detail about their algorithms for remeshing and resampling, and no
data on tetrahedron quality. An especially notable two-dimensional
example is the dynamic meshing procedure of Cardoze et al. [2004]
for the simulation of circulating blood and the deforming blood
cells transported by it.

Specialized remeshing has been used in graphics to address par-
ticular phenomena such as fracture [O’Brien and Hodgins 1999;
O’Brien et al. 2002; Molino et al. 2004; Müller and Gross 2004;
Müller et al. 2004], cutting [Bielser et al. 1999; Sifakis et al. 2007;



Steinemann et al. 2006a; Steinemann et al. 2006b], and needle in-
sertion [Chentanez et al. 2009]. Our dynamic mesher is compatible
with all these types of specialized remeshing, and it can improve
the quality of the meshes they maintain. To demonstrate this, we
have successfully integrated it with a fracture algorithm described
by O’Brien and Hodgins [1999].

Our dynamic mesher uses local transformations to conservatively
maintain a high-quality material space mesh undergoing plastic
flow. There is a substantial literature on local methods for tetra-
hedral mesh improvement, often called mesh “clean-up.” The
main ingredients of a mesh improvement algorithm are a set of lo-
cal transformations, which replace small groups of tetrahedra with
other tetrahedra of better quality, and a schedule that searches for
opportunities to apply them. Important transformations include
stellar flips, the edge removal operation proposed by Brière de
l’Isle and George [1995], and vertex smoothing—the movement
of vertices—whose history begins with simple Laplacian smooth-
ing [Hermann 1976] and proceeds through increasingly sophisti-
cated optimization algorithms [Parthasarathy and Kodiyalam 1991;
Canann et al. 1993; Freitag et al. 1995]. Influential mesh improve-
ment schedules include one by Joe [1995] and the sliver exudation
algorithm developed by Cheng et al. [2000] and implemented by
Edelsbrunner and Guoy [2001].

The transformation schedule most influential to our work is by Fre-
itag and Ollivier-Gooch [1997], who combine topological trans-
formations with a nonsmooth optimization algorithm for vertex
smoothing by Freitag, Jones, and Plassmann [1995]. They present
a schedule that eliminates most poorly shaped tetrahedra, and they
offer empirical recommendations about what makes some sched-
ules better than others. This work was extended by Klingner and
Shewchuk [2007], whose most notable addition is a local transfor-
mation that inserts (and sometimes deletes) vertices. Their addi-
tions make mesh improvement much more reliable: instead of re-
moving most bad tetrahedra, one can now generally remove them
all. The authors report that in their test meshes, no dihedral angle is
smaller than 31◦ or larger than 149◦.

The reliability of these methods is what makes our use of dynamic
meshing possible. Our mesher performs all of the transformations
from the papers by Freitag and Ollivier-Gooch and Klingner and
Shewchuk, and adds several more ideas described in Section 4 and
by Klingner [2009], including an edge contraction operation and
a method that uses quadric errors to help smooth vertices on the
surface of a curved domain.

3 Elastoplastic Deformation Model

We use a linear co-rotational finite element formulation that has be-
come a standard in computer graphics [Irving et al. 2004; Müller
and Gross 2004], including the established extensions for plastic-
ity and fracture. For a full treatment of the topic, see Cook et al.
[2001], or the introduction by Nealen et al. [2006] to deformable
models in computer graphics. We recount just enough of it to dis-
cuss plasticity.

It is useful to think of there being two separate meshes: one in
material space and one in world space—although both meshes have
the same topology, as illustrated in Figure 3. Let u be the vector
of material-space positions (one for each node), and let x be the
vector of world-space positions. For a tetrahedron whose vertices
have indices i, j, k, `, the 3 × 3 shape matrix Xm = [u j − ui uk −

ui u`−ui] maps barycentric coordinates defined on the tetrahedron
to a corresponding vector (relative to ui) in material space, and the
3 × 3 shape matrix Xw = [x j − xi xk − xi x` − xi] maps barycentric
coordinates to a corresponding vector (relative to xi) in world space.
Therefore, the deformation gradient

F = XwX−1
m (1)
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Figure 3: We maintain a material space mesh and its mapping
to world space. Remeshing is done in material space. The material
space mesh is the rest configuration of the domain when no external
force is applied. Plasticity can introduce internal strains so that the
rest shape of an isolated tetrahedron does not match its material
space shape. Thus, we imagine that each tetrahedron has its own
rest space and a plastic offset map Π to material space.

maps the tetrahedron from material space to world space. Collect-
ing these maps over all the tetrahedra induces a piecewise linear
map for the whole domain, as illustrated.

Each deformation gradient can be factored into two parts: a ro-
tation (or reflection) and a matrix capturing how the tetrahedron
is stretched or squashed. Following Irving et al. [2004], we com-
pute the singular value decomposition F = USVT, where U and V
are orthogonal (rotations or reflections) and S is diagonal with all
its diagonal entries positive. Observe that F = (UVT)(VSVT); the
first parenthesized part is an orthogonal matrix, and the second is
symmetric and positive definite. The linearized strain is the ma-
trix ε = V(S − I)VT, which represents the deviation of S from the
identity (unstretched) state, in an appropriate coordinate frame.

With an isotropic Hookean constitutive relation C, we compute the
first Piola–Kirchhoff stress, namely the matrix σ = UVTCε. Then
we compute the elastic forces on the nodes, f = ∇ · σ. With these
forces, one can derive a standard finite element formulation whose
stiffness matrix K is the Jacobian of the elastic force vector f with
respect to the world coordinates x. The discretized equation of
force equilibrium is Mẍ + D(x) ẋ + K(x) x = fext, where fext is a
vector of external forces, M is the diagonal (lumped) mass matrix,
D is a nonsymmetric matrix containing velocity-dependent damp-
ing terms, and K is the symmetric stiffness matrix. Both D and
K vary with the world coordinates x and must be recomputed each
timestep. See Irving et al. for details.

To advance simulation timesteps, we use Newmark time integration
for less stiff scenarios and implicit Euler integration for stiffer ones
involving collision.

3.1 Plasticity

Purely elastic materials are rare in the real world, making plastic-
ity an important ingredient of appealing animations. Unfortunately,
the most widely used method for integrating plastic effects into an
FEM simulation [O’Brien et al. 2002] is numerically unstable when
the material undergoes large plastic deformations. This numerical
instability can be avoided with a multiplicative model [Irving et al.
2004; Müller and Gross 2004], but without remeshing these meth-
ods can only handle limited amount of plastic flow.

Plastic deformations change the rest shape of an object, so it is nat-
ural to change the object’s mesh as well. Recently proposed ap-
proaches that can simulate extreme plastic deformations [Bargteil
et al. 2007; Wojtan and Turk 2008; Wojtan et al. 2009] discretize
the world space, and store each element’s rest shape implicitly by
storing its deformation gradient, as illustrated in Figure 3. Defor-
mation gradients are repeatedly updated with multiplicative plastic
offsets (changing the matrix Π in the illustration). When the de-
formations threaten to become ill-conditioned, the world-space do-
main is remeshed from scratch and the deformation gradients are



interpolated onto the new mesh. These methods can robustly simu-
late very plastic materials, but it is not possible to reduce the plas-
ticity below a certain threshold: whenever the deformation gradient
is transferred to a new mesh, artificial diffusion introduced by re-
sampling erases some information about the rest state.

As Bargteil et al. [2007] note, plastic deformations usually intro-
duce internal strains that persist even when the domain is at equi-
librium with no external force applied. The usual, strain-free ma-
terial space configuration can no longer be embedded in three-
dimensional Euclidean space. Bargteil et al. respond by discarding
material space entirely. Our response is different. Like Bargteil et
al. [2007], we use multiplicative deformation offset maps to keep
track of plastic deformation. These offsets map each element’s rest
shape to its shape in material space, and are denoted by Π in Fig-
ure 3. (The plastic offsets, like the strains, constitute a piecewise
constant field over the mesh.) However, we do not allow all the
plastic flow to accumulate in these offset maps, because the larger
they become, the greater the error when remeshing forces them to
be resampled. Instead, at each timestep we update the material-
space mesh to its equilibrium shape, which minimizes the total elas-
tic energy—and therefore, the internal strains. Thus the mesh ge-
ometry reflects as much of the plastic deformation as possible. Only
the non-embeddable portion of the plastic deformation, which in-
duces the internal strains, need be stored in plastic offset maps. The
domain shape is much less changed by remeshing than the offset
maps are, so this approach reduces artificial diffusion dramatically.

To ensure that we can always return to the true equilibrium shape
of the material, we explicitly store that shape as a mesh in material
space. We also maintain a world space mesh to represent the dis-
placements and to enable rendering, collision detection, and mesh
refinement that is responsive to geometry in world space. These
two meshes have the same nodes and topology, but different nodal
positions. They must have high quality in material space, and no
inverted tetrahedra, at the very least, in world space. Thus, we
remesh before the mesh quality degrades too much. After remesh-
ing, quantities stored on the mesh are resampled onto the new mesh,
inevitably introducing interpolation errors. Because this error accu-
mulates over time, we remesh as conservatively as possible: instead
of remeshing the whole domain, we locally repair bad tetrahedra.
The combination of relaxing the plastic offsets and conservative lo-
cal remeshing in a material space mesh is what allows us to handle
the full spectrum of materials from fully elastic to extremely plastic.

After each timestep, we compute the plastic flow from the current
strain. We redefine the deformation gradient to be

F = XwX−1
m Π, (2)

the map from a tetrahedron’s rest space to world space. To simulate
plastic flow, update Π to absorb a portion of the symmetric (non-
rotational) part VSVT of the deformation gradient:

Π← ΠV
(

S
(det S)1/3

)−γ
VT, where γ = ∆t ν

‖σ‖ − τ

‖σ‖
. (3)

γ determines how much of the deformation is absorbed in a timestep
∆t, in terms of the plastic yield threshold τ, the plastic flow rate ν,
and the Frobenius norm of the stress tensor. We enforce γ ∈ [0, 1].
Plastic flow changes a tetrahedron’s shape in rest space, but its rest
volume is preserved, because the matrices multiplied by Π all have
determinant 1.

To implement work hardening or softening, we increase the plastic
yield τ by κγ‖σ‖ after each plastic update, where κ determines the
amount of work hardening (if positive) or softening (if negative).

After the plastic offset maps are updated, we relax the material
space mesh to its equilibrium shape. The equilibrium is at an energy

minimum, and we find the material space positions u′ that minimize
the strain energy of the material space mesh,

u′ = argmin
u

∑
i

Viεi(u) Cεi(u), (4)

where Vi is the volume of element i and εi is its strain matrix, writ-
ten as a function of the displacement vector u. This is a nonlinear
optimization problem, which we solve with a simple quasi-Newton
method. Because the plastic offsets change only moderately be-
tween timesteps, the method converges quickly.

This step yields updated world coordinates u′. We adjust the plastic
offsets to reflect the change:

Π← X′mX−1
m Π, (5)

where X′m = [u′j−u′i u′k−u′i u′`−u′i ]. This transformation preserves
exactly the shape of each tetrahedron in rest space. It involves no
resampling or interpolation—it is accurate to machine precision.

Both plastic flow and our relaxation of the material space mesh can
change the volumes of tetrahedra in material and world space, but
tetrahedron volumes are always invariant in rest space. Both phe-
nomena deform and often degrade the tetrahedra in material space.
The accumulated deformation over many timesteps eventually ne-
cessitates remeshing.

4 Dynamic Mesh Improvement
The accuracy of our simulations depends on the shapes and sizes of
the tetrahedral elements that comprise the mesh in material space.
If these elements become sufficiently degraded by plastic flow, the
simulation cannot be trusted; if they become inverted, the simula-
tion may be completely nonsensical. To maintain high tetrahedron
quality and control the tetrahedron sizes, we use mesh improvement
software that conservatively remeshes small portions of the mesh,
changing as little as possible during each timestep and thus limiting
artificial diffusion.

What makes this approach possible is recent algorithms for mesh
improvement that are substantially more reliable than previous
methods. Traditional mesh generation methods are not suitable for
this purpose, partly because it is difficult to determine how large a
region to remesh (it is rarely possible to replace just the bad tetrahe-
dra), and partly because most mesh generation algorithms introduce
new nonconforming vertices on the boundary of the remeshed re-
gion (e. g. Delaunay methods) or do not reliably create tetrahedra of
uniformly high quality (e. g. advancing front methods). Instead, we
use hill-climbing optimization to apply local mesh transformations.

4.1 Mesh Improvement by Hill Climbing

The heart of our dynamic mesher is a hill-climbing method that
chooses one of the operations described in Section 4.2 and con-
siders applying it to a specific site in the mesh. An operation is
applied only if the quality of the changed mesh will be greater than
that of the unchanged mesh. Successive operations monotonically
improve the mesh, so the final mesh cannot be worse than the input
mesh. Hill climbing stops when the quality of every tetrahedron is
above some threshold qmin, or when further optimization promises
too little gain for too much expenditure of time.

The objective function by which we judge a mesh is its quality vec-
tor: a vector listing a numerical rating of quality for each tetrahe-
dron, ordered from worst to best. Two meshes’ quality vectors are
compared lexicographically so that, for instance, an improvement
in the second-worst tetrahedron improves the objective value even if
the worst tetrahedron is not changed. A nice property of the quality
vector is that if an operation replaces a small subset of tetrahedra in
a mesh with new ones, we only need to compare the quality vectors
of the submeshes constituting the changed tetrahedra (before and
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Figure 4: Examples of topological transformations.

after the operation). If the submesh improves, the quality vector of
the whole mesh improves.

There is a large literature on quality measures that assign each tetra-
hedron a numerical quality. An excellent measure is the volume-
length measure suggested by Parthasarathy, Graichen, and Hath-
away [1994], denoted V/`3rms, which is the signed volume of a tetra-
hedron divided by the cube of its root-mean-squared edge length.
We find it to be fast and effective as both a quality measure and an
objective function for optimization-based smoothing. For dynamic
meshing, however, we obtain better results if we modify the quality
measure to be even less forgiving of tetrahedra that have an unduly
short edge. We achieve this with the quality measure

6
√

2V
`harm

`4rms
, (6)

where `harm is the harmonic mean of the tetrahedron’s six edge
lengths. Tetrahedron quality ranges from zero for a degenerate
tetrahedron (whose four vertices are coplanar) to a maximum of one
for an equilateral tetrahedron. In Section 4.6, we extend this quality
measure to circumstances where we desire anisotropic tetrahedra.

4.2 Mesh Operations

For a dynamic mesher to achieve consistently good quality timestep
after timestep, it must employ a large variety of local mesh improve-
ment operations to repair poorly shaped tetrahedra and to locally re-
fine or coarsen the material space mesh to match the gradient of the
strain field. Smoothing is the act of moving a vertex to improve the
quality of the elements adjoining it. Smoothing does not change the
topology (connectivity) of the mesh. Topological transformations
are operations that change the mesh topology by removing elements
from a mesh and replacing them with a different set of elements oc-
cupying the same space. Examples appear in Figure 4, including
2-3 flips, 3-2 flips, 4-4 flips, and 2-2 flips. The numbers denote the
number of tetrahedra removed and created, respectively.

To smooth vertices, we use a nonsmooth optimization algorithm of
Freitag, Jones, and Plassmann [1995] that can optimize the worst
tetrahedron in a group—for instance, maximizing the minimum
dihedral angle among the tetrahedra that share a specified vertex.
Vertices on the boundary of the mesh require special treatment, de-
scribed in Section 4.3, to limit changes to the shape of the surface.

Some topological transformations are more complicated than the
basic flips. Edge removal [Briere de l’Isle and George 1995] is a
transformation that removes a single edge from the mesh, along
with all the tetrahedra that include it. It includes the 3-2 and 4-4
flips, but more generally replaces m tetrahedra with 2m − 4; Fig-
ure 4 (right) illustrates replacing seven tetrahedra with ten. The
tetrahedra sharing the removed edge are replaced by other tetrahe-
dra chosen to maximize the quality of the worst new tetrahedron.
This choice can be efficiently made by a dynamic programming al-
gorithm of Klincsek [1980].

Multi-face removal [de Cougny and Shephard 1995] is the inverse
of edge removal, and includes the 2-3 and 4-4 flips. An m-face
removal replaces 2m tetrahedra with m + 2. We use an optimiza-
tion algorithm of Shewchuk [2002] to find the optimal multi-face
removal operation to target a specified triangular face.

Vertex insertion is a transformation with two uses. We rely upon
it to refine the mesh wherever we require higher resolution, and
to eliminate stubborn tetrahedra of poor quality. Our vertex inser-
tion algorithm is akin to Delaunay vertex insertion: it hollows out
a polyhedral cavity by deleting selected tetrahedra, and replaces
them with new tetrahedra that each join the new vertex to a face of
the cavity. This operation differs from Delaunay vertex insertion
in several ways: it decides which tetrahedra to delete not with the
circumsphere criterion, but rather with a combinatorial optimiza-
tion algorithm that maximizes the quality of the worst new tetrahe-
dron; and it does not always increase the number of vertices in the
mesh, because it sometimes deletes vertices by deleting all their in-
cident tetrahedra. In practice, vertex insertion is consistently effec-
tive only as part of a compound operation: after a vertex insertion,
our mesher attempts edge and multi-face removal operations on the
new tetrahedra, and smoothing of all their vertices, before deciding
whether to accept or roll back the vertex insertion. See Klingner
and Shewchuk [2007] for details.

Edge contraction also has two uses: to coarsen the mesh where its
tetrahedra are unnecessarily small, and to remove tetrahedra that
have poor quality because an edge is too short. A contraction oper-
ation removes an edge from the mesh, replacing its two endpoints
with a single vertex. The tetrahedra that share the contracted edge
are deleted from the mesh. The location of the contracted vertex is
determined by optimization-based smoothing (taking into account
the quadrics discussed in Section 4.3, so that boundary vertices stay
on the boundary). An edge contraction operation is rejected if it
worsens the mesh quality, if it changes the shape of the domain
too much (see Section 4.4), or if it changes the topology of the do-
main boundary—for example, it is forbidden to contract an edge
that connects two boundary vertices through the domain interior.

4.3 Quadric Smoothing of Surface Vertices

To maintain high quality in a mesh undergoing gross deformations,
we must smooth the vertices on the surface of the mesh, not just
the interior ones. It is not possible to have high-quality tetrahedra if
the boundary triangles have poor quality. But if the boundary is not
flat, moving a surface vertex changes the shape of the domain and
might fail to preserve mass. Moreover, it is not clear how to smooth
a vertex along a surface that in principle should be curved, but for
which we know only a piecewise linear approximation.

To strike a balance between mesh quality and shape preservation,
we introduce quadric smoothing, which employs for each surface
vertex a well-known measure of surface shape error that Garland
and Heckbert [1997] call the quadric error. This measure is some-
times used to evaluate the error on dynamically remeshed surfaces
[Jiao 2007; Brochu and Bridson 2009].

Suppose that a dynamic meshing algorithm displaces a vertex v on
the boundary of a tetrahedral mesh from the position it had at the
beginning of the timestep. Consider the triangular faces that adjoin
v and lie on the boundary of the mesh (ignoring interior faces), in
their original positions at the beginning of the timestep (before v
was displaced). Each face induces a plane {x : nT

i x+ δi = 0}, where
ni is a unit vector normal to the plane, δi is a scalar offset, and i is
the index of the face and the planes it induces. If v is displaced to
the position x, we define its quadric error to be

Q(x) =
∑

i

di(x)2

a2
i

= xT

∑
i

ninT
i

a2
i

 x +
∑

i

2δinT
i

a2
i

 x +
∑

i

δ2
i

a2
i

,



where di(x) is the distance from x to plane i and ai is the original
altitude (pre-displacement) of v in triangle i. This definition re-
flects the fact that a displacement of v rotates the triangle’s normal
vector by an angle approximately proportional to di(x)/ai. Q(x) is
quadratic and takes its minimum value (zero) at v’s original posi-
tion.

Quadrics permit us to smooth surface vertices while controlling
how much error is introduced into the domain shape. Our vertex
smoothing algorithm uses nonsmooth optimization to trade each
surface vertex’s quadric error against the quality of the adjoining
tetrahedra, so a vertex is permitted to move further if some tetra-
hedron improves dramatically. If the surface is locally nearly flat,
the vertex has much freedom to move along the surface, but little
to move orthogonally. Vertex displacement and tetrahedron quality
is admittedly an apples-to-oranges comparison, but we find that the
easiest and most effective way to incorporate vertex displacements
into optimization-based smoothing is to assign each surface vertex
a quality of q(x) = α − βQ(x), where α is an offset parameter and
β is a scale parameter, and compare it directly against tetrahedron
quality, which ranges from zero to one.

Our smoothing algorithm relocates each internal vertex so as to
maximize the quality of the worst adjoining tetrahedron. For sur-
face vertices, it maximizes the minimum of the adjoining tetrahedra
and the quality of the vertex itself. The nonsmooth optimization al-
gorithm of Freitag et al. [1995] accommodates this notion of surface
vertex quality with virtually no change.

The default values in our implementation are α = 0.8 and β =
1, 200. With these parameters, the changes in the surface shape
are barely perceptible, while mesh quality gets a big boost. The
scale parameter β controls how quickly a vertex is penalized as it
moves away from its original position. A tetrahedron must have
a quality below the offset parameter α = 0.8 to justify moving a
surface vertex. If no tetrahedron incident to a surface vertex has a
quality less than 0.8, the surface vertex has the lowest quality, and
smoothing will move it toward its original position.

Collectively, the quadrics provide a memory of the original domain
shape (at the beginning of the timestep). We observe that when
a surface vertex is smoothed in pursuit of better tetrahedron qual-
ity, the worst incident tetrahedron is often improved by subsequent
topological changes that would not otherwise have been possible,
which in turn permits a subsequent smoothing step to move the ver-
tex back to its original position, or at least closer.

We recompute the quadrics from scratch after each simulation
timestep. Quadrics do not persist from timestep to timestep, but
they do persist through all the dynamic meshing passes performed
during any single timestep. A vertex insertion operation sometimes
creates a new vertex on a face or edge on the mesh surface. We
compute a quadric for it by considering the faces it is inserted on
with their vertices repositioned where they were at the beginning
of the timestep. That way, if those vertices revert to their original
positions, the new vertex will also tend to revert to an appropriate
position.

4.4 Other Operations that Modify the Mesh Surface

It is crucial to include operations that change the topology of the
mesh boundary, as good tetrahedra are impossible without good
boundary triangles. Unfortunately, these operations usually change
the shape of the domain, so we must limit the amount of change.

An important special case of edge removal is the 2-2 flip, which
has the effect of flipping an edge on the surface of the mesh. If the
two flipped boundary triangles are not coplanar, the flip reshapes
the domain. We permit a 2-2 flip only if the total volume of the two
tetrahedra created by the flip differs from the volume of the two
deleted tetrahedra by less than 9%, and the surface normal vectors

of the two boundary triangles change by less than 8◦. If this sounds
too permissive, our experience shows that setting these parameters
too low causes evolving surfaces to slowly deteriorate and wrinkle.

We use quadrics to judge when it is possible to contract an edge on
the mesh boundary without distorting the domain shape too much.
An edge contraction is permitted only if one endpoint of the edge
can move to the same position as the other endpoint without the
quality of the moved vertex falling below the threshold qmin.

4.5 A Dynamic Mesh Improvement Schedule

Whereas standard mesh improvement algorithms try to improve the
mesh to as high a quality as possible, changing as much of the mesh
as necessary, a dynamic mesher must remesh conservatively to limit
artificial diffusion. Our dynamic mesh improvement schedule acts
only when some tetrahedron falls below a minimum threshold for
quality, and it attempts to fix it while changing as few tetrahedra as
possible. To fix a bad tetrahedron, it first tries the most local trans-
formations (like 2-3 and 3-2 flips), and progresses only if necessary
to the most disruptive ones (like smoothing).

Listing 1 lists pseudocode for our dynamic improvement schedule.
For each tetrahedron in a mesh whose quality is worse than some
specified minimum quality qmin, the schedule invokes the procedure
IMPROVETET to try to improve it. IMPROVETET maintains a set A
of tetrahedra that were touched during hill climbing. Initially A
contains just a single bad tetrahedron, but as IMPROVETET works,
it adds to A all the tetrahedra it creates or modifies.

IMPROVETET iterates up to ten times, each time working through
four passes of mesh improvement: edge removal and face removal
operations, edge contractions, vertex insertions, and smoothing.
Each mesh improvement pass maintains a set A of tetrahedra, which
includes all the new tetrahedra created by the pass, all the tetrahedra
that have had a vertex smoothed by the pass, and all the surviving
tetrahedra that were previously in A. The union of the tetrahedra in
A is a connected region that tends to grow as mesh transformations
occur. The passes try to improve all the tetrahedra in A—not just
those whose quality is below qmin—because experience shows that
a bad tetrahedron often cannot be eliminated until its neighbors im-
prove. On rare occasions, we see a single tetrahedron that resists
improvement for six or more iterations of the outer loop, when A
has grown to include hundreds or thousands of nearby tetrahedra.

The code for EDGECONTRACTIONPASS and the smoothing pass
is included here. TOPOLOGICALPASS and INSERTIONPASS are
omitted because they are essentially the same passes described by
Klingner and Shewchuk [2007]. INSERTIONPASS is the most com-
plicated pass; it follows each vertex insertion with local edge re-
movals, multi-face removals, and vertex smoothing before judg-
ing whether the insertion is successful or must be rolled back.
TOPOLOGICALPASS is similar in character to EDGECONTRAC-
TIONPASS: it tries to remove every edge, then every face, of the
tetrahedra in A. (As usual, transformations that do not improve the
quality vector are rejected.) Because topological transformations
can bring additional tetrahedra into A, it is possible that the mini-
mum quality of A is lower after a pass than it was before. To keep
A from growing too much due to repeated runs of TOPOLOGICAL-
PASS, we add a check to the end of TOPOLOGICALPASS that rolls
back the entire pass if the minimum quality has worsened. No such
check is performed for the other improvement passes.

Some passes change more tetrahedra than others. The topological
pass is the most conservative: flips, edge removal operations, and
multi-face removal operations typically change only a few tetrahe-
dra. The edge contraction pass is worse: it adds to A all the tetrahe-
dra incident to the endpoints of each contracted edge. The insertion
pass is worse still because vertex insertion is a compound opera-
tion. The smoothing pass is the worst of all, because A expands
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Figure 5: The Enright test. A prescribed velocity field stretches a purely elastic sphere, which snaps back to its original shape after the
constraints are released. Four frames of the simulation mesh, three frames of an embedded surface (the initial surface is omitted, as it is
identical to the final shape), and a graph of the quality of the worst tetrahedron as a function of timestep number.

EDGECONTRACTIONPASS(A,M)
{ A is a subset of the tetrahedra in the mesh M }
1 E ← set of all edges of tetrahedra in A
2 for each edge e ∈ E
3 if e still exists
4 Attempt to contract edge e and smooth the vertex

thus created with nonsmooth optimization.
{ See Section 4.2 for ways the attempt can fail. }

5 return set containing the surviving tetrahedra in A and the
tetrahedra in M altered by edge contractions.

IMPROVETET(M, t, qmin)
{ t is a tetrahedron in the mesh M }
{ qmin is the minimum acceptable tetrahedron quality }
6 A← { t }
7 for i← 1 to 10
8 do
9 A← TOPOLOGICALPASS(A,M)
10 if the quality of the worst tetrahedron in A ≥ qmin
11 return
12 while A is changed by the topological pass
13 A← EDGECONTRACTIONPASS(A,M)
14 if the quality of the worst tetrahedron in A ≥ qmin
15 return
16 A← INSERTIONPASS(A,M)
17 if the quality of the worst tetrahedron in A ≥ qmin
18 return

{ smoothing pass begins here }
19 V ← set of all vertices of the tetrahedra in A
20 for each vertex v in V
21 Smooth v with nonsmooth optimization.
22 A← A ∪ the tetrahedra adjoining v in M
23 if the quality of the worst tetrahedron in A ≥ qmin
24 return

DYNAMICIMPROVEMESH(M, qmin)
25 B← set of tetrahedra in M with quality less than qmin
26 for each tetrahedron t ∈ B
27 if t still exists and has quality less than qmin
28 IMPROVETET(M, t, qmin)

Listing 1: The dynamic mesh improvement schedule.

everywhere outward by an entire layer of tetrahedra. Every tetrahe-
dron incident to a smoothed vertex is included in A. IMPROVETET
thus performs the passes in this order, and terminates as soon as the
worst tetrahedron in A has a quality of at least qmin.

It is counterintuitive that the insertion pass is less disruptive than the
smoothing pass. After all, the insertion pass itself smooths vertices
as part of each compound vertex insertion operation. In practice,
though, a smoothing pass rarely brings a bad tetrahedron above the
minimum quality threshold; if smoothing can do it at all, it usually
takes multiple passes, each of which enlarges A. In contrast, vertex
insertion (and subsequent cavity improvement) can often surgically
remove a bad tetrahedron in one attempt. Our experience is that

putting the smoothing pass before the vertex insertion pass leads to
more remeshing.

Because it is so conservative, TOPOLOGICALPASS is the only im-
provement pass in the dynamic schedule that is permitted to run
repeatedly, as long as it makes progress in improving A. Experi-
ence shows that it is not wise to iterate any other pass more than
once without trying the other passes as well, because it is common
that A contains a bad tetrahedron that is easily removed by one pass
but not by the others. We tried a variety of schedules for ordering
and iterating the passes before settling on the listed IMPROVETET
as the schedule that performed the least remeshing.

4.6 Refinement, Coarsening, and Anisotropy

Our dynamic mesher includes algorithms for local refinement and
coarsening, so that we can adaptively refine a mesh in regions
where the need for accuracy is great, coarsen it in regions where
the need has passed, and even demand anisotropic tetrahedra in re-
gions where they are advantageous. Our simulations tailor tetrahe-
dron sizes and anisotropy to reflect the gradient of the strain (so the
strain field is accurately represented) or the gradient of the displace-
ment (so the geometry is accurately represented).

The simulation tells the mesher its desires through a sizing field
that specifies the ideal edge length at each point in material
space. Although equilateral tetrahedra are usually considered ideal,
anisotropic tetrahedra with the right eccentricities and orienta-
tions are often more efficient and accurate in simulations that have
anisotropic physical behavior. For these scenarios, the sizing field
is a metric, represented by a 3 × 3 symmetric positive definite ten-
sor field M(x). The ideal tetrahedron is one that, under this metric,
is equilateral with edge lengths of 1. Let the deformation tensor
M1/2(x) be the symmetric positive definite square root of the met-
ric tensor M(x). Given a tetrahedron in material space, the mesher
judges its shape by first applying the affine transformation M1/2(x)
(to account for the desired anisotropy and scale), then computing
the quality measure (6) for the transformed tetrahedron. Thus, its
quality is measured in the metric M(x). If this quality falls below a
threshold qmin, our dynamic mesher tries to repair it. With this sim-
ple change, the mesher can create meshes with almost any desired
anisotropy, so long as the metric tensor field is sufficiently smooth.

The mesher judges a tetrahedron’s size by checking that the edge
lengths of the transformed tetrahedron are sufficiently close to 1. If
they are too long, the mesher refines locally; if they are too short,
it tries to coarsen. When our dynamic mesher is invoked, it runs a
size control phase prior to the mesh improvement schedule of Sec-
tion 4.5. The size control phase uses the same mesh operations, but
it is permitted to worsen the quality of the mesh, with the expecta-
tion that it will be repaired during the improvement phase.

Any edge that is too long has a vertex inserted at its midpoint, unless
the insertion operation creates an edge that is unacceptably short (in
which case it is rolled back). We use the standard vertex insertion
operation, modified so that it is not allowed to delete any vertex
(thereby inadvertently coarsening the mesh.) Any edge that is too
short is contracted, unless doing so would create a degenerate or
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Figure 6: Twisting bars with different plasticity values. (a) Initial rest shape and final shape of a purely elastic bar. (b) Maximum deformation
of the simulation. (c)–(e) Rest shapes at the ends of simulations with low, medium, and high plasticity. (f) Final state of a purely elastic
simulation that remeshes in world space instead of material space, thereby accumulating artificial plasticity; compare with (a). (g) Final
state of a simulation with two different materials: the upper part is purely elastic, the lower part highly plastic.

inverted tetrahedron, or make an excessively large change to the
mesh boundary (as discussed in Section 4.4).

How does the simulation choose a metric tensor field? One op-
tion is to refine the mesh where the displacement field has a large
gradient, thereby improving the geometric accuracy wherever the
domain is stretched or twisted, as illustrated in Figure 5. This is
accomplished simply by providing the dynamic mesher the met-
ric tensor M = FTF, where F is the deformation gradient (1), so
the mesher evaluates tetrahedra by measuring them in world space.
The metric tensor field defined this way is piecewise constant over
the mesh tetrahedra, but we smooth it with piecewise linear inter-
polation (described below).

For most simulations, a desire for accuracy obliges us to replace the
deformation gradient with the gradient of the strain (or to make sure
the mesh is fine enough to satisfy both). To do so, we must approx-
imate the strain gradient. Given a tetrahedron s with deformation
gradient F, let T be the set of tetrahedra that share a vertex with s.
We assign s the metric tensor

M =
κ

|T |

∑
t∈T

dtdT
t

‖dt‖
2
2

max
{∥∥∥FF−1

t

∥∥∥
2
,
∥∥∥Ft F−1

∥∥∥
2

}
‖dt‖2

, (7)

where dt is the vector connecting the barycenters of s and t, Ft is
the deformation gradient of t, and the scalar κ determines the de-
sired accuracy. Observe that for any unit vector d, the outer product
matrix ddT has eigenvector d with eigenvalue 1. Thus, the eigen-
vectors and eigenvalues of M indicate which gradient directions are
most strongly weighted.

M is often evaluated at positions not clearly associated with any
particular tetrahedron. We precompute M for all tetrahedra of the
original mesh, and use spatial hashing to find the closest tetrahedron
to a query point. Especially for very anisotropic meshes with vary-
ing resolution, nearest neighbor searches dominate the time com-
plexity of the remeshing process. To speed up evaluations of the
sizing tensor field, we compute M on a regular grid and use linear
interpolation to rapidly evaluate M at an arbitrary point in space.
Since the lookup uses material space positions, M is uniquely de-
fined even if the world space mesh is self-intersecting. M is not
well-defined if the material space mesh is self-intersecting. While
we do not explicitly prevent self-intersections in our plastic relax-
ation, it would be straightforward to add a penalty term for self-
intersections to the strain energy function (4). We have not encoun-
tered the need in our simulations.

5 Resampling Physical Properties
After mesh improvement is complete, we have to transfer simula-
tion data from the old mesh to the new, including the world position,
velocity, acceleration, and perhaps residual fracture stress tensor at
each vertex, and the plastic offset map and (for work hardening and
softening) accumulated plastic stress at each tetrahedron. Conser-
vative remeshing pays off here: in most frames, only a small frac-
tion of the mesh vertices and tetrahedra is modified. Data associated
with unmodified entities are simply copied to the new mesh.

We use linear interpolation to estimate properties at inserted or
smoothed nodes. If a node was smoothed and its new position is not
in any old tetrahedron, we extrapolate from the closest tetrahedron.
We approximate per-element quantities as averages of intersecting
elements in the source mesh, weighted by the intersection volumes.

Resampling the strain field is a major cause of artificial plasticity
in methods that rely on the strain field to store information about
the rest shapes of the elements. We store plastic offsets that have to
be resampled, but because we always relax the material space mesh
to its global rest shape, those plastic offsets are small. The plastic
offsets are multiplicative, and cannot simply be added or averaged.
We therefore resample the strain field onto the new elements, and
reconstruct the plastic offsets from the strain. Specifically, we com-
pute the plastic offset Π for an element by locally averaging the
Green strain field. Consider an element of volume V that overlaps a
set of old elements with overlap volumes Vi, where V =

∑
i Vi. Like

Bargteil et al. [2007], we compute the Green strain εi = FTF− I for
the old elements, and integrate it over the new element,

ε =
1
V

∑
i

Viεi. (8)

We then recover the plastic offset map from (2):

Π =
Π̃

(det Π̃)1/3
, where Π̃ = XmX−1

w F = XmX−1
w

√
ε + I. (9)

We compute the square root of a symmetric matrix from its eigen-
decomposition.

6 Elastoplastic Animation Examples
Figure 6 compares animations of six vertical elastic bars. Each bar
begins as a relatively coarse mesh, then has its top end twisted for
one full rotation in four seconds while its bottom end is held fixed.



Example Figure Tetrahedra (init/max/final/graph) tIntegration tPlasticity tRemeshing tSizing ttotal (avg/std dev/graph) qworst

Drip 1 425/4,143/4,143 0.01/0.01 0.12/0.14 0.02/0.18 1.27/2.39 1.41/2.47 0.1500
Masticator 2 (a) 1,041/38,211/1,345 0.16/0.22 n/a 0.10/0.12 7.51/9.44 7.77/9.77 0.1504

2 (b) 1,041/1,041/1,041 0.01/0.00 n/a n/a n/a 0.01/0.00 n/a
2 (c) 1,041/27,235/27,235 0.22/0.06 0.51/0.63 0.19/0.05 58.29/22.66 59.21/22.85 0.1500

Enright 5 528/4,733/379 0.01/0.01 n/a 103.67/407.17 103.88/408.30 0.0601
Bar 6 (b) 214/3,543/373 0.01/0.00 n/a 0.01/0.01 0.30/0.38 0.31/0.39 0.1500

6 (c) 214/2,924/2,924 0.01/0.00 0.05/0.09 0.02/0.01 3.42/1.71 3.50/1.71 0.2806
6 (d) 214/2,233/2,229 0.01/0.00 0.03/0.01 0.02/0.01 2.59/1.13 2.65/1.14 0.1868
6 (e) 214/2,021/2,009 0.01/0.00 0.03/0.01 0.02/0.01 2.40/0.92 2.46/0.93 0.2087
6 (g) 214/2,810/1,455 0.01/0.00 0.01/0.01 0.02/0.60 0.89/0.31 0.93/0.68 0.1440

Fracture 7 (a) 4,488/12,081/12,045 0.48/0.40 1.29/0.97 1.43/1.27 1.45/0.32 4.73/1.99 0.1563
7 (b) 4,488/32,621/32,621 0.72/0.42 1.78/0.89 3.48/0.75 8.67/1.80 15.00/3.17 0.2452
7 (c) 4,488/109,262/109,262 3.07/0.85 1.04/0.34 10.25/2.80 1.23/0.24 26.82/39.15 0.1518

Table 1: Statistics for simulation examples. The third column lists the initial, maximum, and final number of tetrahedra for each simulation,
and graphs the number as a function of the timestep. Subsequent columns show computation times (average/standard deviation) per simula-
tion timestep, measured in seconds on a single core of a 2.93 GHz Intel Xeon. Times appear for time integration (including stiffness matrix
computation), plastic relaxation, remeshing, and evaluation of the sizing field, as well as the total running time per timestep (also graphed as
a function of the timestep). Total time excludes file I/O and rendering. The final column shows the quality of the worst tetrahedron used for
simulation (excluding small fragments in the fracture simulations); compare with the improvement threshold qmin = 0.15.

The mesh is locally refined as dictated by the stress gradient; with-
out this refinement, the mesh resolution would be insufficient to
model the twisting. Then both ends of the bar are released. The
meshes are coarsened when it is safe for the mesher to do so. The
surfaces of the plastic bars are sufficiently deformed that coarsening
takes place almost exclusively in their interiors, but the purely elas-
tic bar exhibits coarsening of its surface triangles too. The mesher
tries to maintain a minimum tetrahedron quality of qmin = 0.15
throughout (and throughout all the other simulations described in
this section). Each bar is shown after being released and returned
to an equilibrium state.

The leftmost bar is purely elastic, and returns to its original shape.
The bars (c), (d), and (e) undergo progressively greater amounts of
plastic flow, and do not return to their original shapes. The right-
most bar, (f), is purely elastic like (a), but for comparison we have
made one crucial change: we remesh in world space, rather than
in material space, though we still remesh conservatively. The fi-
nal rest state is disastrous, and would have been much worse if we
remeshed from scratch each timestep. This example illustrates the
great advantage of remeshing in material space. Observe that bar (f)
is more deformed than bar (d), showing that it takes a good deal of
plastic flow to conceal the effects of artificial diffusion. The method
illustrated in (f) is similar to that of Bargteil et al. [2007]. However,
because this bar is fully elastic, Bargteil et al. would never trigger
remeshing, thus avoiding strain diffusion; but for the lightly plastic
bar (c), artificial plasticity would overwhelm the real plastic flow.

Bar (g) consists of two materials: a fully elastic part and a highly
plastic part. Although the lower part is plastically deformed, the
elastic part maintains its rest shape perfectly. This example high-
lights the versatility of our method: both materials can be accom-
modated in the same simulation.

Figure 2 is a similar but more complicated example, which illus-
trates both a purely elastic and a plastic bar masticated between
metal teeth. Observe that the bars are heavily and anisotropically
refined (except the center bar, for which we have turned off refine-
ment) but remain coarse at the ends. When the elastic bar returns to
its rest shape, the mesh is coarsened. Observe also how failure to
refine (center image) yields poor results between the teeth.

Our method is not immune to artificial plasticity, but that problem
arises only where we remesh after actual plastic flow has occurred,
so we have not been able to visually detect it in any simulation. By
contrast, the artificial plasticity caused by world-space remeshing
in Figure 6 (f), an example with no actual plasticity, is starkly ap-
parent. It is likely that the plastic example in Figure 2 (rightmost)

incurs some artificial plasticity. The purely elastic examples do not,
because the plastic offset maps, being the identity, accrue no resam-
pling error during remeshing.

To illustrate how our method copes with an extreme deforma-
tion in a purely elastic material, Figure 5 shows the Enright test
[Enright et al. 2002], in which a sphere (exhibiting no plastic
flow) is deformed by a volume-preserving velocity field; then it
snaps back to its original shape after the constraints are released.
This test is very difficult for simulations halfway through, when
the deformed sphere is extremely thin. Here we use anisotropic
tetrahedra—many fewer than would be possible with isotropic
tetrahedra alone—and the anisotropic quality measure described in
Section 4.6, computed from the deformation gradient. The figure
includes a graph plotting the lowest tetrahedron quality as a func-
tion of the timestep. The remesher cannot always keep the tetra-
hedron quality above 0.15. However, the offending tetrahedra are
short-lived, and they are removed in subsequent timesteps. The
quality never dips below 0.06, posing no threat to the numerical
stability of the simulation. The extreme deformation creates lots of
badly shaped tetrahedra in every timestep, making this by far our
most computationally intensive example.

After the test completes, the original shape is preserved well, except
that repeated remeshing has caused the spherical surface to deterio-
rate somewhat. The three rightmost images in Figure 5 show a fine
triangulated surface we have embedded in the mesh, which advects
it. The embedded surface is not affected by remeshing, and it ends
up being a perfect sphere again.

From Table 1, which tabulates statistics about the mesh sizes and
the simulation times for all the examples illustrated in this paper,
we make several observations. First, in the purely elastic simula-
tions (Masticator, Bar, Enright), the meshes are aggressively coars-
ened to nearly their original sizes upon returning to their original
shapes. Second, the computation time per timestep is only loosely
correlated with the number of tetrahedra. The biggest factor deter-
mining the remeshing complexity is the quality of the mesh. Sim-
ulations that invalidate many tetrahedra in each timestep, such as
the Enright test, are the most expensive. Third, the simulation time
is dominated by the sizing field computation and lookup, in partic-
ular nearest-tetrahedron searches. (For the Enright test, we do not
use a regular grid to precompute the sizing field, so we give only
one figure for sizing and remeshing time in Table 1.) Speeding up
evaluations of the sizing field is one of our most pressing needs. A
data structure for spatially adaptive storage and evaluation of the
sizing field (similar to that of Frisken et al. [2000]) could save a
huge portion of the simulation cost.
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Figure 7: Adaptive mesh refinement helps a ball to crash through different ductile plates. Frames (d) and (e) show the mesh for the simulation
(a) before the projectile penetrates the plate and after the fracture.

The animation of a fracturing plate in Figure 7 shows that standard
fracture simulation methods [O’Brien and Hodgins 1999], which
subdivide individual tetrahedra into smaller ones, are compatible
with our dynamic mesher. Moreover, we are able to begin the sim-
ulation with a relatively coarse mesh; the dynamic mesher refines
the regions where the strain gradient becomes high, so that the frac-
ture effects, which require a fine mesh, can proceed accurately. An
additional benefit, not apparent from the animation, is that our dy-
namic mesher repairs most of the poor-quality tetrahedra created
when tetrahedra are subdivided, which raises the hope that meth-
ods for dynamically changing geometry might soon become reli-
able enough for engineering simulations requiring high accuracy.

Finally, the dripping viscous fluid in Figure 1 illustrates many of
our method’s virtues: plastic flow and work hardening; the capabil-
ity to completely reshape a domain; adaptive mesh refinement that
places strongly anisotropic tetrahedra where they are needed at the
narrowest part of a tendril; and a final moment of fracture as the
drop falls.

The video files for the animations depicted in this paper, and our
remeshing software Pulsar, are available online1. We encourage
readers to use Pulsar in their own research.
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