
!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Chapter 1

Introduction

One of the central tools of scientic computing is the fty-year old nite element method�—
a numerical method for approximating solutions to partial differential equations. The -
nite element method and its cousins, the nite volume method and the boundary element
method, simulate physical phenomena including uid ow, heat transfer, mechanical de-
formation, and electromagnetic wave propagation. They are applied heavily in industry
and science for diverse purposes�—evaluating pumping strategies for petroleum extraction,
modeling the fabrication and operation of transistors and integrated circuits, optimizing the
aerodynamics of aircraft and car bodies, and studying phenomena from quantum mechanics
to earthquakes to black holes.

The aerospace engineer Joe F. Thompson [215], who commanded a multi-institutional
mesh generation effort called the National Grid Project, wrote in 1992 that

An essential element of the numerical solution of partial differential equations
(PDEs) on general regions is the construction of a grid (mesh) on which to
represent the equations in nite form. . . . [A]t present it can take orders of
magnitude more man-hours to construct the grid than it does to perform and
analyze the PDE solution on the grid. This is especially true now that PDE
codes of wide applicability are becoming available, and grid generation has
been cited repeatedly as being a major pacing item. The PDE codes now avail-
able typically require much less esoteric expertise of the knowledgeable user
than do the grid generation codes.

Two decades later, meshes are still a recurring bottleneck. The automatic mesh gener-
ation problem is to divide a physical domain with a complicated geometry�—say, an auto-
mobile engine, a human�’s blood vessels, or the air around an airplane�—into small, simple
pieces called elements, such as triangles or rectangles (for two-dimensional geometries) or
tetrahedra or rectangular prisms (for three-dimensional geometries), as illustrated in Fig-
ure 1.1. Millions or billions of elements may be needed.

A mesh must satisfy nearly contradictory requirements: it must conform to the shape
of the object or simulation domain; its elements may be neither too large nor too numer-
ous; it may have to grade from small to large elements over a relatively short distance;
and it must be composed of elements that are of the right shapes and sizes. �“The right

1

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

2 Delaunay Mesh Generation

Figure 1.1: Finite element meshes of a polygonal, a polyhedral, and a curved domain. One
mesh of the key has poorly shaped triangles and no Steiner points; the other has Steiner
points and all angles between 30◦ and 120◦. The cutaway view at lower right reveals some
of the tetrahedral elements inside the mesh.

shapes�” typically include elements that are nearly equilateral and equiangular, and typi-
cally exclude elements that are long and thin, for example, shaped like a needle or a kite.
However, some applications require anisotropic elements that are long and thin, albeit with
specied orientations and eccentricities, to interpolate elds with anisotropic second deriva-
tives or to model anisotropic physical phenomena such as laminar air ow over an airplane
wing.

By our reckoning, the history of mesh generation falls into three periods, conveniently
divided by decade. The pioneering work was done by researchers from several branches
of engineering, especially mechanics and uid dynamics, during the 1980s�—though as we
shall see, the earliest work dates back to at least 1970. This period brought forth most of
the techniques used today: the Delaunay, octree, and advancing front methods for mesh
generation, and mesh �“clean-up�” methods for improving an existing mesh. Unfortunately,

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 3

nearly all the algorithms developed during this period are fragile, and produce unsatisfying
meshes when confronted by complex domain geometries and stringent demands on element
shape.

Around 1988, these problems attracted the interest of researchers in computational ge-
ometry, a branch of theoretical computer science. Whereas most engineers were satised
with mesh generators that usually work for their chosen domains, computational geometers
set a loftier goal: provably good mesh generation, the design of algorithms that are mathe-
matically guaranteed to produce a satisfying mesh, even for domain geometries unimagined
by the algorithm designer. This work ourished during the 1990s and continues to this day.
It is the subject of this book.

During the rst decade of the 2000s, mesh generation became bigger than the nite
element methods that gave birth to it. Computer animation uses triangulated surface models
extensively, and the most novel new ideas for using, processing, and generating meshes
often debut at computer graphics conferences. By economic measures, the videogame and
motion picture industries probably now exceed the nite element industries as users of
meshes.

Meshes today nd heavy use in hundreds of other applications, such as aerial land
surveying, image processing, geographic information systems, radio propagation analysis,
shape matching, population sampling, and multivariate interpolation. Mesh generation has
become a truly interdisciplinary topic.

1.1 Meshes and the goals of mesh generation
Meshes are categorized according to their dimensionality and choice of elements. Triangu-
lar meshes, tetrahedral meshes, quadrilateral meshes, and hexahedral meshes are named
according to the shapes of their elements. The two-dimensional elements�—triangles and
quadrilaterals�—serve both in modeling two-dimensional domains and in surface meshes
embedded in three dimensions, which are prevalent in computer graphics, boundary ele-
ment methods, and simulations of thin plates and shells.

Tetrahedral elements are the simplest of all polyhedra, having four vertices and four
triangular faces. Quadrilateral elements are four-sided polygons; their sides need not be
parallel. Hexahedral elements are brick-like polyhedra, each having six quadrilateral faces,
but their faces need not be parallel or even planar. This book discusses only simplicial
meshes�—triangular and tetrahedral meshes�—which are easier to generate than quadrilat-
eral and hexahedral ones. For some applications, quadrilateral and hexahedral meshes offer
more accurate interpolation and approximation. Non-simplicial elements sometimes make
life easier for the numerical analyst; simplicial elements nearly always make life easier
for the mesh generator. For topological reasons, hexahedral meshes can be extraordinarily
difficult to generate for geometrically complicated domains.

Meshes are also categorized as structured or unstructured. A structured mesh, such as
a regular cubical grid, has the property that its vertices can be numbered so that simple
arithmetic suffices to determine which vertices share an element with a selected vertex.
This book discusses only unstructured meshes, which entail explicitly storing each vertex�’s
neighboring vertices or elements. All the meshes in Figure 1.1 are unstructured. Structured

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

4 Delaunay Mesh Generation

Figure 1.2: Nonconforming elements.

meshes are suitable primarily for domains that have tractable geometries and do not require
a strongly graded mesh. Unstructured meshes are much more versatile because of their
ability to combine good element shapes with odd domain shapes and element sizes that
grade from very small to very large.

For most applications, the elements constituting a mesh must intersect �“nicely,�” mean-
ing that if two elements intersect, their intersection is a vertex or edge or entire face of
both. Formally, a mesh must be a complex, dened in Section 1.5. The mesh generation
problem becomes supercially easier if we permit what nite element practitioners call
nonconforming elements like those illustrated in Figure 1.2, where an element shares an
edge with two other elements each abutting half of that edge. But nonconforming elements
rarely alleviate the underlying numerical problems and can be computationally expensive
when they do, so they nd limited use in unstructured meshes.

The goal of mesh generation is to create elements that conform to the shape of the
geometric domain and meet constraints on their sizes and shapes. The next two sections
discuss domain conformity and element quality.

1.1.1 Domain conformity

Mesh generation algorithms vary in what domains they can mesh and how those domains
are specied. The input to a mesh generator might be a simple polygon or polyhedron.
Meshing becomes more difficult if the domain can have internal boundaries that no ele-
ment is permitted to cross, such as a boundary between two materials in a heat transfer
simulation. Meshing is substantially more difficult for domains that have curved edges and
surfaces, called ridges and patches, which are typically represented by splines, implicit
equations, or subdivision surfaces. Each of these kinds of geometry requires a different
denition of what it means to triangulate a domain. Let us consider these geometries in
turn.

A polygon whose boundary is a closed loop of straight edges can be subdivided into
triangles whose vertices all coincide with vertices of the polygon; see Section 2.10.1 for a
proof of that fact. The set containing those triangles, their edges, and their vertices is called
a triangulation of the polygon. But as the illustration at top center in Figure 1.1 illustrates,
the triangles may be badly shaped. To mesh a polygon with only high-quality triangles,
as illustrated at upper right in the gure, a mesh generator usually introduces additional
vertices that are not vertices of the polygon. The added vertices are often called Steiner
points, and the mesh is called a Steiner triangulation of the polygon.

Stepping into three dimensions, we discover that polyhedra can be substantially more
difficult to triangulate than polygons. It comes as a surprise to learn that many polyhedra
do not have triangulations, if a triangulation is dened to be a subdivision of a polyhedron

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 5

into tetrahedra whose vertices are all vertices of the polyhedron. In other words, Steiner
points are sometimes mandatory. See Section 4.5 for an example.

Internal boundaries exist to help apply boundary conditions for partial differential equa-
tions and to support discontinuities in physical properties, such as differences in heat con-
ductivity in a multi-material simulation. A boundary, whether internal or external, must be
represented by a union of edges or faces of the mesh. Elements cannot cross boundaries,
and where two materials meet, their meshes must have matching edges and faces. This re-
quirement may seem innocuous, but it makes meshing much harder if the domain has small
angles. We dene geometric structures called piecewise linear complexes to formally treat
polygonal and polyhedral domains, like those at upper left and center left in Figure 1.1, in
a manner that supports internal boundaries. Piecewise linear complexes and their triangu-
lations are dened in Sections 2.10.1 and 4.5.1.

Curved domains introduce more difficulties. Some applications require elements that
curve to match a domain. Others approximate a curved domain with a piecewise linear
mesh at the cost of introducing inaccuracies in the shape, the nite element solutions, and
the surface normal vectors (which are important for computer graphics). In nite element
methods, curved domains are sometimes approximated with elements whose faces are de-
scribed by parametrized quadratic, cubic, bilinear, or trilinear patches. In this book, the
elements are always linear triangles and tetrahedra.

We study algorithms for several types of curved domain: in Chapters 12�–14, we study
how to mesh smooth surfaces with triangles and how to mesh volumes bounded by smooth
surfaces with tetrahedra. Then we mesh more general domains like that at lower left in
Figure 1.1, specied by geometric structures called piecewise smooth complexes. These
complexes are composed of smoothly curved patches and ridges, but patches can meet non-
smoothly at ridges and vertices, and internal boundaries are permitted. Piecewise smooth
complexes and their triangulations are dened in Chapter 15.

In this book, we assume that we have mathematically exact representations of domains
and ignore the difficulties of numerical robustness and real-world CAD models, but we
acknowledge that they are important issues.

1.1.2 Element quality

Most applications of meshes place constraints on both the shapes and sizes of the elements.
These constraints come from several sources. First, large angles (near 180◦) can cause large
interpolation errors. In the nite element method, these errors induce a large discretization
error�—the difference between the computed approximation and the true solution of the
PDE. Second, small angles (near 0◦) can cause the stiffness matrices associated with the -
nite element method to be ill-conditioned. Small angles do not harm interpolation accuracy,
and many applications can tolerate them. Third, smaller elements offer more accuracy, but
cost more computationally. Fourth, small or skinny elements can induce instability in the
explicit time integration methods employed by many time-dependent physical simulations.
Let us consider these four constraints in turn.

The rst constraint forbids large angles, including large plane angles in triangles and
large dihedral angles (dened in Section 1.7) in tetrahedra. Most applications of triangula-
tions use them to interpolate a multivariate function whose true value might or might not be

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

6 Delaunay Mesh Generation

Figure 1.3: An illustration of how large angles, but not small angles, can ruin the interpo-
lated gradients. Each triangulation uses 200 triangles to render a paraboloid.

known. For example, a surveyor may know the altitude of the land at each point in a large
sample and use interpolation over a triangulation tog approximate the altitude at points
where readings were not taken. There are two kinds of interpolation error that matter for
most applications: the difference between the interpolating function and the true function,
and the difference between the gradient of the interpolating function and the gradient of
the true function. Element shape is largely irrelevant for the rst kind�—the way to reduce
interpolation error is to use smaller elements.

However, the error in the gradient depends on both the shapes and the sizes of the
elements: it can grow arbitrarily large as an element�’s largest angle approaches 180◦. In
Figure 1.3, three triangulations, each having 200 triangles, are used to render a paraboloid.
The mesh of long thin triangles at right has no angle greater than 90◦, and visually per-
forms only slightly worse than the high-quality triangulation at left. The slightly worse
performance is because of the longer edge lengths. However, the middle paraboloid looks
like a washboard, because the triangles with large angles have very inaccurate gradients.

Figure 1.4 shows why this problem occurs. Let f be a function�—perhaps some physical
quantity like temperature�—linearly interpolated on the illustrated triangle. The values of f
at the vertices of the bottom edge are 35 and 65, so the linearly interpolated value of f at
the center of the edge is 50. This value is independent of the value associated with the top
vertex. As the angle at the upper vertex approaches 180◦, the interpolated point with value
50 becomes arbitrarily close to the upper vertex with value 40. Hence, the interpolated
gradient ∇ f can become arbitrarily large and is clearly specious as an approximation of the

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 7

20

4065
50

35

40

40

20

40

20

Figure 1.4: As the large angle of the triangle approaches 180◦, or the sliver tetrahedron be-
comes arbitrarily at, the magnitude of the interpolated gradient becomes arbitrarily large.

true gradient. The same effect is seen between two edges of a sliver tetrahedron that pass
near each other, also illustrated in Figure 1.4.

In the nite element method, the discretization error is usually proportional to the error
in the gradient, although the relationship between the two depends on the PDE and the
order of the basis functions used to discretize it. In surface meshes for computer graphics,
large angles cause triangles to have normal vectors that poorly approximate the normal to
the true surface, and these can create visual artifacts in rendering. We derive bounds on this
approximation in Section 12.7.2.

For tetrahedral elements, usually it is their largest dihedral angles that matter most.
Nonconvex quadrilateral and hexahedral elements, with interior angles exceeding 180◦,
sabotage interpolation and the nite element method.

The second constraint on mesh generators is that many applications forbid small angles,
although fewer than those that forbid large angles. If the application is the nite element
method, then the eigenvalues of the stiffness matrix associated with the method ideally
should be clustered as close together as possible. Matrices with poor eigenvalue spectra
affect linear equation solvers by slowing down iterative methods and introducing large
roundoff errors into direct methods. The relationship between element shape and matrix
conditioning depends on the PDE being solved and the basis functions and test functions
used to discretize it, but as a rule of thumb, it is the small angles that are deleterious: the
largest eigenvalue of the stiffness matrix approaches innity as an element�’s smallest an-
gle approaches zero. Fortunately, most linear equation solvers cope well with a few bad
eigenvalues.

The third constraint on mesh generators governs element size. Many mesh generation
algorithms take as input not just the domain geometry, but also a space-varying size eld
that species the ideal size, and sometimes anisotropy, of an element as a function of its
position in the domain. (The size eld is often implemented by interpolation over a back-
ground mesh.) A large number of ne (small) elements may be required in one region
where they are needed to attain good accuracy�—often where the physics is most interest-
ing, as amid turbulence in a uid ow simulation�—whereas other regions might be better
served by coarse (large) elements, to keep their number small and avoid imposing an over-
whelming computational burden on the application. The ideal element in one part of the
mesh may vary in volume by a factor of a million or more from the ideal element in an-
other part of the mesh. If elements of uniform size are used throughout the mesh, one must
choose a size small enough to guarantee sufficient accuracy in the most demanding portion
of the problem domain and thereby incur excessively large computational demands.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

8 Delaunay Mesh Generation

Figure 1.5: A mesh of this domain must have a new small angle.

A graded mesh is one that has large disparities in element size. Ideally, a mesh generator
should be able to grade from very small to very large elements over a short distance. How-
ever, overly aggressive grading introduces skinny elements in the transition region. The size
eld alone does not determine element size: mesh generators often create elements smaller
than specied to maintain good element quality in a graded mesh and to conform to small
geometric features of a domain.

Given a coarse mesh�—one with relatively few elements�—it is typically easy to rene
it, guided by the size eld, to produce another mesh having a larger number of smaller
elements. The reverse process is much harder. Hence, mesh generation algorithms often set
themselves the goal of being able, in principle, to generate as coarse a mesh as possible.

The fourth constraint forbids unnecessarily small or skinny elements for time-
dependent PDEs solved with explicit time integration methods. The stability of explicit
time integration is typically governed by the Courant�–Friedrichs�–Lewy condition, which
implies that the computational time step must be small enough that a half-wave or other
time-dependent signal cannot cross more than one element per time step. Therefore, ele-
ments with short edges or short altitudes may force a simulation to take unnecessarily small
time steps, at great computational cost, or risk introducing a large dose of spurious energy
that causes the simulation to �“explode.�”

These four constraints can be difficult to reconcile. Some meshing problems are impos-
sible. A polygonal domain that has a corner bearing a 1◦ angle obviously cannot be meshed
with triangles whose angles all exceed 30◦; but suppose we merely ask that all angles be
greater than 30◦ except the 1◦ angle? This request can always be granted for a polygon with
no internal boundaries, but Figure 1.5 depicts a domain composed of two polygons glued
together that, surprisingly, provably has no mesh whose new angles are all over 30◦. Simple
polyhedra in three dimensions inherit this hurdle, even without internal boundaries. One of
the biggest challenges in mesh generation is three-dimensional domains with small angles
and internal boundaries, wherein an arbitrary number of ridges and patches can meet at a
single vertex. Chapters 9 and 15 present algorithms for meshing linear and curved domains
with these difficulties.

1.2 Delaunay triangulations and Delaunay renement algo-
rithms

This book is about provably good mesh generation algorithms that employ the Delau-
nay triangulation, a geometric structure possessed of mathematical properties uniquely
well suited to creating good triangular and tetrahedral meshes. The dening property of a

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 9

Figure 1.6: A mesh generated by Chew�’s rst Delaunay renement algorithm.

Delaunay triangulation in the plane is that no vertex of the triangulation lies in the interior
of any triangle�’s circumscribing disk�—the unique circular disk whose boundary touches the
triangle�’s three vertices. In three dimensions, no vertex is enclosed by any tetrahedron�’s cir-
cumscribing sphere. Delaunay triangulations optimize several geometric criteria, including
some related to interpolation accuracy.

Delaunay renement algorithms construct a Delaunay triangulation and rene it by
inserting new vertices, chosen to eliminate skinny or oversized elements, while always
maintaining the Delaunay property of the mesh. The key to ensuring good element quality
is to prevent the creation of unnecessarily short edges. The Delaunay triangulation serves
as a guide to nding locations to place new vertices that are far from existing ones, so that
short edges and skinny elements are not created needlessly.

As a preview, consider the rst provably good Delaunay renement algorithm, invented
by Paul Chew, which takes as input a polygonal domain and generates a triangular mesh
whose angles are all between 30◦ and 120◦. (The input polygon may not have an angle less
than 30◦.) Chew begins by subdividing the polygon�’s edges so that all the edge lengths are
in a range [h,

√
3h], where h is chosen small enough that such a subdivision exists with no

two edge endpoints closer to each other than h. Next, he constructs the constrained Delau-
nay triangulation of the subdivision, dened in Section 2.10.2. Finally, he renes the tri-
angulation by repeatedly choosing a triangle whose circumscribing disk has radius greater
than h and inserting a new vertex at the center of the circumscribing disk, until no such
triangle survives. The vertex is inserted by an algorithm that maintains the constrained De-
launay property of the mesh and thereby eliminates the skinny triangle. Chew�’s algorithm
is quite useful in practice, but it generates only meshes with uniformly sized triangles, as
Figure 1.6 illustrates, and not graded meshes.

The rst third of this book lays out the mathematical underpinnings of Delaunay trian-
gulations and the most practical algorithms for constructing them. The second third of this
book describes Delaunay renement algorithms for domains expressed as piecewise linear
complexes, which generalize polygons and polyhedra to support internal boundaries. The
nal third of this book describes Delaunay renement algorithms for curved domains�—
specically, smooth surfaces, volumes bounded by smooth surfaces, and piecewise smooth

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

10 Delaunay Mesh Generation

domains that have curved ridges and patches and are represented by piecewise smooth com-
plexes.

1.3 A brief history of mesh generation
Three classes of mesh generation algorithms predominate nowadays: advancing front meth-
ods, wherein elements crystallize one by one, coalescing from the boundary of a domain
to its center; grid, quadtree, and octree algorithms, which overlay a structured background
grid and use it as a guide to subdivide a domain; and Delaunay renement algorithms, the
subject of this book. An important fourth class is mesh improvement algorithms, which
take an existing mesh and make it better through local optimization. The few fully unstruc-
tured mesh generation algorithms that do not fall into one of these four categories are not
yet in widespread use.

Automatic unstructured mesh generation for nite element methods began in 1970 with
an article by C. O. Frederick, Y. C. Wong, and F. W. Edge entitled �“Two-Dimensional Auto-
matic Mesh Generation for Structural Analysis�” in the International Journal for Numerical
Methods in Engineering. This startling paper describes, to the best of our knowledge, the
rst Delaunay mesh generation algorithm, the rst advancing front method, and the rst
algorithm for Delaunay triangulations in the plane besides slow exhaustive search�—all one
and the same. The irony of this distinction is that the authors appear to have been unaware
that the triangulations they create are Delaunay. Moreover, a careful reading of their paper
reveals that their meshes are constrained Delaunay triangulations, a sophisticated variant of
Delaunay triangulations which we discuss in Section 2.10.2. The paper is not well known,
perhaps because it was two decades ahead of its time.

Advancing front methods construct elements one by one, starting from the domain
boundary and advancing inward, as illustrated in Figure 1.7�—or occasionally outward, as
when meshing the air around an airplane. The frontier where elements meet unmeshed do-
main is called the front, which ventures forward until the domain is paved with elements
and the front vanishes. Advancing front methods are characterized by exceptionally high
quality elements at the domain boundary. The worst elements appear where the front col-
lides with itself, and assuring their quality is difficult, especially in three dimensions; there
is no literature on provably good advancing front algorithms. Advancing front methods
have been particularly successful in uid mechanics, because it is easy to place extremely
anisotropic elements or specialized elements at the boundary, where they are needed to
model phenomena such as laminar air ow.

Most early methods created vertices and then triangulated them in two separate stages.
For instance, Frederick, Wong, and Edge use �“a magnetic pen to record node point data
and a computer program to generate element data.�” The simple but crucial next insight�—
arguably, the �“true�” advancing front technique�—was to interleave vertex creation with el-
ement creation, so the front can guide the placement of vertices. Alan George took this
step in his 1971 doctoral dissertation, but it was forgotten and reinvented several times, and
nally became widespread around 1988.

Most Delaunay mesh generators, unlike advancing front methods, create their worst ele-
ments near the domain boundary and their best elements in the interior. The early Delaunay

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 11

Figure 1.7: Advancing front mesh generation.

Figure 1.8: A quadtree mesh.

mesh generators, like the early advancing front methods, created vertices and triangulated
them in two separate stages. The era of modern meshing began in 1987 with the insight,
courtesy of William Frey, to use the triangulation as a search structure to decide where to
place the vertices. Delaunay renement is the notion of maintaining a Delaunay triangula-
tion while inserting vertices in locations dictated by the triangulation itself. The advantage
of Delaunay methods, besides the optimality properties of the Delaunay triangulation, is
that they can be designed to have mathematical guarantees: that they will always construct
a valid mesh and, at least in two dimensions, that they will never produce skinny elements.

The third class of mesh generators is those that overlay a domain with a background
grid whose resolution is small enough that each of its cells overlaps a very simple, eas-
ily triangulated portion of the domain, as illustrated in Figure 1.8. A variable-resolution
grid, usually a quadtree or octree, yields a graded mesh. Element quality is usually assured
by warping the grid so that no short edges appear when the cells are triangulated, or by
improving the mesh afterward.

Grid meshers place excellent elements in the domain interior, but the elements near
the domain boundary are worse than with other methods. Other disadvantages are the ten-
dency for most mesh edges to be aligned in a few preferred directions, which may inuence
subsequent nite element solutions, and the difficulty of creating anisotropic elements that
are not aligned with the grid. Their advantages are their speed, their ease of parallelism,
the fact that some of them have mathematical guarantees, and most notably, their robust-
ness for meshing imprecisely specied geometry and dirty CAD data. Mark Yerry and
Mark Shephard published the rst quadtree mesher in 1983 and the rst octree mesher
in 1984.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

12 Delaunay Mesh Generation

From nearly the beginning of the eld, most mesh generation systems have included a
mesh �“clean-up�” component that improves the quality of a nished mesh. Today, simplicial
mesh improvement heuristics offer by far the highest quality of all the methods, and excel-
lent control of anisotropy. Their disadvantages are the requirement for an initial mesh and a
lack of mathematical guarantees. (They can guarantee they will not make the mesh worse.)

The ingredients of a mesh improvement method are a set of local transformations,
which replace small groups of tetrahedra with other tetrahedra of better quality, and a
schedule that searches for opportunities to apply them. Smoothing is the act of moving
a vertex to improve the quality of the elements adjoining it. Smoothing does not change
the connectivity (topology) of the mesh. Topological transformations are operations that
change the mesh connectivity by removing elements from a mesh and replacing them with
a different conguration of elements occupying the same space.

The simplest topological transformation is the edge ip in a triangular mesh, which re-
places two adjacent triangles with two different triangles. There are analogous transforma-
tions for tetrahedra, quadrilaterals, and hexahedra. Simple transformations called bistellar
ips that act on triangles and tetrahedra are discussed in Section 4.4. In Chapter 10, we de-
scribe a provably good algorithm called sliver exudation that uses bistellar ips to improve
Delaunay meshes.

The story of provably good mesh generation is an interplay of ideas between Delaunay
methods and methods based on grids, quadtrees, and octrees. It began in 1988, when Brenda
Baker, Eric Grosse, and Conor Rafferty gave an algorithm to triangulate a polygon so that
all the new angles in the mesh are between 14◦ and 90◦. They overlay the polygon with a
ne square grid, create new vertices at some grid points and at some intersections between
grid lines and the polygon boundary, and triangulate them with a complicated case analysis.

The following year, Paul Chew gave a more practical algorithm, which we have de-
scribed in Section 1.2, that uses Delaunay renement to guarantee angles between 30◦ and
120◦. In 1992, Dey, Bajaj, and Sugihara generalized Chew�’s algorithm to generate tetra-
hedral meshes of convex polyhedral domains. Although their algorithm is guaranteed to
eliminate most types of bad tetrahedra, a few bad tetrahedra slip through: a type of tetrahe-
dron called a sliver or kite.

The canonical sliver is formed by arranging four vertices around the equator of a sphere,
equally spaced, then perturbing one of the vertices slightly off the equator, as Figure 1.9
illustrates. A sliver can have dihedral angles arbitrarily close to 0◦ and 180◦ yet have no
edge that is particularly short. Provably good sliver removal is one of the most difficult the-
oretical problems in mesh generation, although mesh improvement algorithms beat slivers
consistently in practice.

None of the provably good algorithms discussed above produce graded meshes. The
1990 quadtree algorithm of Marshall Bern, David Eppstein, and John Gilbert meshes a
polygon so no new angle is less than 18.4◦. It has been inuential in part because the
meshes it produces are not only graded, but size-optimal: the number of triangles in a mesh
is at most a constant factor times the number in the smallest possible mesh (measured by
triangle count) having no angle less than 18.4◦. Ironically, the algorithm produces too many
triangles to be practical�—but only by a constant factor.

In 1992, Scott Mitchell and Stephen Vavasis developed an octree algorithm that offers
guarantees on dihedral angles, grading, and size optimality. The bounds are not strong

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 13

Figure 1.9: The mesh generator�’s nemesis: a sliver tetrahedron.

enough to be meaningful in practice and are not explicitly stated. Nevertheless, the papers
by Bern et al. and Mitchell and Vavasis decidedly broadened the ambitions of provably
good meshing.

A groundbreaking 1992 paper by Jim Ruppert on triangular meshing brought guaran-
teed good grading and size optimality to Delaunay renement algorithms. Ruppert�’s algo-
rithm, described in Chapter 6, accepts nonconvex domains with internal boundaries and
produces graded meshes of modest size and high quality in practice.

Domains with curved geometries, represented by splines, isosurfaces, or other surface
representations, increase the challenge appreciably. Most early algorithms for meshing sur-
faces work in the parametric space of a spline, but most grid and octree methods work
directly in three-dimensional space, as do a few advancing front methods. A 1993 paper by
Paul Chew partly generalizes Delaunay triangulations to curved surfaces. He proposes an
algorithm that takes a triangulation of a spline patch, ips its edges to make it Delaunay, and
renes it. If the initial mesh is ne enough, the triangles in the nal mesh are guaranteed to
have high quality.

These early works in guaranteed-quality mesh generation launched a rapid escalation
of research on the subject, in which we were fortunate to participate.

1.4 A personal history of working in mesh generation
When we came to study mesh generation in the 1990s, we were drawn by the unusually
strong way it combines theory and practice, complexity and elegance, and combinatorial
and numerical computing. There is a strong tradition of practical meshing algorithms in
scientic computing and computer graphics, yet their difficulty and fragility bring up fun-
damental theoretical questions in approximation theory, surface sampling, topology, algo-
rithm design, numerical computing, and the structure of Delaunay triangulations and their
weighted and constrained relatives. Mesh generation demands an understanding of both
combinatorial and numerical algorithms, because meshing is geometric and most meshes
are used by numerical applications. Lastly, meshes and their applications are as attractive
to the eye as their mathematics are to the soul.

Galvanized by the publication of Ruppert�’s algorithm, Jonathan generalized it to three
dimensions in 1997. The tetrahedral Delaunay renement algorithm described in Chapter 8
accepts nonconvex domains with internal boundaries and offers guaranteed good grading.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

14 Delaunay Mesh Generation

However, it is not guaranteed to eliminate slivers, which implies (for technical reasons) that
it cannot guarantee size optimality.

It soon became apparent that there are two serious difficulties in developing a truly sat-
isfying meshing algorithm for polyhedral domains. First, domain faces that meet at small
angles are particularly difficult to mesh, especially if many edges and faces, including in-
ternal boundaries, converge at a point. Second, although Delaunay renement algorithms
naturally eliminate most types of bad tetrahedra, they cannot guarantee that there will be no
slivers, and even successful attempts to eliminate slivers in practice tend to overrene the
mesh. Researchers have made progress on both problems, but they are still areas of active
research.

It is sometimes impossible to place high-quality tetrahedra at the apex of a small domain
angle, so a mesh generation algorithm must know when and where to relax its guarantees
on tetrahedron quality. In Chapter 9, we present a new algorithm that uses a variant of the
Delaunay triangulation called a weighted Delaunay triangulation to help enforce domain
conformity near small angles. The algorithm includes contributions from all three of us
and several other collaborators, as we have collectively worked on this problem for over a
decade.

In 1999, Siu-Wing and Tamal participated in the development of a provably good tech-
nique called sliver exudation for removing the worst slivers from a Delaunay mesh. Like
our method for treating small domain angles, sliver exudation uses a weighted Delaunay
triangulation; it removes slivers by shifting the weights of the vertices. We describe this
technique in Chapter 10, and how to combine it with Delaunay renement in Chapter 11.
Since the original paper, Jonathan has joined the collaboration and together we have tight-
ened the analysis considerably.

Surface meshing has been a particularly absorbing and rewarding research topic for
us. It has compelled researchers to bring topology and approximation theory into mesh
generation to help prove that certain meshes are topologically and geometrically accurate
representations of curved domains. In 1997, Herbert Edelsbrunner and Nimish Shah took a
large step forward by introducing the restricted Delaunay triangulation, a subcomplex of
the three-dimensional Delaunay triangulation that serves as a surface mesh under the right
conditions. Specically, they prove a result known as the Topological Ball Theorem, which
states that if the intersection of each face of a Voronoi diagram with a surface is a topolog-
ical ball of the right dimension, then the restricted Delaunay triangulation is topologically
equivalent to the surface. We dene restricted Delaunay triangulations in Section 13.1 and
state the Topological Ball Theorem in Section 13.2.

Provably good surface meshing draws on ideas in sampling theory originally developed
for the problem of reconstructing the shape of a three-dimensional object from a nite set
of points sampled from its surface by a laser scanner or stereo photography. In a seminal
work from 1999, Nina Amenta and Marshall Bern use sampling theory and the Topological
Ball Theorem to show that if a smooth surface is sampled sufficiently densely, the Delau-
nay tetrahedralization of the sample points includes a subset of triangles that accurately
reconstruct the surface, by both topological and geometric criteria.

The recognition of these remarkable connections prompted us and other researchers to
develop surface meshing algorithms with topological and geometric guarantees. Tamal col-
laborated with Ho-Lun Cheng, Herbert Edelsbrunner, and John Sullivan in 2001 to develop

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 15

a Delaunay renement algorithm that chooses sample points and computes topologically
correct triangular meshes for a class of smooth surfaces called skin surfaces. This work in-
cludes further developments in sampling theory that suggest how to choose vertices to en-
sure that the preconditions of the Topological Ball Theorem hold for more general classes
of surfaces. Independently in 2003, Jean-Daniel Boissonnat and Steve Oudot developed a
similar sampling theory and a simple Delaunay renement algorithm for a more general
class of smooth surfaces. We devote Chapters 12 and 13 to developing an updated sam-
pling theory for smooth surfaces and restricted Delaunay triangulations. In Chapter 14, we
study mesh generation algorithms that depend on this theory, including several algorithms
for generating a triangular mesh of a smooth surface, and an algorithm for generating a
tetrahedral mesh of a volume bounded by a smooth surface.

Meshing is yet more difficult for curved domains that are only piecewise smooth, with
smooth surface patches meeting along smoothly curved ridges. With Edgar Ramos, Siu-
Wing and Tamal introduced the rst provably good algorithm for such domains in 2007. It
uses a weighted Delaunay triangulation to enforce domain conformity at the corners and
creases (ridges) of the domain, and motivates the development of additional sampling the-
ory to ensure the topological correctness of the mesh. In the years following, this algorithm
was made more practical with additional contributions from Josh Levine. Our nal chapter
describes a considerably updated and improved version of this algorithm.

As part of our research, we have developed several mesh generation packages that are
publicly available on the web. Most of the images of meshes in this book were generated by
these programs. Jonathan Shewchuk�’s program Triangle1 robustly constructs constrained
Delaunay triangulations and high-quality triangular meshes in the plane, using Ruppert�’s
algorithm to generate the latter. In 2003, Triangle received the James Hardy Wilkinson
Prize in Numerical Software. Bryan Klingner and Jonathan Shewchuk also offer a tetrahe-
dral mesh improvement program Stellar2 that employs algorithms not discussed in this
book (as they do not use Delaunay triangulations).

In collaboration with Edgar Ramos and Tathagata Ray, Siu-Wing and Tamal developed
an algorithm for generating tetrahedral meshes of polyhedral domains with small angles and
another algorithm for remeshing polygonal surfaces. Tathagata Ray implemented these two
algorithms and released the programs QualMesh3 and SurfRemesh4. SurfRemesh is a pre-
cursor of the more practical algorithm DelSurf we describe in Chapter 14. Together with
Josh Levine, Tamal designed an algorithm for generating triangular and tetrahedral meshes
of piecewise smooth complexes. Josh Levine implemented the algorithm and released the
program DelPSC5, which is a precursor of the algorithm we describe in Chapter 15. We
have taken the liberty of including illustrations generated by these programs through-
out the book as prototypes, even though we have subsequently improved many of the
algorithms.

1http://www.cs.cmu.edu/∼quake/triangle.html
2http://www.cs.berkeley.edu/∼jrs/stellar
3http://www.cse.ohio-state.edu/∼tamaldey/qualmesh.html
4http://www.cse.ohio-state.edu/∼tamaldey/surfremesh.html
5http://www.cse.ohio-state.edu/∼tamaldey/delpsc.html

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

16 Delaunay Mesh Generation

Figure 1.10: From left to right, a simplicial complex, a polyhedral complex, a piecewise
linear complex, and a piecewise smooth complex. The shaded areas are triangles, convex
polygons, linear 2-cells, and smooth 2-cells, respectively. In the piecewise linear complex,
observe that several linear cells have holes, one of which is lled by another linear cell
(darkly shaded).

1.5 Simplices, complexes, and polyhedra
Tetrahedra, triangles, edges, and vertices are instances of simplices. In this book, we rep-
resent meshes and the domains we wish to mesh as complexes. There are several different
types of complexes, illustrated in Figure 1.10, which all share two common properties.
First, a complex is a set that contains not only volumes such as tetrahedra, but also the
facets, edges, and vertices of those volumes. Second, the cells in a complex must intersect
each other according to specied rules, which depend on the type of complex.

The simplest type of complex is a simplicial complex, which contains only simplices.
All the mesh generation algorithms in this book produce simplicial complexes. More gen-
eral are polyhedral complexes, composed of convex polyhedra; these �“polyhedra�” can be
of any dimension from zero on up. The most important polyhedral complexes we study
in this book are the famous Voronoi diagram, dened in Section 7.1, and the Delaunay
subdivision, dened in Section 2.2.

We use two other kinds of complexes to specify domains to be triangulated. Piecewise
linear complexes, dened in Sections 2.10.1 and 4.5.1, differ from polyhedral complexes
by permitting nonconvex polyhedra and by relaxing the rules of intersection of those poly-
hedra. Piecewise smooth complexes, dened in Section 15.1, generalize straight edges and
at facets to curved ridges and patches.

To a mathematician, a �“triangle�” is a set of points, which includes all the points inside
the triangle as well as the points on the three edges. Likewise, a polyhedron is a set of points
covering its entire volume. A complex is a set of sets of points. We dene these and other
geometric structures in terms of affine hulls and convex hulls. Simplices, convex polyhedra,
and their faces are convex sets of points. A point set C is convex if for every pair of points
p, q ∈ C, the line segment pq is included in C.

Denition 1.1 (affine hull; at). Let X = {x1, x2, . . . , xk} be a set of points in Rd. An affine
combination of the points in X is a point p that can be written p =

∑k
i=1 wixi for a set of

scalar weights wi such that
∑k
i=1 wi = 1. A point p is affinely independent of X if it is not

an affine combination of points in X. The points in X are affinely independent if no point in
X is an affine combination of the others. In Rd, no more than d + 1 points can be affinely
independent. The affine hull of X, denoted aff X, is the set of all affine combinations of

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 17

affine hull affine hull affine hull affine hull

convex hullconvex hullconvex hullconvex hull

0 flat (vertex)

0 simplex (vertex) 1 simplex (edge) 2 simplex (triangle) polygon

1 flat (line) 2 flat (plane) 2 flat (plane)

Figure 1.11: Examples of affine hulls and convex hulls in the plane.

points in X, as illustrated in Figure 1.11. A k-at, also known as an affine subspace, is the
affine hull of k + 1 affinely independent points; so a 0-at is a vertex, a 1-at is a line, a
2-at is a plane, etc. A (d − 1)-at in Rd is called a hyperplane. A k-at is said to have
dimension k.

Denition 1.2 (convex hull). A convex combination of the points in X is a point that can
be written as an affine combination with all the weights nonnegative; i.e. wi ≥ 0 for all i.
The convex hull of X, denoted conv X, is the set of all convex combinations of points in X,
as illustrated in Figure 1.11. An alternative denition is that conv X is the most exclusive
convex point set such that X ⊆ conv X.

Simplices and convex polyhedra are convex hulls of nite point sets, with k-simplices
being the simplest possible k-dimensional polyhedra. One way that mathematical language
deviates from lay usage is that a �“face�” of a polyhedron can be of any dimension; mathe-
maticians use �“facet�” to denote what a layman calls a �“face.�”

Denition 1.3 (simplex). A k-simplex τ is the convex hull of a set X of k + 1 affinely
independent points. In particular, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex
is a triangle, and a 3-simplex is a tetrahedron. A k-simplex is said to have dimension k. A
face of τ is a simplex that is the convex hull of a nonempty subset of X. Faces of τ come
in all dimensions from zero6 (τ�’s vertices) to k; τ is a face of τ. A proper face of τ is a
simplex that is the convex hull of a proper subset of X; i.e. any face except τ. In particular,
the (k − 1)-faces of τ are called facets of τ; τ has k + 1 facets. For instance, the facets of a
tetrahedron are its four triangular faces.

6Some writers use the convention that the empty set is a simplex of dimension −1 and a face of every
simplex, albeit not a proper face. We make no use of this convention.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

18 Delaunay Mesh Generation

Denition 1.4 (simplicial complex). A simplicial complex T, also known as a triangula-
tion, is a set containing nitely7 many simplices that satises the following two restrictions.

• T contains every face of every simplex in T.

• For any two simplices σ, τ ∈ T, their intersection σ ∩ τ is either empty or a face of
both σ and τ.

Convex polyhedra are as easy to dene as simplices, but their faces are trickier. Whereas
the convex hull of a subset of a simplex�’s vertices is a face of the simplex, the convex hull
of an arbitrary subset of a cube�’s vertices is usually not a face of the cube. The faces
of a polyhedron are dened below in terms of supporting hyperplanes; observe that the
denition of a face of a polyhedron below is consistent with the denition of a face of a
simplex above.

Denition 1.5 (convex polyhedron). A convex polyhedron is the convex hull of a nite
point set. A convex polyhedron whose affine hull is a k-at is called a k-polyhedron and
is said to have dimension k. A 0-polyhedron is a vertex, a 1-polyhedron is an edge, and a
2-polyhedron is a convex polygon. The proper faces of a convex polyhedron C are the poly-
hedra that can be generated by taking the intersection of C with a hyperplane that intersects
C�’s boundary but not C�’s interior; such a hyperplane is called a supporting hyperplane of
C. For example, the proper faces of a cube are six squares, twelve edges, and eight vertices.
The faces of C are the proper faces of C and C itself. The facets of a k-polyhedron are its
(k − 1)-faces.

A polyhedral complex imposes exactly the same restrictions as a simplicial complex.

Denition 1.6 (polyhedral complex). A polyhedral complex P is a set containing nitely
many convex polyhedra that satises the following two restrictions.

• P contains every face of every polyhedron in P.

• For any two polyhedra C,D ∈ P, their intersection C ∩D is either empty or a face of
both C and D.

To support Voronoi diagrams, we will later extend Denition 1.5 to permit polyhe-
dra that are unbounded�—that is, innitely large. Specically, Section 7.1 redenes convex
polyhedra as intersections of halfspaces instead of convex hulls of points.

Piecewise linear complexes are sets of polyhedra that are not necessarily convex. We
call these polyhedra linear cells.

Denition 1.7 (linear cell). A linear k-cell is the pointwise union of a nite number of
convex k-polyhedra, all included in some common k-at. A linear 0-cell is a vertex, a linear
2-cell is sometimes called a polygon, and a linear 3-cell is sometimes called a polyhedron.

7Topologists usually dene complexes so they have countable cardinality. We restrict complexes to nite
cardinality to avoid some interesting quirks, like the possibility that a polygon with a 1◦ angle can be meshed
with a countably innite set of triangles having no angle less than 20◦.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 19

Thus, we can build nonconvex polyhedra by uniting convex ones. For k ≥ 1, a linear
k-cell can have multiple connected components. These do no harm; removing a linear cell
from a complex and replacing it with its connected components, or vice versa, makes no
material difference. To simplify the exposition, we will forbid disconnected linear 1-cells
in our complexes; i.e. the only linear 1-cells we use are edges. For k ≥ 2, a linear cell can
be only tenuously connected; e.g. a union of two squares that intersect at a single point is a
linear 2-cell, even though it is not a simple polygon.

Another difference between linear cells and convex polyhedra is that we dene the faces
of a linear cell in a fundamentally different way that supports congurations like those in
Figures 1.2 and 1.10. A linear cell�’s faces are not an intrinsic property of the linear cell
alone, but depend on the complex that contains it. We defer the details to Section 2.10.1,
where we dene piecewise linear complexes.

Piecewise smooth complexes are sets of cells we call smooth cells, which are similar
to linear cells except that they are not linear, but are smooth manifolds. See Chapter 15 for
details.

Two cells in a complex are said to adjoin each other if they intersect each other, which
implies that they have a face in common or one is a face of the other. Two cells that do not
adjoin each other are disjoint.

A complex (or a mesh) is a representation of a domain. The former is a set of sets of
points, and the latter is a set of points. The following operator collapses the former to the
latter.

Denition 1.8 (underlying space). The underlying space of a complex P, denoted |P|, is
the pointwise union of its cells; that is, |P| = ⋃C∈PC.

Ideally, a complex provided as input to a mesh generation algorithm and the mesh pro-
duced as output should cover exactly the same points. This ideal is not always possible�—
for example, if we are generating a linear tetrahedral mesh of a curved domain. When it is
achieved, we call it exact conformity.

Denition 1.9 (exact conformity). A complex T exactly conforms to a complex P if |T| =
|P| and every cell in P is a union of cells in T. We also say that T is a subdivision of P.

1.6 Metric space topology
This section introduces basic notions from point set topology that underlie triangulations
and other complexes. These notions are prerequisites for more sophisticated topological
ideas�—manifolds, homeomorphism, and isotopy�—introduced in Chapter 12 to study algo-
rithms for meshing domains with curved boundaries. A complex of linear elements cannot
exactly conform to a curved domain, which raises the question of what it means for a trian-
gulation to be a mesh of such a domain. To a layman, the word topology evokes visions of
�“rubber-sheet topology�”: the idea that if you bend and stretch a sheet of rubber, it changes
shape but always preserves the underlying structure of how it is connected to itself. Home-
omorphisms offer a rigorous way to state that a mesh preserves the topology of a domain,
and isotopy offers a rigorous way to state that the domain can be deformed into the shape
of the linear mesh without ever colliding with itself.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

20 Delaunay Mesh Generation

Topology begins with a set T of points�—perhaps the points constituting the d-
dimensional Euclidean space Rd, or perhaps the points on the surface of a volume such
as a coffee mug. We suppose that there is a metric d(p, q) that species the scalar distance
between every pair of points p, q ∈ T. In the Euclidean space Rd we choose the Euclidean
distance. On the surface of the coffee mug, we could choose the Euclidean distance too; al-
ternatively, we could choose the geodesic distance, namely, the length of the shortest path
from p to q on the mug�’s surface.

Let us briey review the Euclidean metric. We write points in Rd as p =

(p1, p2, . . . , pd), where each pi is a real-valued coordinate. The Euclidean inner product
of two points p, q ∈ Rd is 〈p, q〉 = ∑di=1 piqi. The Euclidean norm of a point p ∈ Rd is
‖p‖ = 〈p, p〉1/2 = (∑d

i=1 p
2
i
)1/2, and the Euclidean distance between two points p, q ∈ Rd is

d(p, q) = ‖p− q‖ = (∑di=1(pi − qi)2)1/2. We also use the notation d(·, ·) to express minimum
distances between point sets P,Q ⊆ T,

d(p,Q) = inf{d(p, q) : q ∈ Q} and
d(P,Q) = inf{d(p, q) : p ∈ P, q ∈ Q}.

The heart of topology is the question of what it means for a set of points�—say, a squig-
gle drawn on a piece of paper�—to be connected. After all, two distinct points cannot be
adjacent to each other; they can only be connected to another by an uncountably innite
bunch of intermediate points. Topologists solve that mystery with the idea of limit points.

Denition 1.10 (limit point). Let Q ⊆ T be a point set. A point p ∈ T is a limit point of Q,
also known as an accumulation point of Q, if for every real number ε > 0, however tiny, Q
contains a point q ! p such that d(p, q) < ε.

In other words, there is an innite sequence of points in Q that get successively closer
and closer to p�—without actually being p�—and get arbitrarily close. Stated succinctly,
d(p,Q \ {p}) = 0. Observe that it doesn�’t matter whether p ∈ Q or not.

Denition 1.11 (connected). Let Q ⊆ T be a point set. Imagine coloring every point in
Q either red or blue. Q is disconnected if there exists a coloring having at least one red
point and at least one blue point, wherein no red point is a limit point of the blue points,
and no blue point is a limit point of the red points. A disconnected point set appears at
left in Figure 1.12. If no such coloring exists, Q is connected, like the point set at right in
Figure 1.12.

In this book, we frequently distinguish between closed and open point sets. Informally,
a triangle in the plane is closed if it contains all the points on its edges, and open if it
excludes all the points on its edges, as illustrated in Figure 1.13. The idea can be formally
extended to any point set.

Denition 1.12 (closure; closed; open). The closure of a point set Q ⊆ T, denoted ClQ,
is the set containing every point in Q and every limit point of Q. A point set Q is closed if
Q = ClQ, i.e. Q contains all its limit points. The complement of a point set Q is T \ Q. A
point set Q is open if its complement is closed, i.e. T \ Q = Cl (T \ Q).

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 21

Figure 1.12: The disconnected point set at left can be partitioned into two connected sub-
sets, which are shaded differently here. The point set at right is connected. The dark point
at its center is a limit point of the lightly shaded points.

interior
boundaryinterior

closure

erusolcerusolc

closed open closed
interior closure

closure

desolcdesolc

closure relative boundary

interior
relative

open
relatively

boundary
interior
relative

relative

boundary/ boundary/boundary

Figure 1.13: Closed, open, and relatively open point sets in the plane. Dashed edges and
open circles indicate points missing from the point set.

For example, let (0, 1) denote an open interval on the real number line�—the set con-
taining every r ∈ R such that r > 0 and r < 1�—and let [0, 1] denote a closed interval
(0, 1) ∪ {0} ∪ {1}. The numbers zero and one are both limit points of the open interval, so
Cl (0, 1) = [0, 1] = Cl [0, 1]. Therefore, [0, 1] is closed and (0, 1) is not. The numbers zero
and one are also limit points of the complement of the closed interval, R \ [0, 1], so (0, 1) is
open, but [0, 1] is not.

The terminology is misleading because �“closed�” and �“open�” are not opposites. In every
nonempty metric space T, there are at least two point sets that are both closed and open: ∅
and T. The interval (0, 1] on the real number line is neither open nor closed.

The denition of open set hides a subtlety that often misleads newcomers to point set
topology: a triangle τ that is missing the points on its edges, and therefore is open in the
two-dimensional metric space aff τ, is not open in the metric space R3. Every point in τ
is a limit point of R3 \ τ, because we can nd sequences of points that approach τ from
the side. In recognition of this quirk, a simplex σ ⊂ Rd is said to be relatively open if
it is open relative to its affine hull. It is commonplace to abuse terminology by writing
�“open simplex�” for a simplex that is only relatively open, and we sometimes follow this
convention in this book. Particularly useful is the concept of an �“open edge,�” an edge that
is missing its endpoints, illustrated in Figure 1.13.

Informally, the boundary of a point set Q is the set of points where Q meets its com-
plement T \ Q. The interior of Q contains all the other points of Q. Limit points provide
formal denitions.

Denition 1.13 (boundary; interior). The boundary of a point set Q in a metric space T,
denoted BdQ, is the intersection of the closures of Q and its complement; i.e. BdQ =
ClQ ∩ Cl (T \ Q). The interior of Q, denoted IntQ, is Q \ BdQ = Q \ Cl (T \ Q).

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

22 Delaunay Mesh Generation

For example, Bd [0, 1] = {0, 1} = Bd (0, 1) and Int [0, 1] = (0, 1) = Int (0, 1). The
boundary of a triangle (closed or open) in the Euclidean plane is the union of the triangle�’s
three edges, and its interior is an open triangle, illustrated in Figure 1.13. The terms bound-
ary and interior have the same misleading subtlety as open sets: the boundary of a triangle
embedded in R3 is the whole triangle, and its interior is the empty set. Hence the following
terms.

Denition 1.14 (relative boundary; relative interior). The relative boundary of a convex
polyhedron C ⊂ Rd is its boundary with respect to the metric space of its affine hull�—that
is, ClC ∩ Cl ((aff C) \ C). The relative interior of C is C minus its relative boundary.

Again, we often abuse terminology by writing boundary for relative boundary and in-
terior for relative interior. The same subtlety arises with curved ridges and surface patches,
but these have fundamentally different denitions of boundary and interior which we give
in Section 12.3.

Denition 1.15 (bounded; compact). The diameter of a point set Q is supp,q∈Q d(p, q). The
set Q is bounded if its diameter is nite, or unbounded if its diameter is innite. A point set
Q in a metric space is compact if it is closed and bounded.

As we have dened them, simplices and polyhedra are bounded, but in Section 7.1 we
will see how to dene unbounded polyhedra, which arise in Voronoi diagrams. Besides
simplices and polyhedra, the point sets we use most in this book are balls.

Denition 1.16 (Euclidean ball). In Rd, the Euclidean d-ball with center c and radius r,
denoted B(c, r), is the point set B(c, r) = {p ∈ Rd : d(p, c) ≤ r}. A 1-ball is an edge, and a
2-ball is called a disk. A unit ball is a ball with radius 1. The boundary of the d-ball is called
the Euclidean (d − 1)-sphere and denoted S (c, r) = {p ∈ Rd : d(p, c) = r}. For example, a
circle is a 1-sphere, and a layman�’s �“sphere�” in R3 is a 2-sphere. If we remove the boundary
from a ball, we have the open Euclidean d-ball Bo(c, r) = {p ∈ Rd : d(p, c) < r}.

The foregoing text introduces point set topology in terms of metric spaces. Surprisingly,
it is possible to dene all the same concepts without the use of a metric, point coordinates,
or any scalar values at all. Section 12.1 discusses topological spaces, a mathematical ab-
straction for representing the topology of a point set while excluding all information that is
not topologically essential. In this book, all our topological spaces have metrics.

1.7 How to measure an element
Here, we describe ways to measure the size, angles, and quality of a simplicial element,
and we introduce some geometric structures associated with simplices�—most importantly,
their circumballs and circumcenters.

Denition 1.17 (circumball). Let τ be a simplex embedded in Rd. A circumball, or circum-
scribing ball, of τ is a d-ball whose boundary passes through every vertex of τ, illustrated
in Figure 1.14. Its boundary, a (d − 1)-sphere, is called a circumsphere, or circumscrib-
ing sphere, of τ. A closed circumball includes its boundary�—the circumsphere�—and an

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 23

r

circumball min-containment ballinball

R rmc

Figure 1.14: Three balls associated with a triangle.

Figure 1.15: A triangle, two circumballs of the triangle of which the smaller (solid) is
the triangle�’s diametric ball, the triangle�’s circumdisk (the equatorial cross-section of the
diametric ball), and the triangle�’s circumcenter.

open circumball excludes it. If τ is a k-simplex, the k-circumball of τ is the unique k-ball
whose boundary passes through every vertex of τ, and its relative boundary is the (k − 1)-
circumsphere of τ. We sometimes call a 2-circumball a circumdisk and a 1-circumsphere a
circumcircle.

If τ is a d-simplex in Rd, it has one unique circumsphere and circumball; but if τ has
dimension less than d, it has an innite set of circumspheres and circumballs. Consider a
triangle τ in R3, for example. There is only one circumdisk of τ, whose boundary passes
through τ�’s three vertices, but τ has innitely many circumballs, and the intersection of any
of those circumballs with τ�’s affine hull is τ�’s circumdisk. The smallest of these circumballs
is special, because its center lies on τ�’s affine hull, it has the same radius as τ�’s circumdisk,
and τ�’s circumdisk is its equatorial cross-section. We call τ�’s smallest circumball, illustrated
in Figure 1.15, its diametric ball.

Denition 1.18 (diametric ball; circumcenter). The diametric ball of a simplex τ is the
circumball of τ with the smallest radius. The circumcenter of τ is the point at the center
of τ�’s diametric ball, which always lies on aff τ. The circumradius of τ is the radius of τ�’s
diametric ball.

The signicance of circumcenters in Delaunay renement algorithms is that the best
place to insert a new vertex into a mesh is often at the circumcenter of a poorly shaped
element, domain boundary triangle, or domain boundary edge. In a Delaunay mesh, these

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

24 Delaunay Mesh Generation

circumcenters are locally far from other mesh vertices, so inserting them does not create
overly short edges.

Other balls associated with simplicial elements are the inball and the min-containment
ball, both illustrated in Figure 1.14.

Denition 1.19 (inball). The inball, or inscribed ball, of a k-simplex τ is the largest k-ball
B ⊂ τ. Observe that B is tangent to every facet of τ. The incenter of τ is the point at the
center of B, and the inradius of τ is the radius of B.

Denition 1.20 (min-containment ball). The min-containment ball, or minimum enclosing
ball, of a k-simplex τ is the smallest k-ball B ⊃ τ.

The min-containment ball of τ is always a diametric ball of a face of τ; that face could
be of any dimension from an edge up to τ itself.

Finite element practitioners often represent the size of an element by the length of its
longest edge, but one could argue that the radius of its min-containment ball is a slightly
better measure, because there are sharp error bounds for piecewise linear interpolation over
simplicial elements that are directly proportional to the squares of the radii of their min-
containment balls. Details appear in Section 4.3.

A quality measure is a map from elements to scalar values that estimates the suitability
of an element�’s shape independently of its size. The most obvious quality measures of a
triangle are its smallest and largest angles, and a tetrahedron can be judged by its dihedral
angles. We denote the plane angle between two vectors u and v as

∠(u, v) = arccos u · v
‖u‖ ‖v‖ .

We compute an angle ∠xyz of a triangle as ∠(x − y, z − y).
For a pair of intersecting lines or line segments $1 and $2, we generally measure the

acute angle between them, denoted ∠a($1, $2). When we replace $1 or $2 with a vector v,
the affine hull of v is implied; ∠a(u, v) denotes the acute angle between the affine hulls of u
and v. Thus, ∠a disregards the vector orientation whereas ∠ does not. These angles satisfy a
triangle inequality

∠a($1, $2) ≤ ∠a($1, $3) + ∠a($3, $2).

A dihedral angle is a measure of the angle separating two planes or polygons in R3�—
for example, the facets of a tetrahedron or 3-polyhedron. Suppose that two at facets meet
at an edge yz, where y and z are points in R3. Let w be a point lying on one of the facets,
and let x be a point lying on the other. It is helpful to imagine the tetrahedron wxyz. The
dihedral angle separating the two facets is the same angle separating wyz and xyz, namely,
∠(u, v) where u = (y − w) × (z − w) and v = (y − x) × (z − x) are vectors normal to wyz and
xyz.

Elements can go bad in different ways, and it is useful to distinguish types of skinny
elements. There are two kinds of skinny triangles, illustrated in Figure 1.16: needles, which
have one edge much shorter than the others, and caps, which have an angle near 180◦
and a large circumdisk. Figure 1.17 offers a taxonomy of types of skinny tetrahedra. The
tetrahedra in the top row are skinny in one dimension and fat in two. Those in the bottom
row are skinny in two dimensions and fat in one. Spears, spindles, spades, caps, and slivers

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 25

needle cap

Figure 1.16: Skinny triangles have circumdisks larger than their shortest edges.

spear spindle

cap sliver

splinterspike

spadewedge

spire

Figure 1.17: A taxonomy of skinny tetrahedra.

have a dihedral angle near 180◦; the others may or may not. Spikes, splinters, and all the
tetrahedra in the top row have a dihedral angle near 0◦; the others may or may not. The cap,
which has a vertex quite close to the center of the opposite triangle, is notable for a large
solid angle, near 360◦. Spikes also can have a solid angle arbitrarily close to 360◦, and all
the skinny tetrahedra can have a solid angle arbitrarily close to zero.

There are several surprises. The rst is that spires, despite being skinny, can have all
their dihedral angles between 60◦ and 90◦, even if two edges are separated by a plane
angle near 0◦. Spires with good dihedral angles are harmless in many applications, and
are indispensable at the tip of a needle-shaped domain, but some applications eschew them
anyway. The second surprise is that a spear or spindle tetrahedron can have a dihedral angle
near 180◦ without having a small dihedral angle. By contrast, a triangle with an angle near
180◦ must have an angle near 0◦.

For many purposes�—mesh improvement, for instance�—it is desirable to have a single
quality measure that punishes both angles near 0◦ and angles near 180◦, and perhaps spires
as well. Most quality measures are designed to reach one extreme value for an equilateral

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

26 Delaunay Mesh Generation

θ + φ

R

c

R

z

θ
φ

φ
ϕ

$min yx

R

Figure 1.18: Relationships between the circumradius R, shortest edge $min, and smallest
angle θ.

triangle or tetrahedron, and a value at the opposite extreme for a degenerate element�—
a triangle whose vertices are collinear, or a tetrahedron whose vertices are coplanar. In
this book, the most important quality measure is the radius-edge ratio, because Delaunay
renement algorithms naturally tend to improve it.

Denition 1.21 (radius-edge ratio). The radius-edge ratio of a simplex τ is R/$min, where
R is τ�’s circumradius and $min is the length of its shortest edge.

We would like the radius-edge ratio to be as small as possible; it ranges from∞ for most
degenerate simplices down to 1/

√
3 " 0.577 for an equilateral triangle or

√
6/4 " 0.612

for an equilateral tetrahedron. But is it a good estimate of element quality?
In two dimensions, the answer is yes. A triangle�’s radius-edge ratio is related to its

smallest angle θmin by the formula

R
$min
=

1
2 sin θmin

.

Figure 1.18 illustrates how this identity is derived for a triangle xyz with circumcenter c.
Observe that the triangles ycz and xcz are isosceles, so their apex angles are ∠ycz = 180◦−2φ
and ∠xcz = 180◦ − 2φ − 2θ. Therefore, ϕ = 2θ and $min = 2R sin θ. This reasoning holds
even if φ is negative.

The smaller a triangle�’s radius-edge ratio, the larger its smallest angle. The angles of a
triangle sum to 180◦, so the triangle�’s largest angle is at most 180◦ − 2θmin; hence an upper
bound on the radius-edge ratio places bounds on both the smallest and largest angles.

In three dimensions, however, the radius-edge ratio is a awed measure. It screens
out all the tetrahedra in Figure 1.17 except slivers. A degenerate sliver can have a radius-
edge ratio as small as 1/

√
2 " 0.707, which is not far from the 0.612 of an equilateral

tetrahedron. Delaunay renement algorithms are guaranteed to remove all tetrahedra with
large radius-edge ratios, but they do not promise to remove all slivers.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 27

There are other quality measures that screen out all the skinny tetrahedra in Figure 1.17,
including slivers and spires, but Delaunay renement does not promise to bound these
measures. A popular measure is r/R, where r is τ�’s inradius and R is its circumradius. This
measure is sometimes called the aspect ratio or the radius ratio. It obtains a maximum value
of 1/2 for an equilateral triangle or 1/3 for an equilateral tetrahedron, and a minimum value
of zero for a degenerate element. This implies that it approaches zero as any dihedral angle
separating τ�’s faces approaches 0◦ or 180◦, any plane angle separating τ�’s edges approaches
0◦ or 180◦, or any solid angle at τ�’s vertices approaches 0◦ or 360◦.

For a triangle τ, the aspect ratio is related to the smallest angle θmin by the inequalities

2 sin2 θmin
2
≤ r

R
≤ 2 tan

θmin
2
,

which implies that the aspect ratio approaches zero as θmin approaches zero, and vice versa.
Two unfortunate properties of the circumradius are that it is relatively expensive to

compute for a tetrahedron, and it can be numerically unstable. A tiny perturbation of the
position of one vertex of a skinny tetrahedron can induce an arbitrarily large change in its
circumradius. Both the radius-edge ratio and the aspect ratio inherit these problems. In these
respects, a better quality measure for tetrahedra is the volume-length measure V/$3rms, where
V is the volume of a tetrahedron and $rms is the root-mean-squared length of its six edges. It
obtains a maximum value of 1/(6

√
2) for an equilateral tetrahedron and a minimum value

of zero for a degenerate tetrahedron. The volume-length measure is numerically stable and
faster to compute than a tetrahedron�’s circumradius. It has proven itself as a lter against all
poorly shaped tetrahedra and as an objective function for mesh improvement algorithms,
especially optimization-based smoothing.

1.8 Notes and exercises
This chapter�’s opening quote comes from Thompson [215]. An excellent source for many
aspects of mesh generation not covered by this book is the Handbook of Grid Genera-
tion [216], which includes many chapters on the generation of structured meshes, chapters
that describe advancing front methods in unusual detail by Peraire, Peiró, and Morgan [169]
and Marcum [142], and a ne survey of quadrilateral and hexahedral meshing by Schnei-
ders [186]. Further surveys of the mesh generation literature are supplied by Bern and
Eppstein [16] and Thompson and Weatherill [217]. Boissonnat, Cohen-Steiner, Mourrain,
Rote, and Vegter [27] survey algorithms for surface meshing.

For evidence that the discretization error and the error in the gradient under piece-
wise linear interpolation grow with a triangle�’s largest angle, see Synge [212], Babu�ška
and Aziz [12], and Jamet [117]. For similar evidence for a tetrahedron�’s largest dihe-
dral angle, see Krí�žek [125]. The association between the largest eigenvalue of a stiff-
ness matrix and the smallest angle of an element is noted by Fried [101] and Bank and
Scott [14]. All these connections are summarized and elaborated by Shewchuk [202]. The
Courant�–Friedrichs�–Lewy condition for stable explicit time integration is, not surprisingly,
by Courant, Friedrichs, and Lewy [66]. Adaptive mesh renement is surveyed by Oden and
Demkowicz [161]. There is a large literature on how to numerically evaluate the quality of
an element; see Field [95] for a survey.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

28 Delaunay Mesh Generation

Advancing front methods that create vertices and triangulate them in two separate
stages include those by Frederick, Wong, and Edge [97]; Cavendish [38]; and Lo [139].
Early advancing front methods that interleave vertex creation and element creation in-
clude triangular mesh generators by George [102], Sadek [182], and Peraire, Vahdati, Mor-
gan, and Zienkiewicz [170]; tetrahedral meshers by Löhner and Parikh [140] and Peraire,
Peiró, Formaggia, Morgan, and Zienkiewicz [168]; a quadrilateral mesher by Blacker and
Stephenson [21]; and a hexahedral mesher by Blacker and Meyers [20].

Delaunay mesh generators that create vertices and triangulate them in two separate;
stages include those by Frederick et al. [97]; Cavendish, Field, and Frey [39]; and Jameson,
Baker, and Weatherill [116]. The rst Delaunay renement algorithm we know of that
interleaves the two operations is by Frey [100].

Yerry and Shephard [226, 227] published the rst quadtree and octree meshers. Readers
not familiar with quadtrees and octrees may consult Samet�’s book [183].

The simplest and most famous way to smooth an interior vertex is to move it to the
centroid of the vertices that adjoin it. This method, which dates back at least to Kamel and
Eisenstein [121] in 1970, is called Laplacian smoothing because of its interpretation as a
Laplacian nite difference operator. It usually works well for triangular meshes, but it is
unreliable for tetrahedra, quadrilaterals, and hexahedra. More sophisticated optimization-
based smoothers began to appear in the 1990s [164, 37, 163]. Slower but better smooth-
ing is provided by the nonsmooth optimization algorithm of Freitag, Jones, and Plass-
mann [98], which can optimize the worst element in a group�—for instance, maximiz-
ing the minimum dihedral angle among the tetrahedra that share a specied vertex. For
some quality measures, optimal mesh smoothing can be done with generalized linear
programming [4].

Mesh improvement is usually driven by a schedule that searches the mesh for elements
that can be improved by local transformations, ideally as quickly as possible. Canann,
Muthukrishnan, and Phillips [36] provide a fast triangular mesh improvement schedule.
Sophisticated schedules for tetrahedral mesh improvement are provided by Joe [120], Fre-
itag and Ollivier-Gooch [99], and Klingner and Shewchuk [124]. For a list of ips for
quadrilateral and hexahedral meshes, see Bern, Eppstein, and Erickson [17]. Kinney [122]
describes mesh improvement methods for quadrilateral meshes. There does not seem to
have been much work on applying hexahedral ips.

The rst provably good mesh generation algorithm, by Baker, Grosse, and Raf-
ferty [13], employs a square grid. The rst provably good Delaunay renement algorithm
in the plane is by Chew [59], and the most successful is by Ruppert [178, 180]. The rst
provably good three-dimensional Delaunay renement algorithm is by Dey, Bajaj, and Sug-
ihara [74]. For a proof that the domain in Figure 1.5 has no mesh whose new angles all
exceed 30◦, see Shewchuk [196].

The rst mesh generator offering provably good grading and size optimality is the
quadtree algorithm of Bern, Eppstein, and Gilbert [18]. Neugebauer and Diekmann [158]
improve the algorithm by replacing square quadrants with rhomboids. They produce trian-
gles with angles between 30◦ and 90◦, many of them equilateral. The rst tetrahedral mesh
generator offering size optimality is the octree algorithm of Mitchell and Vavasis [151].
Remarkably, Mitchell and Vavasis [152] extended their mathematical guarantees to meshes
of polyhedra of any dimensionality by using d-dimensional 2d-trees.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Introduction 29

The rst paper to suggest a generalization of the Delaunay property to meshes of curved
surfaces in three dimensions and the rst algorithm offering a guarantee on the aspect ra-
tios of the triangles in a surface mesh are by Chew [61]. See the bibliographical notes
in Section 14.6 and the aforementioned survey by Boissonnat et al. [27] for a discussion
of subsequent surface meshing algorithms. Guaranteed-quality triangular mesh generators
for two-dimensional domains with curved boundaries include those by Boivin and Ollivier-
Gooch [32] and Pav and Walkington [166]. Labelle and Shewchuk [127] provide a provably
good triangular mesh generator that produces anisotropic meshes in the plane, and Cheng,
Dey, Ramos, and Wenger [54] generalize it to generate anisotropic meshes of curved sur-
faces in three-dimensional space.

Bibliographic information for the developments discussed in Section 1.4 is provided
in the notes of the chapters listed there, so we omit details here. Publications noted in
that section include papers by Shewchuk [197, 198]; Cheng, Dey, Edelsbrunner, Facello,
and Teng [49]; Cheng and Dey [48]; Edelsbrunner and Shah [92]; Amenta and Bern [3];
Cheng, Dey, Edelsbrunner, and Sullivan [47]; Boissonnat and Oudot [29]; Cheng, Dey, and
Ramos [51]; Cheng, Dey, and Levine [50]; and Dey and Levine [77]. Companion papers
are available for each of the programs Triangle [196], Stellar [124], QualMesh [52],
SurfRemesh [53], and DelPSC [77].

Books by Hocking and Young [113], Munkres [155], and Weeks [223] are standard
texts on point set topology, giving detailed denitions of topological spaces and maps.
Books by Hatcher [110] and Stillwell [209] are good sources for algebraic and combinato-
rial topology; they describe simplicial complexes and their use in triangulations of topolog-
ical spaces. Some useful denitions in computational topology are collected in the survey
paper by Dey, Edelsbrunner, and Guha [75]. Books by Hadwiger [108] and Ziegler [228]
are good sources for the mathematics of polyhedra and polytopes. A recent book by De Lo-
era, Rambau, and Santos [68] surveys the mathematical properties of triangulations. Had-
wiger popularized Denition 1.7 for nonconvex polyhedra, which we call linear cells. The
notion of a piecewise linear complex was introduced by Miller, Talmor, Teng, Walking-
ton, and Wang [149]. Piecewise smooth complexes were introduced by Cheng, Dey, and
Ramos [51]. The classication of tetrahedra with tiny angles in Figure 1.17 is adapted from
Cheng, Dey, Edelsbrunner, Facello, and Teng [49].

Miller, Talmor, Teng, and Walkington [148] pointed out that the radius-edge ratio is the
most natural and elegant measure for analyzing Delaunay renement algorithms. The use
of the incenter-circumcenter ratio as a quality measure was suggested by Cavendish, Field,
and Frey [39]. The volume-length measure was suggested by Parthasarathy, Graichen, and
Hathaway [163]. See Klingner and Shewchuk [124] for evidence of its utility and the insta-
bility of the incenter-circumcenter ratio in mesh improvement algorithms.

Exercises
1. Let X be a point set, not necessarily nite, in Rd. Prove that the following two de-

nitions of the convex hull of X are equivalent.

• The set of all points that are convex combinations of the points in X.
• The intersection of all convex sets that include X.

!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

30 Delaunay Mesh Generation

2. Suppose we change the second condition in Denition 1.4, which denes simplicial
complex, to

• For any two simplices σ, τ ∈ T, their intersection σ ∩ τ is either empty or a
simplex in T.

Give an illustration of a set that is a simplicial complex under this modied denition
but not under the true denition.

3. In every metric space T, the point sets ∅ and T are both closed and open.

(a) Give an example of a metric space that has more than two sets that are both
closed and open, and list all of those sets.

(b) Explain the relationship between the idea of connectedness and the number of
sets that are both closed and open.

4. Prove that for every subset X of a metric space, Cl ClX = Cl X. In other words,
augmenting a set with its limit points does not give it more limit points.

5. Show that among all triangles whose longest edge has length one, the circumradius
approaches innity if and only if the largest angle approaches 180◦, whereas the
inradius approaches zero if and only if the smallest angle approaches 0◦.

6. One quality measure for a simplex is its minimum altitude divided by the length of its
longest edge, which unfortunately is also called the aspect ratio. For triangles, prove
that this ratio approaches zero if and only if the smallest angle approaches zero. For
tetrahedra, prove that this ratio approaches zero if a dihedral angle approaches 0◦ or
180◦, but that the converse is not true.

7. Another measure, which has been seriously proposed in the literature as a quality
measure for a tetrahedron by researchers who will remain anonymous, is the length
of its longest edge divided by its circumradius. Explain why this is a bad quality mea-
sure. In a few words, what triangle shapes maximize it? What is the worst tetrahedron
shape that maximizes it?

8. The classication of tetrahedra shown in Figure 1.17 is qualitative. To make it pre-
cise, set two thresholds ρ and $, and call a radius-edge ratio large if it exceeds ρ and
an edge length small if it is less than $. Describe how to use ρ and $ to decide into
which class in Figure 1.17 a tetrahedron falls.

