
Fast Segment Insertion and Incremental Construction of
Constrained Delaunay Triangulations

Jonathan Richard Shewchuk Brielin C. Brown

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, California 94720

Abstract

The most commonly implemented method of constructing a con-
strained Delaunay triangulation (CDT) in the plane is to first con-
struct a Delaunay triangulation, then incrementally insert the input
segments one by one. For typical implementations of segment in-
sertion, this method has a Θ(kn2) worst-case running time, where
n is the number of input vertices and k is the number of input seg-
ments. We give a randomized algorithm for inserting a segment
into a CDT in expected time linear in the number of edges the seg-
ment crosses, and demonstrate with a performance comparison that
it is faster than gift-wrapping for segments that cross many edges.
A result of Agarwal, Arge, and Yi implies that randomized incre-
mental construction of CDTs by our segment insertion algorithm
takes expected O(n log n + n log2 k) time. We show that this bound
is tight by deriving a matching lower bound. Although there are
CDT construction algorithms guaranteed to run in O(n log n) time,
incremental CDT construction is easier to program and competitive
in practice. Moreover, the ability to incrementally update a CDT by
inserting a segment is useful in itself.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems

Keywords: constrained Delaunay triangulation; ǫ-net; randomized
incremental construction; computational geometry

1 Introduction

The constrained Delaunay triangulation (CDT) in the plane, pro-
posed by Lee and Lin [17], is a variant of the well-known Delaunay
triangulation in which specified edges, sometimes called segments,
are constrained to appear. The CDT is as close to being Delaunay
as possible subject to those constraints. In particular, every edge of
the CDT either is an input segment or is locally Delaunay; the latter
means that if we consider only the three or four vertices of the one
or two triangles that include the edge, the Delaunay triangulation
of those vertices contains the edge, as illustrated at left in Figure 1.

Supported in part by the National Science Foundation under Awards CCF-
0635381 and IIS-0915462, in part by the University of California Lab Fees
Research Program under Grant 09-LR-01-118889-OBRJ, and in part by an
Alfred P. Sloan Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee, provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee. So there.
SoCG’13, June 17–20, 2013, Rio de Janeiro, Brazil.
Copyright 2013 ACM 978-1-4503-2031-3/13/06 . . . $14.99.

The constraints imposed by CDTs have many uses, including
representing boundaries of nonconvex objects, permitting better in-
terpolation of discontinuous functions, and aiding the enforcement
of boundary conditions in finite element meshes.

The input to a CDT construction algorithm is a planar straight

line graph (PSLG), illustrated in Figure 2. A PSLG X is a set of
vertices and segments (constraining edges) that satisfy two restric-
tions: both endpoints of every segment in X are members of X, and
a segment in Xmay intersect other segments and vertices in X only
at its endpoints. We seek a triangulation of the vertices in X that
includes every segment in X.

We assume that the reader is familiar with Delaunay triangula-
tions [10, 6]. Throughout this paper, every triangulation is under-
stood to be a simplicial complex; thus it is a set containing vertices,
edges, and triangles. A CDT of X is a triangulation of the vertices
in X in which every triangle is constrained Delaunay. A triangle
is constrained Delaunay if its interior intersects no segment in X
and its circumcircle encloses no vertex in X that is visible from
any point in the triangle’s interior, as illustrated at right in Fig-
ure 1. Two points are visible to each other if the open line segment
joining them does not intersect a segment in X. By the Delaunay
Lemma [10, 17], a triangulation of a vertex set is a CDT (has all
its triangles constrained Delaunay) if and only if it contains every
segment and all its other (non-segment) edges are locally Delaunay.

t

e

Figure 1. Left: the bold edge e is locally Delaunay. The dashed edge
that crosses it is not. Right: The triangle t is constrained Delaunay,
despite having two vertices inside its circumcircle. Bold lines represent
segments.

Figure 2. A planar straight line graph and its constrained Delaunay
triangulation.

Figure 3. Inserting a segment into a constrained Delaunay triangulation.

Two algorithms are known that construct the CDT of a PSLG
with n vertices in O(n log n) time, which is optimal in the decision-
tree model of computation. One is a divide-and-conquer algorithm
by Chew [7]. Its lineage stretches back to the first Delaunay trian-
gulation algorithm to run in O(n log n) time, the 1975 divide-and-
conquer algorithm of Shamos and Hoey [22], which was subse-
quently simplified and elaborated by Lee and Schachter [18] and
Guibas and Stolfi [13]. The other is a sweepline algorithm by Sei-
del [20], which generalizes a Delaunay triangulation algorithm of
Fortune [12] to CDTs.

Both algorithms are rarely implemented, perhaps because they
are complicated. In practice, the only widely used CDT construc-
tion algorithm begins by constructing an ordinary Delaunay trian-
gulation first, then inserts the segments into the triangulation one
by one. To insert a segment is to delete all the edges and triangles
that intersect its relative interior, create the new segment, and retri-
angulate the two polygonal cavities thus created (one on each side
of the segment) with constrained Delaunay triangles, as illustrated
in Figure 3. The cavities might not be simple polygons, because
they might have edges dangling in their interiors, as shown.

In many implementations, each segment is inserted by a naive
algorithm that takes O(m2) time where m is the number of triangles
whose interiors intersect the segment, yielding a CDT construc-
tion algorithm that takes Θ(kn2) time for some PSLGs with n ver-
tices and k segments. See Anglada [3] for a typical segment inser-
tion algorithm that usually takes Θ(m2) time, though it can achieve
Θ(m log m) best-case time when it has good luck with evenly subdi-
viding the cavities. (Anglada’s algorithm is a variant of well-known
gift-wrapping algorithms; it gift-wraps from the new segment out.)
Chew’s and Seidel’s algorithms can insert a segment in O(m log m)
time, but algorithms like Anglada’s are much easier to implement.

Despite its asymptotic time disadvantage, the incremental seg-
ment insertion algorithm is popular for good reasons: it leverages
the best existing implementations of (unconstrained) Delaunay tri-
angulation algorithms; it is easier to implement than other CDT al-
gorithms; its speed is tolerated in practice because many real-world
inputs have few or no segments that cross many edges; and the
ability to dynamically update a CDT by inserting a new segment is
itself useful—for instance, in applications that support interactive
geometric modeling. Moreover, Agarwal, Arge, and Yi [2] show
that if the k segments are inserted in random order, the expected
number of edges and triangles deleted, summed over all segment
insertions, is in O(n log2 k), compared to a deterministic worst case
of Θ(kn).

This paper presents a randomized algorithm for inserting a seg-
ment into a CDT in expected O(m) time, where m is the num-
ber of triangles whose interiors intersect the segment. The algo-
rithm is simple enough to compete with naive algorithms like gift-
wrapping for ease of programming. We provide pseudocode, which
we turned into working C code in five hours.

We also show a matchingΩ(n log2 k) lower bound on the number
of structural changes, which resolves the long-standing question

Figure 4. Chew’s algorithm for computing the Delaunay triangulation of
a convex polygon deletes vertices from the polygon in a random order
to precompute the information needed for point location, then inserts the
vertices in the opposite order.

of the expected complexity of uniformly randomized incremental
segment insertion on worst-case PSLGs.

Our third contribution is to analyze a simple algorithm for seg-

ment location—finding the first triangle deleted when a segment is
inserted—and to show that it is fast enough.

With linear-time segment insertion, the randomized incremen-
tal segment insertion algorithm constructs an n-vertex, k-segment
CDT in expected O(n log n + n log2 k) time. Although this running
time falls short of optimality by a factor of log2 k/ log n, experience
with incremental CDT construction software shows that segment
insertion does not dominate the cost of constructing the initial De-
launay triangulation unless segments that intersect many edges are
inserted by quadratic-time algorithms. Incremental segment inser-
tion is likely to remain the most used CDT construction algorithm
long into the future, so we think it is important to provide an un-
derstanding of its performance and how to make it run fast.

2 Chew’s Delaunay Vertex Deletion Algorithm

Our segment insertion algorithm is closely related to an algorithm
of Paul Chew [8] for deleting a vertex from a Delaunay triangula-
tion in expected O(m) time, where m is the degree of the deleted
vertex. The latter algorithm is a good preparation for understand-
ing the former, more complicated algorithm. The former also uses
the latter as a subroutine.

Vertex deletion is an operation that updates a Delaunay trian-
gulation so it has one less vertex and is still Delaunay. Chew’s
algorithm can delete vertices from CDTs as well.

For simplicity, consider the problem of constructing the Delau-
nay triangulation of a convex polygon. Chew’s algorithm is a ran-
dom incremental insertion algorithm that inserts one vertex at a
time into the Delaunay triangulation. The same algorithm, with no
changes, can also retriangulate the cavity evacuated when a vertex
is deleted from a Delaunay triangulation, even though the cavity
might not be convex. We will not justify that claim here, except to
point out that Chew’s algorithm is a disguised algorithm for delet-
ing a vertex from a three-dimensional convex hull [16], which is
related by the lifting map [5, 19, 11] to deleting a vertex from a
two-dimensional Delaunay triangulation.

Let V be a sequence listing the m vertices of a convex polygon in
counterclockwise order. The algorithm begins by generating a ran-
dom permutation of V that dictates the order in which the vertices
will be inserted. It constructs a triangle from the first three vertices
of the permutation, then inserts the remaining vertices one by one.

Just before a vertex u is inserted, it lies outside the growing tri-
angulation, but only one triangulation edge vw separates u from the
triangulation’s interior. Point location is the task of identifying the
edge vw. Next, the algorithm inserts u by first identifying and delet-
ing all the triangles whose circumcircles enclose u, which can be
found quickly by a depth-first search from vw. Then, by extending
new edges from u, it retriangulates the cavity formed by taking the
union of the deleted triangles and △uvw, as illustrated in the right
half of Figure 4. This is essentially the Bowyer–Watson algorithm

[4, 15, 24] for inserting a vertex into a Delaunay triangulation.

The cleverest aspect of Chew’s algorithm is how it performs
point location. It does all point location in advance, before con-
structing any triangles, by imagining the incremental insertion al-
gorithm running backward in time. Specifically, imagine taking
the input polygon and removing vertices one by one, reversing the
random permutation of V , yielding a shrinking sequence of convex
polygons as illustrated in the left half of Figure 4. Removing a ver-
tex u has the effect of joining its neighbors v and w with an edge
vw, which is the edge that later will be sought for point location.

The algorithm maintains a circularly-, doubly-linked list of ver-
tices representing the polygon. It walks through a random permuta-
tion of V in backward order, removing vertices from the circularly-
linked list until only three remain. The algorithm constructs a trian-
gle from the three surviving vertices, then inserts the other vertices
in the permutation of V in forward order.

Theorem 1. Given an m-vertex polygon, Chew’s algorithm runs

in expected O(m) time.

Proof. The point location stage runs in deterministic O(m) time.
The expected running time of the vertex insertion stage is deter-
mined by backward analysis, an analysis technique that Seidel [21]
summarizes thus: “Analyze an algorithm as if it was running back-

wards in time, from output to input.”

Every triangulation of an m-vertex polygon has 2m − 3 edges,
each with two endpoints. Imagine deleting a vertex chosen uni-
formly at random; in expectation it adjoins fewer than four edges.

With the algorithm running forward in time, the cost of inserting
the last vertex is proportional to the number of edges that adjoin
it after it is inserted. The expected number of those edges is less
than four. The same reasoning holds for the other vertices. Sum-
ming this cost over all the vertices yields an expected linear running
time.

3 Inserting a Segment into a CDT

To “insert a segment into a CDT” is to take as input a CDT of a
PSLG X and a new segment s to insert, and produce a CDT of
X ∪ {s}. It is only meaningful if X ∪ {s} is a valid PSLG—that
is, X already contains the endpoints of s (otherwise, they must be
inserted first), and the relative interior of s intersects no segment
or vertex in X. This section presents a segment insertion algorithm
similar to Chew’s algorithm. Its expected running time is linear in
the number of edges the segment crosses.

LetT be a CDT ofX. If s ∈ T , thenT is also the CDT ofX∪{s}.
Otherwise, the algorithm begins by performing segment location:
identifying a triangle in T that adjoins an endpoint of s and whose
interior intersects s. This can be done with a simple rotary traversal
of the triangles adjoining the endpoint of s with lesser degree. In
Section 7, we show that this method never increases the asymptotic
running time of CDT construction.

Once one triangle whose interior intersects s is found, the others
can be identified by a simple walk in time linear in their number.
The algorithm deletes these triangles from T . All the other trian-
gles in T remain constrained Delaunay after s is inserted. Next,
the algorithm adds s to the triangulation and retriangulates the two
polygonal cavities on each side of s with constrained Delaunay tri-
angles, as illustrated in Figure 3.

Let P and P̂ be the two polygonal cavities; their edges include
s. The random incremental insertion algorithm CavityCDT in Fig-
ure 5 retriangulates P, and a second call to CavityCDT retriangu-
lates P̂. Be forewarned that CavityCDT cannot compute the CDT
of an arbitrary polygon; it depends upon the special nature of the
cavities evacuated by segment insertion for its correctness.

CavityCDT(V)
{ V = 〈v0, v1, . . . , vm−1〉 is a sequence of vertices in counterclock- }
{ wise order around a cavity evacuated when the segment v0vm−1 }
{ is inserted. Some vertices in the sequence may be duplicated if }
{ there are dangling segments in the cavity. }
1 for i← 1 to m − 2
2 next[i]← i + 1
3 prev[i]← i − 1

{ Proportional to the distance from vi to←−−−→v0vm−1 }
4 distance[i]← Orient(v0, vi, vm−1)

{ π[1 . . .m − 2] will always be a permutation of 1 . . .m − 2 }
5 π[i]← i

6 distance[0]← 0; distance[m − 1]← 0
7 for i← m − 2 downto 2

{ Don’t delete a vertex closer to←−−−→v0vm−1 than both neighbors }
8 repeat

9 j← a random integer in [1, i]
10 while distance[π[j]] < distance[prev[π[j]]] and

distance[π[j]] < distance[next[π[j]]]
11 Swap π[i] with π[j]

{ Point location: take vertex π[i] out of the linked list }
12 next[prev[π[i]]]← next[π[i]]
13 prev[next[π[i]]]← prev[π[i]]
14 CreateTriangle(v0, vπ[1], vm−1) { Create the first triangle }
15 for i← 2 to m − 2
16 InsertVertex(vπ[i], vnext[π[i]], vprev[π[i]])
17 if vπ[i] has been marked
18 Use Chew’s algorithm to retriangulate the fan of

triangles that have all three vertices marked
19 Unmark all the marked vertices

InsertVertex(u, v,w)
{ u is a new vertex. Is the triangle △uvw constrained Delaunay? }
20 x← Adjacent(w, v) { △wvx on other side of vw from u }
21 if x = ∅ or (InCircle(u, v,w, x) ≤ 0 and Orient(u, v,w) > 0)
22 CreateTriangle(u, v,w) { △uvw is cons. Delaunay }
23 else { △uvw and △wvx are not constrained Delaunay }
24 DeleteTriangle(w, v, x) { Flip vw→ ux }
25 InsertVertex(u, v, x)
26 InsertVertex(u, x,w)
27 if InCircle(u, v,w, x) ≤ 0 { Reuse Line 21 computation }
28 Mark vertices u, v, w, and x to be retriangulated later

Figure 5. Expected linear-time algorithm for retriangulating a cavity
evacuated by inserting a segment into a constrained Delaunay trian-
gulation. The 2 × 2 determinant Orient(u, v,w) = det[u − w v − w] is
positive if u, v, and w occur in counterclockwise order. The 3 × 3 de-

terminant InCircle(u, v,w, x) = det
[

u−x

|u−x|2
v−x

|v−x|2
w−x

|w−x|2

]

is positive if x is

enclosed by the circle passing through the positively oriented vertices u,
v, and w. A triangulation data structure permits Adjacent(w, v) to look
up the third vertex of the triangle adjoining an oriented edge wv in O(1)
expected time. The operations CreateTriangle and DeleteTriangle add
and remove positively oriented triangles in expected O(1) time. These
running times can be achieved with a hash table that maps edges to
triangles; our implementation achieves them with a tree data structure.

CavityCDT differs from Chew’s algorithm in several ways to
account for the fact that P is not always convex. First, the vertices
of the segment s are inserted first. Second, P might have segments
dangling in its interior, like the segment connecting vertices 5 and 6
in Figure 6. In this case, imagine an ant walking a counterclockwise
circuit of P’s interior without crossing any edges; it will visit one or
more vertices of P twice. Split each such vertex into two copies and
pretend they are two separate vertices, like vertices 5 and 7 in the
figure. (In rare circumstances, there may be three or more copies.)

G

3
7

10 0

6

4
9

2
8 5

010
23

1
457

8 6

9

3 2

P

P

s

1
45 G

1

Figure 6. Computing the constrained Delaunay triangulation of a cavity obtained by inserting a segment s. The cavity has a repeated vertex, numbered
5 and 7, because of the dangling segment adjoining it. The deletion of vertex 2 creates a self-intersection, but the algorithm works correctly anyway.

Third, CavityCDT maintains the invariant that after each vertex
insertion, the computed triangulation is the CDT of the polygon
whose boundary is the subsequence of vertices inserted so far; we
call this polygon a subpolygon. Because CavityCDT maintains a
CDT and not merely a Delaunay triangulation, a newly inserted
vertex sometimes causes a triangle to be deleted not because the
new vertex lies inside the triangle’s circumcircle, but because the
two polygon edges adjoining the new vertex cut through the tri-
angle; for example, the insertion of vertex 8 in Figure 6 deletes a
triangle whose circumcircle does not enclose vertex 8. Line 21 of
InsertVertex accounts for this possibility with an orientation test.

Unlike in Chew’s algorithm, the insertion of a vertex u can create
new triangles that do not adjoin u, as illustrated in Figure 7. The
three shaded triangles in the top triangulation must be deleted when
u is inserted, but u is not inside their circumcircles. We call trian-
gles with this property crossed triangles. After u’s insertion, the
corresponding new triangles (shaded in the bottom triangulation)
may include some that do not adjoin u.

CavityCDT inserts u in a manner that initially connects u to
all the vertices of all the deleted triangles, then subsequently uses
Chew’s original algorithm to correctly retriangulate the shaded re-
gion (in expected linear time). We observe few crossed triangles
in practice, so the overhead of occasionally invoking Chew’s algo-
rithm is unlikely to have much influence on the running time. An
alternative, easier to implement, is for CavityCDT to call itself re-
cursively with uw serving as the segment, but it is unknown whether
this option preserves the expected linear running time in theory.

Fourth, a subpolygon might be self-intersecting. Observe in Fig-
ure 6 that deleting vertex 2 from the cavity P creates a subpolygon
G in which the edge connecting vertices 1 and 3 crosses the edge
connecting vertices 4 and 5, and the subpolygon’s interior angle at
vertex 3 exceeds 360◦. By some senses, G is not actually a polygon,
although it is a polygon in the conventional sense of a looped chain
of edges; and its triangulation in Figure 6 (bottom center) is not a
simplicial complex, because it has triangles that overlap each other.
Fortunately, it is like a CDT in two respects: it has all the combina-
torial properties of a triangulation of a polygon—for example, its
dual graph is a tree—and every edge is locally Delaunay.

The incremental vertex insertion algorithm works correctly even
when these self-intersecting subpolygons arise, subject to one caveat:

u

w

zs
v

s

u

w

v

Figure 7. The shaded triangles in the top triangulation are deleted by u’s
insertion despite u not being inside their circumcircles. The correspond-
ing shaded triangles in the bottom triangulation include two that do not
adjoin u. The latter shaded triangles are computed by Chew’s algorithm.

it will not correctly insert a vertex at which the polygon’s internal
angle is 360◦ or greater. For example, it cannot create P in Figure 6
by inserting vertex 6 last, nor create G by inserting vertex 3 last.
These vertex insertions are anticipated and averted during the algo-
rithm’s point location step, when random vertices are deleted from
P one by one until the subpolygon is reduced to a triangle. Hence,
the random permutation by which the vertices are inserted is not
chosen uniformly from all permutations of the vertices.

For the sake of speed, CavityCDT does not compute internal an-
gles. Instead, let s̄ be the line that includes the segment s. It is
a property of the cavities created by segment insertion that a sub-
polygon vertex can have an internal angle of 360◦ or greater only if
that vertex is closer to s̄ than both its neighbors on the subpolygon
chain. (We will justify this claim shortly.) CavityCDT declines to
delete from P any vertex with the latter property (see Line 10).

Line 4 of CavityCDT computes the distance of each vertex of P

from s̄. The point location step (Lines 7–13) deletes vertices from
P one by one, choosing uniformly at random from all the vertices
that are not endpoints of s and are not closer to s̄ than both their
neighbors.

Be forewarned that CavityCDT cannot use the same triangula-
tion data structure as the triangulation in which the segment s is
being inserted, because CavityCDT sometimes temporarily creates
triangles that conflict with those outside the cavity. For example, in
Figure 6 the triangulation outside the cavity probably includes an

G

s

5

6 3

57

6 36 3

7P

Figure 8. At left, each vertex has a sightline. Note that vertices 5 and 7 have different sightlines, although they are really a single repeated vertex. A
self-intersecting polygon (center) can be interpreted topologically as several polygons glued together along their sightlines (right).

edge connecting vertices 7 and 9 and two adjoining triangles. Cav-
ityCDT temporarily creates a third triangle with this edge when it
first inserts vertex 9. To avoid corrupting the data structure, Cavi-
tyCDT requires the use of a separate, initially empty triangulation
data structure, and the final triangles must subsequently be copied
to the main triangulation.

4 The Speed and Correctness of CavityCDT

Theorem 2. Given an m-vertex cavity, CavityCDT runs in ex-

pected O(m) time.

Proof. The expected cost of InsertVertex is proportional to the
number of edges adjoining the newly inserted vertex u plus the
number of newly created triangles that do not adjoin u. We bound
these numbers separately, both by backward analysis.

Every triangulation of an m-vertex polygon has m − 2 triangles
and m − 3 interior edges. At least (m − 1)/2 vertices are eligible to
be the first vertex deleted during point location and the last vertex
inserted. One of those vertices is chosen uniformly at random; in
expectation it adjoins at most 2(m − 3)/((m − 1)/2) < 4 interior
edges, thus fewer than 6 edges total.

When the insertion of a new vertex u causes the creation of a
triangle t that does not adjoin u, as illustrated in Figure 7, it hap-
pens because a new subpolygon edge adjoining u entirely crosses
t’s circumcircle and hides one or more vertices inside t’s circum-
circle. Consider CavityCDT running backward in time; what is the
probability that a triangle t will be deleted during the deletion of a
randomly chosen vertex not adjoining t? There are at most three
subpolygon edges—one for each edge of t—whose deletion could
expose t to a vertex, deleting t. (In fact there is at most one such
edge, but we do not prove it here.) The probability that the vertex
chosen for deletion is one of the endpoints of one of those three
edges is at most 12/(m − 1). Therefore, the expected number of
deleted triangles not adjoining u is less than 12.

Thus, forward in time, the expected cost of inserting each ver-
tex is constant; summing this cost over all the vertices yields an
expected linear running time.

Before proving the correctness of the algorithm CavityCDT, we
must make sense of self-intersecting polygons and their triangu-
lations. The original cavity P has a special property that permits
CavityCDT to work despite the possibility of self-intersecting sub-
polygons: P is included in a union of triangles that cross the seg-
ment s. Therefore, each vertex vi has a sightline bi: a line segment
connecting vi to s strictly through P’s interior, depicted in Figure 8.
We choose each sightline to be a subset of an edge that was deleted
to make way for s; these sightlines do not intersect each other.

A self-intersecting subpolygon G can be understood as a topo-
logical space defined by gluing non-self-intersecting quadrilaterals
and triangles together along the sightlines, as illustrated. We call
these constructions multisheet polygons because they can be as-
sembled from multiple sheets of paper taped together. In such a
multisheet polygon, two points with the same Euclidean coordi-
nates are not necessarily the same point; they may be in different,

x

y
w

ℓ

C C′

t

v′
s

u

v

Figure 9. An impossible configuration: upon the insertion of u, a crossed
triangle t has a vertex x above ℓ that is not u’s neighbor on the subpoly-
gon chain.

overlapping quadrilaterals or triangles. We triangulate a multisheet
polygon by subdividing it into triangles that form the topological
space G when they are glued together along shared edges. We call
this triangulation a CDT if all its edges are locally Delaunay.

One consequence of G’s sightlines is that for any vertex v of G

at which the internal angle is 360◦ or greater (e.g. vertex 3 or 6
in Figure 8), both its neighbors on G’s boundary chain are further
from the affine hull of s than v—each because the other neighbor
has a valid sightline. This observations justifies the algorithm’s use
of the latter property to screen out vertices with the former property
in Lines 8–10.

Recall that when the insertion of a vertex u causes the deletion
of crossed triangles whose circumcircles do not enclose u, we use
Chew’s algorithm to fix part of the triangulation around u. The
correctness of this procedure follows from the fact that the crossed
triangles always form a fan adjoining a single vertex v, as illustrated
in Figure 7 (see Lemma 3). If we imagine adding the triangle △vuz

to the fan, the edge vz is locally Delaunay. The key precondition
for Chew’s algorithm to correctly retriangulate a cavity is that there
exists a point (here, v) such that, if it is connected by edges to the
cavity’s vertices, all these edges are locally Delaunay (on the lifting
map, v is lifted to the apex of a convex cone). Chew’s algorithm
produces the triangles shaded in the bottom half of the figure.

To see that the crossed triangles always form this fan configura-
tion, suppose without loss of generality that s is horizontal, as in
Figure 9, with the cavity above s and the vertex indices increasing
from 0 at the right endpoint of s to m − 1 at the left endpoint. Let ℓ
be the horizontal line through u (parallel to s). By design, when u

is inserted, its two neighbors (v and w) on the subpolygon G cannot
both be above ℓ. Suppose without loss of generality that u’s neigh-
bor w, whose index is less than u’s index, is on or below ℓ. Because
there is a crossed triangle, u is a concave vertex of G, so u’s other
neighbor v (with greater index) must be strictly above ℓ.

Lemma 3. Given the suppositions stated above, the crossed tri-

angles form a fan of triangles sharing vertex v, and their other

vertices have indices less than u’s index.

Proof. Let t be a crossed triangle. It has at least one vertex x

whose index is greater than u’s and one vertex y whose index is
less. Suppose for the sake of contradiction that x , v, as Figure 9
shows. Either y = w or the triangle edge xy crosses the subpolygon
edge uw, so y lies on or below ℓ. As xy also crosses the subpolygon
edge uv, x lies strictly above ℓ.

Before s was inserted, v was connected by an edge of the CDT to
a vertex v′ on the other side of s, so there existed a circle C through
v and v′ that enclosed no vertex visible from the interior of the edge
vv′. The portion of vv′ terminating at s is a sightline for v in the
original cavity P and in every subpolygon of P. Both u and x are
visible within P from the point vv′ ∩ s, so neither u nor x is inside
C. The edge vv′ separates x from u and y, so there is a point z

where vv′ intersects the interior of t, and v is visible from z. As t is
constrained Delaunay (just before u is inserted), v is not inside t’s
circumcircle C′. As t is a crossed triangle, u is not inside C′ either.

The vertices v and x are above ℓ, and v′ and y are below or on
ℓ, so both circles C and C′ (circumscribing vv′ and xy) intersect ℓ,
as illustrated. Neither circle encloses u; C intersects ℓ to the left
of u, and C′ intersects ℓ to the right of u (both possibly touching
u). The edges vv′ and xy cross each other above ℓ, but C cannot
enclose x (as it does in the figure), and C′ cannot enclose v. This is
impossible; the result follows by contradiction.

Our correctness proof for CavityCDT relies on a constrained ver-
sion of the famous Delaunay Lemma. In 1934, Boris Delaunay [10]
showed that a triangulation of a point set is Delaunay (has every tri-
angle Delaunay) if and only if every edge is locally Delaunay. In
1986, Lee and Lin [17] showed that a triangulation of a PSLG is
constrained Delaunay (has every triangle constrained Delaunay) if
and only if every edge is locally Delaunay except perhaps the PSLG
segments.

This Constrained Delaunay Lemma extends to a multisheet poly-
gon G as follows. Two points p, q ∈ G are said to be visible to each
other if there is a path from p to q in G that is a straight line seg-
ment. Observe that two distinct points in G can lie at the same po-
sition in Euclidean space yet not be visible to each other, because
the shortest path connecting them in G goes around a corner and
through a sightline. With this definition of “visible,” the definition
of “constrained Delaunay triangle” in the Introduction applies to
triangulations of multisheet polygons. It is easy to extend the proof
of Lee and Lin to show that a triangulation of a multisheet polygon
has every triangle constrained Delaunay if and only if every edge is
locally Delaunay. Our proof uses the constrained Delaunay prop-
erty of the triangles before each vertex insertion as a precondition
to guarantee the locally Delaunay property of the edges after each
vertex insertion. The latter property implies that the former holds
at the beginning of the next vertex insertion.

Theorem 4. CavityCDT correctly constructs the CDT of a cav-

ity evacuated by inserting a segment into a CDT.

Proof. Let T ′ and T be the triangulation before and after a top-
level call to the recursive procedure InsertVertex inserts a new
vertex u and Line 18 of CavityCDT fixes the marked triangles (if
necessary). Let G′ and G be the corresponding subpolygons with-
out and with u. We will show that if T ′ is a CDT of G′, then T
is a CDT of G. The result follows by induction on the sequence of
vertex insertions.

It is straightforward to check that a top-level call to InsertVertex
is equivalent to gluing a new triangle △uvw onto an edge vw of
T ′, then repeatedly checking each edge that is opposite the new
vertex u in some triangle (initially the edge vw, later other edges
that are exposed by flips), and flipping any such edge that is not
locally Delaunay or forms a fold in the triangulation (Line 21 of
InsertVertex). Every edge created by a flip has the vertex u, and
every vertex of every triangle deleted by a flip gets connected to u.

Each InsertVertex call maintains the invariant that the set of
stored triangles forms a combinatorial triangulation of a polygon—
specifically, the dual graph of the triangulation is a tree whose

v

x

wu

C

Figure 10. As △wvx was constrained Delaunay before u was inserted,
ux is locally Delaunay.

leaves correspond to the edges of the polygon in circular order.
Gluing on a new triangle is equivalent to replacing a leaf of the
dual tree with a new degree-three node and two new leaves. Edge
flips correspond to tree rotations.

If gluing △uvw onto T ′ does not create a fold at vw, then the
modified triangulation is immediately a triangulation of G. Oth-
erwise, pretend that the algorithm flips only fold edges until none
survive, then flips edges that are not locally Delaunay. (CavityCDT
actually flips the edges in a different order, but this does not change
the final product.) Observe that u is safely confined between the
sightlines of v and w; no other vertex lies between these sightlines,
so no vertex can lie inside △uvw. It is straightforward to show that
the flips of the fold edges effectively remove △uvw from G′ (and
that there is only one fold edge at any given time), yielding G. Sub-
sequent flips do not change the underlying topological space of the
triangulation, so it remains a triangulation of G.

To show that the updated triangulation is constrained Delaunay,
we show that all its edges are locally Delaunay. Let ux be an edge
created because the InCircle test in Line 21 found that the new
vertex u is inside the circumcircle of a triangle △wvx ∈ T ′. We
wish to show that ux is locally Delaunay in T ; suppose for the sake
of contradiction it is not. Let C be the circle that passes through u

and x and is tangent to the circumcircle of △wvx at x, as illustrated
in Figure 10. Observe that the circumcircle entirely encloses C

except at x. Because ux is not locally Delaunay in T , T contains a
triangle uxy or xuy that has the edge ux and a third vertex y enclosed
by C. But the presence of △uxy in T implies that y is visible from
some point in the relative interior of ux ∩ △wvx, and therefore T ′
was not constrained Delaunay, a contradiction.

Thus ux is locally Delaunay in T . More generally, every edge
adjoining u because of the Incircle test in Line 21 is locally De-
launay. Every edge that adjoins the same two triangles in T it
adjoined in T ′ is locally Delaunay because it was locally Delau-
nay in T ′. Every edge that adjoins one old triangle surviving from
T ′ and one triangle new to T is locally Delaunay either because
the Incircle test in Line 21 chose not to flip it or because the new
triangle replaces a crossing triangle after a vertex stopped being
visible. Every edge on the boundary of G is locally Delaunay be-
cause it is an edge of only one triangle. The only edges that fit none
of these categories are the new edges created by Line 18 of Cavi-
tyCDT, which are locally Delaunay by the correctness of Chew’s
algorithm. Therefore, every edge in T is locally Delaunay, and by
the Constrained Delaunay Lemma, T is a CDT.

5 A Comparison of Two Cavity

Retriangulation Implementations

We have implemented CavityCDT and Anglada’s gift-wrapping al-
gorithm [3] so that we could compare their speeds on cavities of
different sizes. Both implementations use Shewchuk’s floating-
point Orient and InCircle predicates [23], which are fast despite
being robust. We timed two kinds of cavity, illustrated in Figure 11:

Anglada CavityCDT
vertices time (µs) InCircle tests time (µs) InCircle tests Orient tests (Line 21 only)

Cavities in 10 0.41 16 1.29 13.02 7.78
which most 30 4.20 196 4.20 67.07 43.01
vertices are 100 47.27 2,401 14.14 271.00 178.14
collinear 1,000 4,748.62 249,001 152.65 2,959.48 1,968.93

10 0.57 14.41 1.53 11.03 7.17
Jittered 85 16.26 620.04 16.26 161.39 106.04
cavities 100 20.68 804.34 19.10 191.48 125.84

1,000 719.67 32,184.86 180.63 1,920.00 1,268.00

Table 1. Timings for CavityCDT and Anglada’s gift-wrapping algorithm compiled by “gcc -O3” on a MacBook Pro with a 3.06 GHz Intel dual core, 8 GB
memory (1.07 GHz DDR3 SDRAM), and a 6 MB level-two cache. Each number is an average over 10,000 runs with different jittering for each run.

Figure 11. Constrained Delaunay triangulations of our input cavities,
collinear or jittered.

cavities in which all the vertices are collinear except the segment
endpoints, and perturbed versions of those cavities in which the
vertices are jittered by random vertical movements proportional to
the distances between the vertices. Although these examples do
not represent the variety of cavities that can come up in practice,
they are representative of the most common ways that the cavity
geometry influences the running times. Collinear points, which oc-
cur frequently in practice, bring out the worst of gift-wrapping’s
quadratic running time. Jittered vertices hide the quadratic growth
until the number of vertices is greater, because the gift-wrapping
algorithm has more luck finding balanced subdivisions of small re-
cursive subproblems.

Table 1 tabulates average running times and numbers of predi-
cate calls for the two algorithms. Calls to Orient in Line 4 of Cav-
ityCDT are not counted because we optimized Line 4 by taking
advantage of subexpressions that are reused every time it iterates
and by not using exact arithmetic. We optimized Line 21 to reduce
the number of Orient tests by taking advantage of the fact that if a
call to InsertVertex finds that its input triangle △uvw has positive
orientation, all its recursive calls to InsertVertex will also have
positively oriented input triangles that do not require testing.

Given the cavities with collinear vertices as input, CavityCDT
becomes faster than gift-wrapping for 30 vertices or more, and the
advantage grows rapidly. Given the jittered cavities, CavityCDT
is faster for 85 vertices or more. We observe that CavityCDT per-
forms fewer InCircle calls on average for 8 or more vertices. In a
higher-precision implementation with expensive InCircle calls, the
balance would shift further in favor of CavityCDT.

Because both algorithms are easy to implement, a CDT construc-
tion program can choose between them according to the cavity size.

6 The Cost of Randomized Incremental

Segment Insertion

Agarwal, Arge, and Yi [2] show that when k segments are inserted
into an n-vertex CDT in random order, the total expected number
of structural changes (triangles and edges created and deleted) is
in O(n log2 k). For completeness, we reprise their analysis, filling
in many missing details. Then we exhibit a PSLG for which this
bound is tight. Thus, if an O(n log k)-time incremental segment
insertion algorithm exists, it will require a smarter insertion order,
not just a better analysis.

LetX be a PSLG with n vertices and k segments. Let S be the set
of segments inX. We use the theory of ǫ-nets to bound the expected

maximum number of segments inX that a line segment in the plane
can cross without crossing any segment in X that has already been
inserted. Different line segments in the plane can intersect different
subsets of S , but unless k is small, not all 2k subsets are possible.
The plane imposes a structure such that the number of possible
subsets is polynomial in k.

Lemma 5. Let S be a set of k non-crossing segments in the plane.

Consider the sequence of segments in S whose relative interiors in-

tersect a fixed line, written in the order of the intersection points.

LetQ be the set of all such sequences, for all lines in the plane, with

the proviso that a sequence and its reverse are considered equiva-

lent and are not counted as distinct members of Q. The cardinality

of Q is at most 8k2
+ 1.

Proof. We use the standard planar geometric duality by which a
point p = (px, py) dualizes to a line p∗ with the formula y = px x −
py, and vice versa. Planar duality preserves incidences between
points and lines, so if a primal point p lies on a primal line ℓ, then
the dual point ℓ∗ lies on the dual line p∗. Let U be the set of vertices
of the segments in S ; then |U | ≤ 2k. Vertical lines do not have duals
in this formulation, so assume without loss of generality that the
coordinate system is rotated so that no two vertices in U have the
same x-coordinate. Hence, every vertical line can be tilted slightly
so that it is not precisely vertical but it intersects the same segment
interiors as before.

Let A be the arrangement (expressed as a polygonal complex)
formed by the lines dual to the vertices in U. The total number
of faces of all dimensions in A—vertices, edges, and 2-faces—
is at most 2(2k)2

+ 1 = 8k2
+ 1. If two primal lines ℓ1 and ℓ2

dualize to points in the same face of A, it is possible to translate
and rotate ℓ1 to ℓ2 without causing it to pass over a vertex in U or
change its incidences with the vertices in U; it follows that ℓ1 and
ℓ2 intersect the same segments in S in the same order. Therefore,
for every sequence of segments Q ∈ Q, there is a face of A whose
interior points all dualize to lines that generate the sequence Q. It
follows that the number of sequences in Q is less than or equal to
the number of faces ofA.

Lemma 6. Let S be a set of k non-crossing segments in the plane.

Consider the subset of segments in S whose relative interiors inter-

sect a fixed line segment; let M be the set of all such subsets, for

all line segments in the plane. The cardinality of M is at most f (k),
where f (k) = k(k + 1)(8k2

+ 1)/2 + 1.

Proof. The sequence of segments in S whose relative interiors
intersect a line segment is an interval taken from the sequence of
segments whose relative interiors intersect a line. By Lemma 5,
there are at most 8k2

+ 1 such sequences, each having length at
most k. A sequence of length k has k(k + 1)/2 nonempty intervals.
We add one for the empty set.

For our purposes, the exact bound given by Lemma 6 is not im-
portant; it suffices that the bound is polynomial, rather than expo-
nential, in k.

Next, we reprise a famous result of Haussler and Welzl [14] on
ǫ-nets. Let S 1 and S 2 be two random sequences obtained by taking
i independent samples from S with replacement (hence segments
may be repeated). For some ǫ ∈ (0, 1), let E be the event that there
exists a line segment e that does not intersect any segment in S 1,
but e intersects at least ǫk segments in S , where k = |S |. If E does
not occur, S 1 is said to be an ǫ-net for S . We want to show that E

is very unlikely when i is sufficiently large, thus S 1 is very likely to
be an ǫ-net. Let E+ be the event that there exists a line segment e

that does not intersect any segment in S 1, but intersects at least ǫk
segments in S and at least ǫi/2 segments in S 2. (Repeated segments
in S 2 may be counted multiple times.) The following lemma shows
that event E usually entails event E+.

Lemma 7 (Haussler andWelzl [14]). If i ≥ 8(1 − ǫ)/ǫ, then

Pr[E] ≤ 2 Pr[E+].

Proof. Suppose that event E occurs; then we will show that E+
also occurs with probability at least 1/2. Event E implies that there
exists a line segment e that intersects at least ǫk of the k segments
in S . Let γ be the number of segments in S 2 that e intersects; if
γ ≥ ǫi/2, then event E+ also occurs. Because S 2 is chosen by
randomly choosing i segments from S with replacement, γ is a bi-
nomial random variable with expectation ǫi and variance ǫ(1 − ǫ)i.
By Chebyshev’s inequality, the probability that event E+ does not
also occur is

Pr
[

γ <
ǫi

2

]

≤ Pr
[

|γ − ǫi| > ǫi
2

]

≤ 4
1 − ǫ
ǫi
,

which is less than or equal to 1/2 by assumption. Thus Pr[E+] =
Pr[E]·Pr[E+|E] ≥ Pr[E]/2.

Let E∗ be the event that there exists a line segment e that inter-
sects no segment in S 1, but intersects at least ǫi/2 segments in S 2.

Lemma 8 (Haussler andWelzl [14]). Pr[E+] ≤ Pr[E∗] ≤
f (2i) 2−ǫi/2, where f (k) = k(k + 1)(8k2

+ 1)/2 + 1.

Proof. The first inequality follows because event E+ implies
event E∗. For the second inequality, imagine sampling 2i segments
from S with replacement to form a sequence S 12, then randomly
choosing i of those segments to form S 1; the remainder form S 2.

Let e be a fixed line segment in the plane, and let c be the number
of segments that intersect e among the 2i segments in S 12. The line
segment e can trigger the event E∗ only if none of those c segments
are chosen for S 1, which happens with probability

(

2i − c

i

) /(

2i

i

)

=
i

2i
· i − 1

2i − 1
· · · i − c + 1

2i − c + 1
≤ 2−c.

Moreover, e can trigger E∗ only if c ≥ ǫi/2, so the probability of
that is at most 2−ǫi/2. (Observe that this upper bound is independent
of how many segments in S intersect e.)

Now, consider the probability that any line segment in the plane
triggers E∗. By Lemma 6, there are at most f (2i) subsets of S 12

that a line segment e can pick out. If two line segments intersect
exactly the same segments in S 12, then either both of them trigger
E∗, or neither do. Therefore, the probability of event E∗ is at most
f (2i) 2−ǫi/2.

Let Π = 〈s1, s2, . . . , sk〉 be a permutation of the k segments in X,
chosen uniformly at random from the set of all such permutations.
LetT0 be the Delaunay triangulation of the n vertices inX, ignoring

the segments. For i ∈ [0, k], let Ti be the CDT constructed by
inserting the first i segments in Π.

A conflict is a segment-edge pair (s, e) consisting of an edge e ∈
Ti and a segment s ∈ X that crosses e. When the segment si+1

is inserted into the triangulation Ti, it deletes every edge in Ti it
conflicts with. An edge e is said to have c conflicts if it crosses c

segments in X.

Theorem 9. The expected number of edges deleted over the du-

ration of the randomized incremental segment insertion algorithm

is in O(n log2 k).

Proof. By Lemmas 7 and 8, the probability Pr[E] that there ex-
ists a line segment that intersects at least ǫk segments in X but in-
tersects no segment among i segments sampled randomly from X
with replacement satisfies Pr[E] ≤ 2 f (2i) 2−ǫi/2. This probability is
not increased by sampling without replacement, as the incremental
algorithm does. Setting ǫ = 10 log2 k/i yields Pr[E] ≤ 2 f (2i)/k5 ∈
O(1/k). (Observe that this choice of ǫ satisfies the precondition of
Lemma 7 for k ≥ 2.) Therefore, the first i randomly chosen seg-
ments are likely to be a (10 log2 k/i)-net for the segments in X.

Let e be an edge with c conflicts in the triangulation Ti. When
a randomly chosen segment si+1 is inserted, the probability that e

is deleted is c/(k − i). The probability that any edge has more than
10k log2 k/i conflicts is at most Pr[E]. As Ti has fewer than 2n

edges, the expected number of edges deleted over the duration of
the algorithm is less than

2n + 2n

k−1
∑

i=1

(

10k log2 k

i(k − i)
+ Pr[E]

)

∈ O(n log2 k).

Therefore, the total expected cost of all calls to CavityCDT is in
O(n log2 k). With the cost of constructing the initial Delaunay tri-
angulation T0 and performing segment location for each segment
prior to inserting it (see Section 7), the incremental CDT construc-
tion algorithm runs in expected O(n log n + n log2 k) time.

There is a matching Ω(n log2 k) lower bound on the number of
structural changes. To see this, consider the PSLG in Figure 12,
which is similar to an example Agarwal, Arge, and Yi [2] use to es-
tablish anΩ(n log k) lower bound. The example uses two sequences
of nearly cocircular vertices. On the bottom half of the circle is a se-
quence of Θ(n) pushing vertices that lie precisely on the circle. On
the top half is a smaller sequence of m pulling vertices v1, v2, . . . , vm

that are perturbed so they lie just inside the circle. Each pulling ver-
tex v j is concealed by j segments, all of whose endpoints lie outside
the circle. The total number of segments is k = m(m+1)/2. No seg-
ment conceals more than one pulling vertex. The pulling vertices
are placed so that edges of the CDT connect every pushing ver-
tex to the pulling vertex with highest index that is not concealed,
which we call the dominant pulling vertex. Every edge connecting
a pushing vertex to a pulling vertex v j has j conflicts. Say that v j is
alive if no segment that conceals it has been inserted yet, and call
the segments that conceal v j its conflicts. When a newly inserted
segment conflicts with the dominant pulling vertex, Θ(n) edges are
deleted andΘ(n) new edges are created adjoining the new dominant
pulling vertex.

We analyze the longevity of a pulling vertex vc with c conflicts
with a method developed by Clarkson [9]. After i segments have
been inserted, the likelihood that vc is still alive is

Pr[vc alive] =

(

k − c

i

) /(

k

i

)

=
k − i

k
· k − i − 1

k − 1
· · · k − i − c + 1

k − c + 1

>

(

k − i − c

k − c

)c

.

v1

v2

v3

Figure 12. The pulling vertices v1, v2, and v3 conflict with one, two, and
three segments (thick lines), respectively. The triangulation (thin lines)
connects the Θ(n) pushing vertices to v3 until a segment conceals it.

Consider the (i + 1)th segment insertion where

i ∈
[

αk ln k

m
,min

{

α

2
k1−2α ln k,

k

2
− m

}]

for some constant α > 0 we will choose shortly. For every pulling
vertex vc that has c ≤ αk

i
ln k conflicts, the range of i implies that

c ≤ m and i ≤ k/2 − c, so

Pr[vc alive] >

(

k − i − c

k − c

)
αk
i ln k

=

(

1 +
i

k − i − c

)− αk
i ln k

≥ e−αk ln k/(k−i−c)
= k−αk/(k−i−c) ≥ k−2α.

The middle inequality follows because 1+x ≤ ex for all x. Consider
the αk ln k/(2i) vertices in the range from vαk ln k/(2i) to vαk ln k/i. The
probability that at least one of them is alive is

Pr[one of vαk ln k/(2i), . . . , vαk ln k/i alive] > 1 −
(

1 − k−2α
)
αk ln k

2i

≥ 1 − e−αk1−2α ln k/(2i).

We assume that i ≤ α

2
k1−2α ln k, so the probability is at least 0.63

that there is a live vertex with at least αk ln k/(2i) conflicts. Edges
connect the exposed vertex with the most conflicts to theΘ(n) push-
ing vertices, and the (i + 1)th segment insertion deletes these edges
with probability at least αk ln k/(2i(k − i)). We choose α to be a
positive constant less than 1/4. Therefore, the expected number of
edges deleted during the duration of the algorithm is at least

min{ α2 k1−2α ln k, k/2−m}
∑

i= αk ln k
m ∈Θ(

√
k ln k)

0.63
αk ln k

2i(k − i)
Θ(n) = Θ(n log2 k).

The cogent observation is that there is a range of values for i span-
ning a factor of k0.5−2α in which the dominant live vertex has many
conflicts. Although this range is narrow (and hidden—it took us a
long time to realize it existed), it suffices to allow the summation
∑

1/i to contribute aΘ(log k) factor. In this range, each doubling of
i contributesΘ(n log k) structural changes, and i is doubledΘ(log k)
times.

Our lower bound example is related to the coupon collector’s
problem. Imagine that the pulling vertices represent a set of m

types of coupons you wish to collect, and that when you buy a
coupon (choose a random segment), it is of type vi with probabil-
ity pi. The probability of collecting every coupon vi+1, vi+2, . . . , vm

before collecting vi is [1]

Pr[vi after vi+1, . . . , vm] =

∫ ∞

0

pie
−pi t

∏

j>i

(

1 − e−p j t
)

dt.

Our analysis is equivalent to asking, if pi = i/k where k =
∑m

i=1 i,
how often can you expect to collect a coupon with a lesser index

than every previous coupon? We have not been able to find a pub-
lished asymptotic bound for this problem in terms of m, but we
have shown that the expected answer is in Θ(log2 k) = Θ(log2 m).
By comparison, if every coupon arrives with equal probability, the
expected answer is in Θ(log m).

7 The Cost of Segment Location

Recall that for an uninserted segment s, segment location is the act
of identifying a triangle in the current CDT that adjoins an endpoint
of s and whose interior intersects s. We perform segment location
with a simple rotary traversal of the triangles adjoining the endpoint
of s with lesser degree, taking time proportional to that endpoint’s
degree. One way to identify the endpoint of lesser degree is to
record the vertex degrees and update them with every change to the
triangulation. A simpler alternative is to perform simultaneous ro-
tary searches around both endpoints of s, interleaving steps around
one endpoint with steps around the other; a suitable triangle will be
found in time proportional to the lesser degree.

In practice, most segment location operations take O(1) time.
But what if both endpoints of many segments have large degrees?
Here, we show that the total cost of this segment location method is
at worst proportional to the number of vertices plus the number of
structural changes that occur during segment insertion. Therefore,
segment location never compromises the asymptotic running time
of incremental CDT construction.

Consider incrementally constructing the CDT of a PSLG X with
n vertices and k segments. Let l be the total number of edges that
are created during all the segment insertion operations, including
edges that are subsequently deleted. We have seen in Section 6 that
in expectation, l ∈ O(n log2 k) when the segment insertion order is
randomized; but often l is much smaller.

Theorem 10. During incremental construction of the CDT of X
(whether randomized or not), the total time for segment location as

described above is in O(n + l).

Proof. For i ∈ [0, k], let Ti be the CDT after the first i segments
have been inserted. For j ∈ [1, n], let d j be the maximum degree
of the vertex with index j over all the triangulations T0,T1, . . . ,Tk.
It follows from Euler’s formula that the sum of vertex degrees in
T0 is at most 6n − 12, so

∑n
j=1 d j ≤ 6n + 2l − 12. The following

argument shows that segment location takes O(
∑n

j=1 d j) time, and
therefore takes O(n + l) time.

Suppose that the vertices are indexed in nonincreasing order of
maximum degree, so that di ≥ d j whenever i < j. The time to
locate a segment s ∈ X whose vertices are numbered i and j with
i < j is at worst proportional to min{di, d j} = d j; call that number
the cost of s. For all i ∈ [3, n], let Xi ⊆ X be the PSLG induced
by taking only the first i vertices in X and the segments that adjoin
two of those vertices.

Observe that the total time for segment location is proportional
to the total cost of all the edges in X = Xn. We show that this total
is less than 3

∑n
i=1 di. AsX is planar, Xi has at most 3i−6 edges as a

consequence of Euler’s formula. Suppose without loss of generality
that Xn has exactly 3n − 6 edges, the maximum possible. As Xn−1

has at most 3n − 9 edges, at least three of the edges in Xn adjoin
vertex n and have a cost no greater than dn. Likewise, Xn−2 has at
most 3n− 12 edges, so at least six of the edges in Xn (including the
three just discussed) adjoin vertex n − 1 or vertex n and have a cost
no greater than dn−1. In general, for i ∈ [1, n−3], at least 3i edges in
Xn have a cost no greater than dn+1−i. Putting these costs together,
we can identify 3n − 9 edges whose total cost is at most 3

∑n
i=4 di.

The total cost of the remaining three edges is at most d2 + 2d3, so
the total cost of all the edges is less than 3

∑n
i=1 di.

8 Conclusions and Open Problems

Although this paper emphasizes the complexity of randomized in-
cremental segment insertion, we draw some conclusions useful to
programmers implementing CDT construction codes. First, when
some segments cross very large numbers of edges, a faster segment
insertion algorithm can make enough of a difference to justify its
implementation. Second, there is a very simple segment location
method that never compromises incremental insertion’s asymptotic
running time, with or without randomization. Third, it might be
worthwhile to randomize the order in which the segments are in-
serted; compare the expected O(n log2 k) upper bound on the num-
ber of structural changes with the Θ(nk) structural changes that can
occur with a deterministic ordering. Fourth, the O(n log2 k) upper
bound is almost always too pessimistic in practice; circumstances
in which this much work is required are difficult to devise and un-
likely to occur in the real world. Fifth, and most importantly, if in-
cremental segment insertion is implemented intelligently, it is fast
enough; implementing a more complicated O(n log n)-time CDT
construction algorithm is unlikely to repay the effort.

Given the Ω(n log2 k) lower bound on the expected number of
structural changes that the randomized incremental segment inser-
tion algorithm performs on some PSLGs, it is natural to wonder
whether it can be made faster by biasing the order in which the
segments are inserted or otherwise changing the algorithm. For ex-
ample, it is possible to choose two random segments, decide which
one crosses the fewest edges, and insert it in time proportional to
the number of edges it crosses—without taking the time to count all
the edges the other segment crosses. Does this procedure reduce the
expected asymptotic number of structural changes?

Interestingly, theO(n log2 k) upper bound on the number of struc-
tural changes does not rely on the constrained Delaunay property;
the analysis applies however the cavities are retriangulated. Are
there other algorithms for computing optimal triangulations that
can be sped up by randomized incremental segment insertion?

Acknowledgments

We thank Kevin Yi for introducing us to his work on CDT structural
changes [2], Pankaj Agarwal and Ken Clarkson for discussions of
the probabilistic methods behind it [9, 14], Peter Shor for pointing
out the connection to the coupon collector’s problem, and James
Martin for introducing us to the Poissonization of that problem.
We also thank James O’Brien for the inspiration of writing “This is
hopeless. You will never figure it out” on the whiteboard while we
worked out the lower bound.

References

[1] Ilan Adler, Shmuel Oren, and Sheldon M. Ross. The

Coupon-Collector’s Problem Revisited. Journal of Applied
Probability 40(2):513–518, June 2003.

[2] Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-Efficient

Construction of Constrained Delaunay Triangulations.
Unpublished manuscript, 2005. Most of this paper appears in
the Proceedings of the Thirteenth European Symposium on
Algorithms, pages 355–366, October 2005, but the published
version omits the analysis of the number of structural
changes performed by randomized incremental segment
insertion.

[3] Marc Vigo Anglada. An Improved Incremental Algorithm for

Constructing Restricted Delaunay Triangulations.
Computers and Graphics 21(2):215–223, March 1997.

[4] Adrian Bowyer. Computing Dirichlet Tessellations. The
Computer Journal 24(2):162–166, 1981.

[5] Kevin Q. Brown. Voronoi Diagrams from Convex Hulls. In-
formation Processing Letters 9(5):223–228, December 1979.

[6] Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard
Shewchuk. Delaunay Mesh Generation. CRC Press, Boca
Raton, Florida, December 2012.

[7] L. Paul Chew. Constrained Delaunay Triangulations.
Algorithmica 4(1):97–108, 1989.

[8] . Building Voronoi Diagrams for Convex Polygons in

Linear Expected Time. Technical Report PCS-TR90-147,
Department of Mathematics and Computer Science,
Dartmouth College, 1990.

[9] Kenneth L. Clarkson. New Applications of Random Sampling

in Computational Geometry. Discrete & Computational
Geometry 2(1):195–222, December 1987.

[10] Boris Nikolaevich Delaunay. Sur la Sphère Vide. Izvestia
Akademia Nauk SSSR, VII Seria, Otdelenie
Matematicheskii i Estestvennyka Nauk 7:793–800, 1934.

[11] Herbert Edelsbrunner and Raimund Seidel. Voronoi

Diagrams and Arrangements. Discrete & Computational
Geometry 1:25–44, 1986.

[12] Steven Fortune. A Sweepline Algorithm for Voronoi

Diagrams. Algorithmica 2(2):153–174, 1987.
[13] Leonidas J. Guibas and Jorge Stolfi. Primitives for the

Manipulation of General Subdivisions and the Computation

of Voronoi Diagrams. ACM Transactions on Graphics
4(2):74–123, April 1985.

[14] David Haussler and Emo Welzl. ǫ-Nets and Simplex Range

Queries. Discrete & Computational Geometry 2(1):127–151,
December 1987.

[15] François Hermeline. Triangulation Automatique d’un

Polyèdre en Dimension N. RAIRO Analyse Numérique
16(3):211–242, 1982.

[16] Rolf Klein and Andrzej Lingas. A Note on Generalizations of

Chew’s Algorithm for the Voronoi Diagram of a Convex

Polygon. Proceedings of the Fifth Canadian Conference on
Computational Geometry, pages 370–374, August 1993.

[17] Der-Tsai Lee and Arthur K. Lin. Generalized Delaunay

Triangulations for Planar Graphs. Discrete &
Computational Geometry 1:201–217, 1986.

[18] Der-Tsai Lee and Bruce J. Schachter. Two Algorithms for

Constructing a Delaunay Triangulation. International Journal
of Computer and Information Sciences 9(3):219–242, 1980.

[19] Raimund Seidel. Voronoi Diagrams in Higher Dimensions.
Diplomarbeit, Institut für Informationsverarbeitung,
Technische Universität Graz, 1982.

[20] . Constrained Delaunay Triangulations and Voronoi

Diagrams with Obstacles. 1978–1988 Ten Years IIG (H. S.
Poingratz and W. Schinnerl, editors), pages 178–191. Institut
für Informationsverarbeitung, Technische Universität Graz,
1988.

[21] . Backwards Analysis of Randomized Geometric

Algorithms. New Trends in Discrete and Computational Geo-
metry (János Pach, editor), Algorithms and Combinatorics,
volume 10, pages 37–67. Springer-Verlag, Berlin, 1993.

[22] Michael Ian Shamos and Dan Hoey. Closest-Point Problems.
16th Annual Symposium on Foundations of Computer Sci-
ence (Berkeley, California), pages 151–162, October 1975.

[23] Jonathan Richard Shewchuk. Adaptive Precision

Floating-Point Arithmetic and Fast Robust Geometric

Predicates. Discrete & Computational Geometry
18(3):305–363, October 1997.

[24] David F. Watson. Computing the n-dimensional Delaunay

Tessellation with Application to Voronoi Polytopes. The
Computer Journal 24(2):167–172, 1981.

