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Chapter 13

Restricted Delaunay triangulations
of surface samples

The restricted Delaunay triangulation is a subcomplex of the three-dimensional Delaunay
triangulation that has proven itself as a mathematically powerful tool for surface meshing
and surface reconstruction. Consider a smooth surface Σ ⊂ R3 and a nite sample S on Σ.
If S is dense enough, as dictated by the local feature size over Σ, then the restricted De-
launay triangulation is a triangulation of Σ by Denition 12.6�—it has an underlying space
that is guaranteed to be topologically equivalent to Σ. Moreover, the triangulation lies close
to Σ and approximates it geometrically. The theory of restricted Delaunay triangulations
of surface samples lays the foundation for the design and analysis of Delaunay renement
mesh generation algorithms in the subsequent chapters, which use incremental vertex in-
sertion not only to guarantee good element quality, but also to guarantee that the mesh is
topologically correct and geometrically close to the surface, with accurate surface normals.

(a) (b)

Figure 13.1: Restricted Delaunay triangulations, indicated by bold edges. These edges are
included because the curve intersects their Voronoi dual edges. Dashed edges are Delaunay
but not restricted Delaunay. The restricted Delaunay triangulation at right is a passable
reconstruction of the curve.

271



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

272 Delaunay Mesh Generation

13.1 Restricted Voronoi diagrams and Delaunay triangulations
Restricted Delaunay triangulations are dened in terms of their duals, the restricted Voronoi
diagrams; we must understand the latter to understand the former. The restriction Q|T of a
point set Q ⊂ Rd to a topological subspace T ⊂ Rd is simply Q∩T. The restriction C|T of a
complex C to a topological subspace T is {g ∩ T : g ∈ C}, the complex found by taking the
restriction of each cell in C. The restricted Voronoi diagram is dened accordingly.

Denition 13.1 (restricted Voronoi diagram). Let S ⊆ Rd be a nite set of sites, and let
T ⊆ Rd be a topological subspace of a Euclidean space. The restricted Voronoi cell Vu|T of
a site u ∈ S is Vu ∩ T = {p ∈ T : ∀w ∈ S , d(u, p) ≤ d(w, p)}, the restriction of u�’s Euclidean
Voronoi cell to T. A restricted Voronoi face Vu1...uj |T is a nonempty restriction of a Voronoi
face Vu1...uj ∈ Vor S to T�—that is, Vu1...uj |T = Vu1...uj ∩ T. The restricted Voronoi diagram
of S with respect to T, denoted Vor|T S , is the cell complex containing every restricted
Voronoi face.

Restricted Delaunay triangulations are dened not by restricting Delaunay simplices to
a topological subspace, but by dualizing the restricted Voronoi diagram.

Denition 13.2 (restricted Delaunay). A simplex is restricted Delaunay if its vertices
are in S and together they generate a nonempty restricted Voronoi face. In other words,
conv {u1, . . . , uj} is restricted Delaunay if Vu1...uj |T is nonempty. If S is generic, the re-
stricted Delaunay triangulation of S with respect to T, denoted Del|T S , is the simplicial
complex containing every restricted Delaunay simplex. If S is not generic, a restricted
Delaunay triangulation of S is a simplicial complex containing every restricted Delaunay
simplex in some particular Del S .

Figure 13.1(a) shows a restricted Delaunay triangulation with respect to a loop in the
plane. Typically, no Voronoi vertex lies on the curve, so there are no restricted Delaunay
triangles. Figure 13.1(b) shows a different restricted Delaunay triangulation with respect to
the same loop. The vertices in the latter example are a fairly good sample of the curve, and
the restricted triangulation is also a loop. In general, our goal is to sample a space so that
|Del|T S | is homeomorphic to T, as it is here. More powerfully, there is a homeomorphism
that maps every sample point to itself.

It is not obvious that the set of all restricted Delaunay simplices is really a complex.
Observe that if Del|T S contains a simplex σ, it contains every face of σ because every sub-
set of σ�’s vertices generates a Voronoi face that includes the face dual to σ and, therefore,
intersects Σ. If S is generic, then Del|T S ⊆ Del S , because every face of Del|T S dualizes to
a face of Vor|T S , which is induced by restricting a face of Vor S , which dualizes to a face
of Del S . Therefore, Del|T S is a simplicial complex, and a standard Delaunay triangulation
algorithm is a useful rst step in constructing it.

If S has multiple Delaunay triangulations, the set of all restricted Delaunay simplices
might not form a complex, so we compute a particular Del S and choose its restricted De-
launay simplices to form Del|T S . Alternatively, we could use a subcomplex of the Delaunay
subdivision.

In this chapter, the topological space T is usually a smooth surface Σ embedded in
three dimensions. (In later chapters T will sometimes be a volume or a piecewise smooth
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complex.) In most applications of restricted Delaunay triangulations, the site set S is a
sample of Σ, but our denitions do not require it; a set of sites S ! Σ is sometimes useful to
model noisy point samples or to remesh a polyhedral surface that approximates a smooth
surface. In this book�’s applications, however, we will usually generate S on Σ.

We say that a Voronoi k-face intersects Σ generically or transversally if at each point
of the intersection, the plane tangent to Σ does not include the affine hull of the Voronoi
face. Such an intersection is a (k − 1)-manifold with or without boundary. For example, a
Voronoi edge may intersect Σ at one or more distinct points, and a Voronoi polygon may
intersect Σ in one or more curves or loops. By contrast, intersections can be degenerate or
non-transverse, such as a Voronoi polygon whose intersection with Σ is a single point or
a 2-ball or a gure-8 curve, or a Voronoi vertex that intersects Σ. If a k-at Π has a non-
transverse intersection with a C2-smooth surface Σ, there is a point in Π ∩ Σ at which Π
is tangent to Σ. Non-transverse intersections can be eliminated by perturbing the surface;
for example, if a Voronoi vertex lies on Σ, simply pretend it lies innitesimally inside the
surface.

Even though Del|Σ S is always a simplicial complex, it is not guaranteed to be a trian-
gulation of Σ, or coherent in any way, unless we impose strong constraints on S . Ideally,
each restricted Voronoi cell Vp|Σ would be a simple region homeomorphic to a disk. But if
the sample S is not dense enough, a Voronoi cell Vp can reach through space to touch other
portions of the surface, so Vp|Σ can have multiple connected components. Odder problems
can occur; for example, imagine a surface in the shape of a sausage with just three sample
points, one in the middle and one at each end. The restricted Voronoi cell of the sample
point in the middle is topologically equivalent to an annulus instead of a disk.

This chapter studies how the topologies of Vor|Σ S and Del|Σ S are determined by the
ways in which the faces of Vor S intersect Σ, and how a dense sample S tames those in-
tersections. Specically, we require S to be a 0.08-sample of Σ (recall Denition 12.16)�—
though we hope the constant can be improved, and we observe that the algorithms are more
forgiving in practice.

We begin with a well-known theorem in computational topology, the Topological Ball
Theorem, which states that if every face of Vor S intersects Σ nicely enough, then the un-
derlying space of Del|Σ S is homeomorphic to Σ. Thus by Denition 12.6, Del|Σ S is a
triangulation of Σ. This establishes the goal of most of the rest of the chapter: to establish
how nely we must sample Σ to guarantee that the antecedents of the theorem hold.

Next, we prove a local result about restricted Voronoi vertices, which are the points
where Voronoi edges pass through the surface. If every vertex of a restricted Voronoi cell
Vp|Σ is close to its generating site p ∈ S , and every connected component of Vp|Σ has a
vertex, then Vp|Σ and its restricted Voronoi faces are topological closed balls of appropriate
dimensions. Specically, if g is a k-face of Vp, the restricted Voronoi face g|Σ is a topologi-
cal (k − 1)-ball. A Voronoi edge intersects Σ at a single point; a Voronoi polygon intersects
Σ in a single curve that is not a loop; and a Voronoi 2-cell intersects Σ in a topological disk.

The local result says nothing about a restricted Voronoi face that does not adjoin a
restricted Voronoi vertex�—for example, a circular face where a Voronoi polygon cuts a
ngertip off Σ. We extend the local result to a global result. If S is dense enough�—for
example, if it is a 0.08-sample of Σ�—and at least one restricted Voronoi vertex exists, then
every Voronoi k-face either intersects Σ in a topological (k − 1)-ball or does not intersect Σ
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at all.
Having established that every face of Vor S intersects Σ nicely, we apply the Topolog-

ical Ball Theorem to establish the homeomorphism of |Del|Σ S | and Σ. We strengthen this
result with another correspondence that is both topological and geometric. We construct an
explicit isotopy relating |Del|Σ S | and Σ, and show that each point in |Del|Σ S | is displaced
only slightly by this isotopy. Hence, Del|Σ S is a geometrically good triangulation of Σ.

Finally, we prove additional results about the geometric quality of Del|Σ S : a bound on
the circumradii of its triangles, a small deviation between the normal of a triangle and the
normals to the surface at its vertices, and a large lower bound (near π) on the dihedral angles
between adjoining triangles. These properties of Del|Σ S are summarized in the Surface
Discretization Theorem (Theorem 13.22) at the end of the chapter.

For the rest of this chapter, Σ is a smooth surface, our shorthand for a compact C2-
smooth 2-manifold without boundary, embedded in R3. Moreover, we assume that Σ is
connected. A unit normal vector, written np, is normal to Σ at a point p. All sets of restricted
Delaunay vertices are samples S ⊂ Σ. Because we are exclusively concerned with three-
dimensional space, facetwill always mean 2-face, and a Voronoi facet is a Voronoi polygon.
We use the following notation for many results and their proofs.

α(ε) =
ε

1 − ε,

β(ε) = α(2ε) + arcsin
ε

1 − 2ε + arcsin
(
2√
3
sin
(
2 arcsin

ε

1 − 2ε
))
.

The rst expression arises from both the Feature Translation Lemma (Lemma 12.2) and
the Normal Variation Theorem (Theorem 12.8), and the second in part from the Triangle
Normal Lemma (Lemma 12.14). We use them partly for brevity and partly in the hope they
can be improved. Several proofs in this chapter are obtained by contradicting the following
two conditions.

Condition A.1 : α(ε) < cos(α(ε) + β(ε))
Condition A.2 : α(ε) < cos(α(ε) + arcsin ε + 2β(ε))

Condition A.1 is satised for ε ≤ 0.15, and Condition A.2 is satised for ε ≤ 0.09.

13.2 The Topological Ball Theorem
The goal of the next several sections is to establish that if a sample of a smooth surface
Σ has the right properties, its restricted Delaunay triangulation is a triangulation of the
surface. Our key tool for achieving this is an important result from computational topology
called the Topological Ball Theorem, which states that the underlying space of Del|Σ S
is homeomorphic to Σ if every Voronoi k-face that intersects Σ does so transversally in
a topological ball of dimension k − 1. To state the theorem formally, we introduce the
topological ball property.

Denition 13.3 (topological ball property). Let g ∈ Vor S be a Voronoi face of dimension
k, 0 ≤ k ≤ 3. Let g|Σ be the restricted Voronoi face g∩Σ. The face g satises the topological
ball property (TBP) if g|Σ is empty or
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Σ

(a) (b) (c)

Figure 13.2: (a) Good: the intersection between Σ and each Voronoi cell or face is a topo-
logical ball of appropriate dimension. (b) Bad: the intersection between Σ and a Voronoi
facet is not a single topological 1-ball. (c) Bad: the intersection between Σ and a Voronoi
edge is not a single point.

(i) g|Σ is a topological (k − 1)-ball (homeomorphic to Bk−1), and

(ii) (Int g) ∩ Σ = Int (g|Σ). Here we use the denition of �“interior�” for manifolds, Deni-
tion 12.12, not Denition 1.13.

The pair (S ,Σ) satises the TBP if every Voronoi face g ∈ Vor S satises the TBP.

Figure 13.2 illustrates condition (i), which means that Σ intersects a Voronoi cell in a
single topological disk, a Voronoi facet in a single topological 1-ball (a curve with two end-
points), a Voronoi edge in a single point, and a Voronoi vertex not at all. Condition (ii) rules
out Σ intersecting the boundary of a Voronoi face without intersecting its interior innites-
imally close by. If all the intersections between Σ and Voronoi faces are transverse, condi-
tion (ii) is automatically satised. To prove that the TBP holds when S is sufficiently dense,
we will explicitly prove that the Voronoi edges and Voronoi facets intersect Σ transversally.
The fact that the Voronoi vertices do (i.e. no Voronoi vertex lies on Σ) follows because if
a Voronoi vertex lay on Σ, then not all the Voronoi facets adjoining it could intersect Σ
transversally in an interval. Trivially, all Voronoi 3-cells intersect Σ transversally.

Theorem 13.1 (Topological Ball Theorem). If the pair (S ,Σ) satises the topological ball
property, the underlying space of Del|Σ S is homeomorphic to Σ.

At rst, this guarantee might not seem very impressive; after all, an elephant-shaped
mesh of an airplane impresses nobody, even if the boundaries of both are topological
spheres. The point, however, is that a subcomplex of Del S need not be a manifold without
boundary, or even a manifold at all. Del|Σ S can be a jumble of simplices. The Topological
Ball Theorem will help us to guarantee that for a dense enough sample, Del|Σ S is surpris-
ingly well behaved. Sections 13.3�–13.5 establish sampling conditions under which the TBP
holds.
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Vp
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q

Figure 13.3: The normals np and nx are almost orthogonal to ng.

13.3 Distances and angles in ε-samples
We begin by bounding the sizes of the restricted Delaunay edges and triangles of an ε-
sample. If pq is a restricted Delaunay edge, it is dual to a Voronoi facet g that intersects Σ
and lies on the bisector of pq. For any intersection point x ∈ g ∩ Σ, the length of pq cannot
be more than twice d(p, x). Thus, if d(p, x) ≤ ε f (p), then d(p, q) ≤ 2ε f (p).

We can extend this argument to restricted Delaunay triangles too. A restricted Delaunay
triangle τ is dual to a Voronoi edge τ∗ that intersects Σ. An intersection point x ∈ τ∗ ∩ Σ is
in every Voronoi cell having edge τ∗. If p is a vertex of τ, Vp is such a cell. The point x is
the center of a circumball of the triangle τ. The circumradius of τ, being the radius of its
smallest circumball, is at most d(p, x). The following proposition is thus immediate.

Proposition 13.2. For any ε < 1, the following properties hold.

(i) Let e be a restricted Delaunay edge with a vertex p. If the dual Voronoi facet of e
intersects Σ in a point x such that d(p, x) ≤ ε f (p), the length of e is at most 2ε f (p).

(ii) Let τ be a restricted Delaunay triangle with a vertex p. If the dual Voronoi edge of τ
intersects Σ in a point x such that d(p, x) ≤ ε f (p), the circumradius of τ is at most
ε f (p).

In the previous chapter, we show that if edges and triangles connecting points on a
smooth surface have small circumradii with respect to the local feature size, they lie nearly
parallel to the surface. Hence, their dual Voronoi facets and edges intersect Σ almost orthog-
onally. The circumradius of a restricted Delaunay simplex is the distance from its vertices
to the affine hull of its dual Voronoi face, so if the circumradius is small, the affine hull of
the dual face intersects the surface near a sample point. The next two propositions quantify
these statements.
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nx
p

Σ

np

x

e

Figure 13.4: By Proposition 13.4, nx, e, and np are almost parallel.

Proposition 13.3. Let g be a facet of a Voronoi cell Vp. Let Π = aff g. Let ng be the normal
to g. If there is an ε < 1 and a point x ∈ Π ∩ Σ such that d(p, x) ≤ ε f (p), then

(i) ∠a(ng, np) ≥ π/2 − arcsin ε and

(ii) ∠a(ng, nx) ≥ π/2 − arcsin ε − α(ε), which is greater than π/6 for ε < 1/3.

Proof. Refer to Figure 13.3. Let pq be the Delaunay edge dual to g. By Proposition 13.2(i),
d(p, q) ≤ 2ε f (p). Because pq is orthogonal to Π, ∠a(ng, np) = ∠a(pq, np), and by the Edge
Normal Lemma (Lemma 12.12), ∠a(pq, np) ≥ π/2 − arcsin ε, yielding (i).

By the Normal Variation Theorem (Theorem 12.8), ∠(np, nx) ≤ α(ε). By the triangle
inequality,

∠a(ng, nx) ≥ ∠a(ng, np) − ∠a(np, nx)
≥ π

2
− arcsin ε − α(ε).

"

The next proposition shows that if a Voronoi edge e intersects the surface Σ at a point
close to the vertices of e�’s Delaunay dual triangle, then e is nearly orthogonal to Σ at that
point, as illustrated in Figure 13.4. It is also nearly parallel to the normals at the dual
triangle�’s vertices.

Proposition 13.4. Let e be an edge of a Voronoi cell Vp. If there is a point x ∈ e ∩ Σ such
that d(p, x) ≤ ε f (p) for some ε < 1/2, then

(i) ∠a(e, np) ≤ β(ε) and

(ii) ∠a(e, nx) ≤ α(ε) + β(ε).



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

278 Delaunay Mesh Generation

Proof. Let τ be the Delaunay triangle dual to e, and observe that e is parallel to the normal
nτ to τ. Let q be the vertex of τ where the angle is largest. The circumradius of τ can-
not exceed d(p, x) ≤ ε f (p). Hence d(p, q) ≤ 2ε f (p). By the Feature Translation Lemma
(Lemma 12.2), f (p) ≤ f (q)/(1 − 2ε). Therefore, the circumradius of τ is at most ε

1−2ε f (q).
We apply the Triangle Normal Lemma (Lemma 12.14) to τ to obtain

∠a(nτ, nq) ≤ arcsin
ε

1 − 2ε + arcsin
(
2√
3
sin
(
2 arcsin ε

1 − 2ε
))
.

Because 2ε < 1 by assumption, the Normal Variation Theorem (Theorem 12.8) applies,
giving

∠(np, nq) ≤ α(2ε) and ∠(np, nx) ≤ α(ε).
Therefore,

∠a(e, np) ≤ ∠a(np, nq) + ∠a(e, nq)
≤ α(2ε) + ∠a(nτ, nq)
= β(ε),

proving (i). The correctness of (ii) follows by the triangle inequality: ∠a(e, nx) ≤
∠a(np, nx) + ∠a(e, np) ≤ α(ε) + β(ε). "

The next proposition proves a fact about distances given an angle constraint. It is similar
to the Long Distance Lemma (Lemma 12.13), which is used in the proof.

Proposition 13.5. Let p, x, and y be three points on Σ. If there is an ε ≤ 0.15 such that
∠a(xy, nx) ≤ α(ε) + β(ε), then at least one of d(p, x) or d(p, y) is larger than ε f (p).

Proof. Assume to the contrary that both d(p, x) and d(p, y) are at most ε f (p). By the Fea-
ture Translation Lemma (Lemma 12.2), f (x) ≤ f (p)/(1 − ε). By the Three Points Lemma
(Lemma 12.3),

d(x, y) ≤ 2ε f (p) ≤ 2ε
1 − ε f (x) = 2α(ε) f (x).

On the other hand, by the Long Distance Lemma (Lemma 12.13),

d(x, y) ≥ 2 f (x) cos ∠(xy, nx) ≥ 2 f (x) cos(α(ε) + β(ε)).

The lower and upper bounds on d(x, y) together yield

α(ε) ≥ cos(α(ε) + β(ε)).

This contradicts condition A.1, which is satised for ε ≤ 0.15. "

13.4 Local properties of restricted Voronoi faces
The goal of this section is to prove that a restricted Voronoi face has a simple topology if it
has a vertex (i.e. a restricted Voronoi vertex) and all its vertices are close to a sample point.
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p
Vp ∩ Σ

Σp

Figure 13.5: The large polyhedron is Vp, and the three curved components inside it are
Vp ∩ Σ. Σp consists of the two shaded components, which intersect Voronoi edges. The
cylindrical component at the bottom is not part of Σp, because it does not intersect any
Voronoi edge.

By �“simple topology,�” we mean that Σ intersects a Voronoi edge in a single point, a Voronoi
facet in a single curve that is not a loop, and a Voronoi cell in a single topological disk. We
prove these three cases separately in results called the Voronoi Edge Lemma (Lemma 13.7),
the Voronoi Facet Lemma (Lemma 13.9), and the Voronoi Cell Lemma (Lemma 13.12). We
collect these results together as the Small Intersection Theorem (Theorem 13.6).

The main difficulty to overcome is that a Voronoi cell Vp can intersect the surface Σ in
multiple connected components. The characterization of the results above is not quite cor-
rect, because they apply only to the connected components that adjoin a restricted Voronoi
vertex. We introduce a notation for these components because they play an important role
in the forthcoming analysis.

Denition 13.4 (ε-small). Let Σp be the union of the connected components of Vp ∩ Σ that
adjoin at least one restricted Voronoi vertex. We say that Σp is ε-small if Σp is empty or the
distances from p to every restricted Voronoi vertex in Σp are less than ε f (p).

Figure 13.5 shows Σp for a sample point p. Observe that Σp is a subset of p�’s restricted
Voronoi cell Vp|Σ. The Small Intersection Theorem formalizes the properties of the inter-
sections between Σp and the faces of Vp when Σp is 0.09-small. The connected components
of a 1-manifold are either loops, that is, connected curves with no boundary, or topological
intervals, also known as 1-balls: curves having two boundary points each.

Theorem 13.6 (Small Intersection Theorem). If there is an ε ≤ 0.09 such that Σp is
nonempty and ε-small, then the following properties hold.

(i) Σp is a topological disk and every point in Σp is a distance less than ε f (p) from p.

(ii) Every edge of Vp that intersects Σ does so transversally in a single point.
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(iii) Every facet g of Vp that intersects Σp does so in a topological interval, and the
intersection is transverse at every point of g ∩ Σp.

Proof. (i) Follows directly from the Voronoi Cell Lemma (Lemma 13.12). (ii) Follows
directly from the Voronoi Edge Lemma (Lemma 13.7). (iii) Because of (i), Σp has a single
boundary and it intersects a Voronoi edge. Thus, the boundary of Σp cannot lie completely
in the interior of any facet of Vp without intersecting one of its edges. Then, the Voronoi
Facet Lemma (Lemma 13.9) applies. "

The three lemmas mentioned above occupy the remainder of this section. The rst of
them is the easiest to prove.

Lemma 13.7 (Voronoi Edge Lemma). Suppose that Σ intersects an edge e of a Voronoi
cell Vp. If there is an ε ≤ 0.15 such that d(p, x) ≤ ε f (p) for every point x ∈ e ∩ Σ, then e
intersects Σ transversally in a single point.

Proof. Let x be a point in e ∩ Σ. By Proposition 13.4(ii), we have

∠a(e, nx) ≤ α(ε) + β(ε).

Assume for the sake of contradiction that e does not intersect Σ transversally in a sin-
gle point. Either e intersects Σ tangentially at x or there is a point y ∈ e ∩ Σ other
than x; Figure 13.6 shows both cases. In the rst case, ∠a(e, nx) = π/2, which implies
that α(ε) + β(ε) ≥ π/2, which is impossible for any ε ≤ 0.15. In the second case,
∠a(xy, nx) = ∠a(e, nx) ≤ α(ε) + β(ε). But then Proposition 13.5 states that d(p, x) or d(p, y)
is larger than ε f (p), contradicting the assumption. "

We use the next proposition to prove the Voronoi Facet Lemma (Lemma 13.9) and the
Voronoi Cell Lemma (Lemma 13.12). It says that if the intersection of a Voronoi facet with
Σ includes a curve with nonempty boundary whose boundary points are close to a sample
point, then the entire curve is close to the sample point.

Proposition 13.8. Let g be a facet of a Voronoi cell Vp. Suppose that g ∩ Σ contains a
topological interval I. If there is an ε ≤ 0.15 such that the distances from p to the endpoints
of I are less than ε f (p), then the distance from p to any point in I is less than ε f (p).

Proof. Let B be the Euclidean 3-ball centered at p with radius ε f (p). Let Π = aff g. As the
distances from p to the endpoints of I are less than ε f (p), the endpoints of I lie in IntD,
where D is the Euclidean disk B ∩ Π. To prove the proposition, it suffices to show that
I ⊆ IntD. Assume to the contrary that I ! IntD. Refer to Figure 13.7.

Let C be the connected component of Π ∩ Σ containing I. Observe that C ! IntD
because I ⊂ C and I ! IntD by assumption. For any point x ∈ Π ∩ Σ ∩ D, because
d(p, x) ≤ ε f (p), the point x cannot be a tangential contact point between Π and Σ as that
would contradict Proposition 13.3(ii). Thus, C∩ IntD is a collection of disjoint topological
intervals.

We claim that C ∩ IntD consists of at least two topological intervals. Assume to the
contrary that C ∩ IntD is one topological interval. Recall that I ⊂ C, I ! IntD, and the
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Σ

px p
x
y

Σ

(a) (b)

Figure 13.6: (a) A Voronoi edge intersects Σ tangentially at a single point. (b) A Voronoi
edge intersects Σ in two points.

a

F
I

D C

a

I
F

D′

D
C

(a) (b)

Figure 13.7: (a) D is shrunk radially until it is tangent toC at some point a. (b) The shrinking
of D is continued by moving the center toward a.

endpoints of I lie in C ∩ IntD. It follows that (C ∩ IntD) ∪ I is a loop. Take an edge e
of g that contains an endpoint x of I. Since Σ meets e transversally, the affine hull ' of e
crosses C ∩ IntD at x. Since g is convex, it lies on one side of '. After C ∩ IntD leaves
the side of ' containing g, it must return to g in order to form a loop with I, which lies
in g. It means that C ∩ IntD has to cross ' at least twice. Hence, ' intersects C ∩ IntD
at x and another point y. Since x, y ∈ D, both d(p, x) and d(p, y) are at most ε f (p). By
Proposition 13.4, ∠a(xy, nx) = ∠a(e, nx) ≤ α(ε) + β(ε). But then Proposition 13.5 implies
that d(p, x) or d(p, y) is larger than ε f (p), a contradiction.

So we can assume that C ∩ IntD consists of at least two disjoint topological intervals.
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Figure 13.8: D′ and D′′.

Then, D can be shrunk to a smaller disk D′ as follows so that D′ meets C tangentially at
two points and C ∩ IntD′ = ∅. First, shrink D radially until it meets C tangentially at some
point a. Refer to Figure 13.7(a). It follows that d(p, a) < ε f (p). If this shrunk D does not
meet the requirement of D′ yet, shrink it further by moving its center toward a until a disk
D′ is obtained as required. Refer to Figure 13.7(b). Observe that a is one of the contact
points between D′ and C.

The affine hull Π of g intersects the two medial balls of Σ at a in two disks. Among
these two disks, let D′′ be the one that intersects D′. Let B′′ be the medial ball such that
D′′ = B′′ ∩ Π. The boundaries of D′ and D′′ meet tangentially at a. So either D′′ ⊆ D′
(Figure 13.8(a)) or D′ ⊂ D′′ (Figure 13.8(b)).

We claim that D′′ ⊆ D′ and the radius of D′′ is greater than ε f (p). Suppose that D′ ⊂
D′′. By construction, D′ meets Σ tangentially at two points. So one of these contact points
must lie in IntD′′. This is a contradiction because D′′ = B′′ ∩ Π and Int B′′ ∩ Σ = ∅ as B′′
is a medial ball. This shows that D′′ ⊆ D′. By Proposition 13.3(ii), the acute angle between
Π and na is at most α(ε) + arcsin ε. The angle between the diametric segments of B′′ and
D′′ adjoining a is equal to the angle between na and Π. Therefore,

radius(D′′) ≥ radius(B′′) · cos(α(ε) + arcsin ε)
≥ f (a) · cos(α(ε) + arcsin ε).

Observe that β(ε) > arcsin ε. Also, cos(α(ε) + β(ε)) > α(ε) by condition A.1 as ε ≤ 0.15.
Thus,

radius(D′′) ≥ f (a) · cos(α(ε) + arcsin ε)
> f (a) · cos(α(ε) + β(ε))
> α(ε) · f (a)
=

ε

1 − ε f (a).

It follows from the Feature Translation Lemma (Lemma 12.2) that radius(D′′) > ε f (p).
This completes the proof of our claim that D′′ ⊆ D′ and radius(D′′) > ε f (p); therefore,
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radius(D′) > ε f (p). But D′ is obtained by shrinking D = B ∩ Π where radius(B) = ε f (p).
We reach a contradiction. In all, the contrapositive assumption that I ! IntD cannot hold.
It follows that the distance from p to any point in I is less than ε f (p). "

With this preparation, we prove the Voronoi Facet Lemma: the intersection between a
Voronoi facet and Σ is a single topological interval if each component of the intersection
contains at least one restricted Voronoi vertex and every such restricted Voronoi vertex is
close to a sample point.
Lemma 13.9 (Voronoi Facet Lemma). Let g be a facet of a Voronoi cell Vp. Let Cg be
the union of the curves in g ∩ Σ that each contain a restricted Voronoi vertex. If there is
an ε ≤ 0.09 such that every restricted Voronoi vertex in Bd g is at a distance less than
ε f (p) from p, then Cg consists of exactly one topological interval at which g intersects Σ
transversally.
Proof. First we claim that Cg includes no loop. If there is one, it must intersect a Voronoi
edge by the assumption that it contains a restricted Voronoi vertex. Since the distance from
p to every restricted Voronoi vertex in Cg is less than ε f (p), the affine hull of g intersects Σ
transversally at each such vertex by Proposition 13.3(ii). Thus, a loop in Cg can only meet
a Voronoi edge tangentially. But this would mean that the edge meets Σ tangentially, which
is forbidden by the Voronoi Edge Lemma (Lemma 13.7) for ε ≤ 0.09. So Cg includes only
topological intervals.

Assume for the sake of contradiction that there are two or more intervals and let I and
I′ be any two of them. Let u and v be the endpoints of I. Let x and y be the endpoints of
I′. By the Voronoi Edge Lemma, no edge of g intersects Σ in two or more points, so the
four edges of g containing u, v, x, and y are distinct. Let Q be the convex quadrilateral on
aff g bounded by the affine hulls of these four edges. We call Q�’s edges eu, ev, ex, and ey
according to the interval endpoints that they contain. Refer to Figure 13.9(a).

The distances d(p, u), d(p, v), d(p, x), and d(p, y) are less than ε f (p) by assumption.
Consider the Delaunay triangles dual to the edges of g containing u, v, x, and y. Their
circumradii are at most ε f (p) by Proposition 13.2(ii). By Proposition 13.4(i), the angles
∠a(eu, np), ∠a(ev, np), ∠a(ex, np), and ∠a(ey, np) are at most β(ε). By Proposition 13.3(i), the
acute angle between aff g and np is at most arcsin ε. Let �˜np be the projection of np onto
aff g. So ∠a(np, �˜np) ≤ arcsin ε. It follows that

∠a(eu, �˜np) ≤ ∠a(eu, np) + ∠a(np, �˜np) ≤ β(ε) + arcsin ε.
Similarly, the angles ∠a(ev, �˜np), ∠a(ex, �˜np), and ∠a(ey, �˜np) are at most β(ε) + arcsin ε. The
convexity of Q implies that one of its interior angles must be at least π − 2(β(ε) + arcsin ε),
say, the interior angle between ev and ex. In this case, a line parallel to �˜np may either cut
through or be tangent to the corner of Q between ev and ex. Figures 13.9(b) and 13.9(c)
illustrate these two possibilities. In both congurations, ∠a(vx, ev) ≤ β(ε) + arcsin ε or
∠a(vx, ex) ≤ β(ε) + arcsin ε. Without loss of generality, assume that ∠a(vx, ex) ≤ β(ε) +
arcsin ε.

By Proposition 13.4(ii), ∠a(ex, nx) ≤ α(ε) + β(ε). Then
∠a(vx, nx) ≤ ∠a(vx, ex) + ∠a(ex, nx)

≤ α(ε) + arcsin ε + 2β(ε).
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Figure 13.9: A Voronoi facet (bounded by solid line segments) intersects Σ in two topo-
logical intervals (shown as curves). The convex quadrilateral Q is bounded by dashed line
segments.

On the other hand, d(v, x) ≤ 2ε f (x)/(1 − ε) by the Three Points Lemma (Lemma 12.3).
Then, the Edge Normal Lemma (Lemma 12.12) implies that

∠a(vx, nx) ≥
π

2
− arcsin ε

1 − ε
=
π

2
− arcsin α(ε)

= arccos α(ε).

The upper and lower bounds on ∠a(vx, nx) together give

arccos α(ε) ≤ α(ε) + arcsin ε + 2β(ε)
⇒ α(ε) ≥ cos(α(ε) + arcsin ε + 2β(ε)).

This contradicts condition A.2, which is satised for ε ≤ 0.09. Therefore, it contradicts the
assumption that Cg includes more than one topological interval.
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It remains to prove that g intersects Σ transversally at Cg. Suppose to the contrary
Σ intersects g tangentially at some point s in Cg. It follows from Proposition 13.8 that
d(p, s) < ε f (p). Therefore, ∠a(np, ns) ≤ α(ε) by the Normal Variation Theorem (Theo-
rem 12.8). The triangle inequality and Proposition 13.3(i) give

∠a(ng, ns) ≥ ∠a(ng, np) − ∠a(np, ns)
≥ π

2
− arcsin ε − α(ε).

The quantity π/2−arcsin ε−α(ε) is positive for ε ≤ 0.09. We reach a contradiction because
∠a(ng, ns) should be zero as Σ is tangent to g at s. "

Recall the surface Σp from Denition 13.4. If Σp is ε-small, the Voronoi Edge and
Voronoi Facet Lemmas state that the edges and facets of Vp intersect Σ transversally, so
Σp is a 2-manifold whose boundary is a 1-manifold without boundary, i.e. a collection of
loops. Classify these boundary loops into two types.

• Type 1: A loop that intersects one or more Voronoi edges. The intersection points are
restricted Voronoi vertices.

• Type 2: A loop that does not intersect any Voronoi edge.

Although every connected component of Σp adjoins a restricted Voronoi vertex by the def-
inition of Σp, a connected component can have more than one boundary loop (e.g. if it is
homeomorphic to an annulus), only one of which must be of Type 1.

The forthcoming Voronoi Cell Lemma says that for a sufficiently small ε, Σp is a topo-
logical disk. This requires us to argue that Σp has only one boundary loop.

We show some properties of Type 1 loops in Proposition 13.10 below. The result fol-
lowing it, Proposition 13.11, shows that Σp has exactly one Type 1 loop.

Proposition 13.10. Let Σp be ε-small for some ε ≤ 0.09. Let C be a loop of Type 1 in
BdΣp. Then, C bounds a topological disk D ⊂ Σ such that d(p, x) < ε f (p) for every point
x ∈ D. Furthermore, if D does not include any other Type 1 loop, then

(i) D does not include any other loop of BdΣp,

(ii) D is included in Vp, and

(iii) D is a connected component of Σp.

Proof. Proposition 13.8 and the denition of Type 1 loop imply that there is a Voronoi
facet of Vp that contains a single topological interval of each Type 1 loop. Continuing the
same argument for other facets on which the two end points of the topological interval
lie, we conclude that each Type 1 loop consists of a set of topological intervals residing
in Voronoi facets of Vp all of whose points are a distance less than ε f (p) away from p.
It follows that all Type 1 loops lie strictly inside a Euclidean 3-ball B = B(p, ε f (p)). The
Voronoi Edge Lemma (Lemma 13.7) and the Voronoi Facet Lemma (Lemma 13.9) show
that Σ intersects BdVp transversally at these loops, so the intersection is a 1-manifold. By
the Small Ball Lemma (Lemma 12.7), B∩Σ is a topological disk. It follows that each Type 1
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Figure 13.10: Proof of Proposition 13.10: disk D with the opening C is like a �“sack�” that
encloses a part of Vp.

loop bounds a topological disk in B ∩ Σ that lies strictly inside B. This proves the rst part
of the proposition: C bounds a topological disk D ⊂ Σ and d(p, x) < ε f (p) for every point
x ∈ D.

Consider (i). By assumption, the topological disk D does not include other loops of
Type 1. Assume to the contrary that D includes a loop C′ of Type 2. So C′ is con-
tained in a facet, say g, of Vp. Since D lies strictly inside B, so does C′. Take any point
x ∈ C′. Consider the line 'x through x parallel to the projection of nx onto g. By Proposi-
tion 13.3(ii) ∠a('x, nx) ≤ α(ε) + arcsin ε ≤ π/3. It means that 'x intersects C′ transversally
and thus intersects it at another point x′. Both d(p, x) and d(p, x′) are less than ε f (p). Also,
∠a('x, nx) ≤ α(ε)+arcsin ε ≤ α(ε)+β(ε). Therefore, by Proposition 13.5, d(p, x) or d(p, x′)
is greater than ε f (p), a contradiction.

Consider (ii). Because Vp is a closed set, it is sufficient to show that IntD is included
in Vp. Suppose not. Then, IntD must lie completely outside Vp; otherwise, IntD would
include a boundary loop of Σp, which is prohibited by (i). Refer to Figure 13.10. Let e
be an edge of Vp that intersects C. Let x be an intersection point of e and C. By Propo-
sition 13.4(ii), ∠a(e, nx) ≤ α(ε) + β(ε), which is less than π/3 for ε ≤ 0.09. Thus, aff e
intersects Σ transversally at x. Let ' be a line outside Vp that is parallel to and arbitrarily
close to aff e. Then ' must intersect IntD transversally at a point x1 arbitrarily close to x.

As BdVp is a topological sphere, C cuts it into two topological disks. Let T be one of
them. The union T ∪ D is a topological sphere. Because ' intersects IntD at x1, ' must
intersect T ∪ D at another point x2 " x1.

The point x2 must lie in D because T ⊆ BdVp and ' lies outside Vp. By the Long
Distance Lemma (Lemma 12.13), d(x1, x2) ≥ 2 f (x1) cos(∠a(', nx1 )). Observe that x1 is
arbitrarily close to x and ∠a(', nx) = ∠a(e, nx) < π/3. Thus, ∠a(', nx1 ) < π/3 and so
d(x1, x2) > 2 f (x1) cos π/3 = f (x1). As x1 is arbitrarily close to x and f is continu-
ous, d(x1, x2) ≥ f (x); thus, d(x1, x2) ≥ (1 − ε) f (p) by the Feature Translation Lemma
(Lemma 12.2). But this is a contradiction because D lies inside B and B has diameter
2ε f (p) < (1 − ε) f (p) for ε ≤ 1/3.

The correctness of (iii) follows immediately from (i) and (ii). "



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Restricted Delaunay triangulations of surface samples 287

C C′

ρ

h

I

y

x

ρ

(a) (b)

Figure 13.11: (a) Two loops C and C′ drawn schematically on the patch B ∩ Σ. The path ρ
starting from C goes outside Vp and then has to reach Vp again to reach C′. (b) A different
view with the polytope P. The lower bold curve denotes C, whose intersection with the
shaded facet h is a topological interval I. The curved patch shown is part of (B∩Σ) \ IntVp.
The curved path on it is ρ.

We use Proposition 13.10 to show that Σp has only one Type 1 boundary loop if Σp is
ε-small for ε ≤ 0.09, which will prepare us to prove the Voronoi Cell Lemma.

Proposition 13.11. If Σp is ε-small for some ε ≤ 0.09, then BdΣp has exactly one Type 1
loop.

Proof. The denition of Σp implies that its boundary has at least one Type 1 loop. Each
Type 1 loop bounds a topological disk in Σ by Proposition 13.10. Because the loops are
disjoint, the topological disks bounded by them are either disjoint or nested. So there is a
loop C of Type 1 bounding a topological disk D in Σ such that D contains no Type 1 loop.
By Proposition 13.10(iii), D is a connected component of Σp.

If BdΣp does not have any Type 1 loop other than C, there is nothing to prove, so
assume to the contrary that there is another loop C′ of Type 1 in BdΣp. Consider the set
of facets of Vp that intersect C. Each facet in this set bounds a halfspace containing p. The
intersection of these halfspaces is a convex polytope P that includes Vp. As D lies in Vp, it
lies in P too.

Let B = B(p, ε f (p)). By Proposition 13.8, both loops C and C′ lie inside B ∩ Σ. Let ρ
be a curve in (B ∩ Σ) \ IntVp that connects C to C′. Since D ⊂ P and the contact between
D and BdP is not tangential, ρ leaves P where ρ leaves D. Since C′ ⊂ Vp ⊆ P, the path
ρ must return to some facet of P to meet C′. Let h be a facet of P that ρ intersects after
leaving D. Let y be a point in ρ∩ h. Let g be the facet of Vp included in h. By the denition
of P, C must intersect g.

The Voronoi Facet Lemma (Lemma 13.9) implies that C∩g is one topological interval.
Call this topological interval I. Refer to Figure 13.11.
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Figure 13.12: (a) The curve is C ∩ g and ∠a(L, �˜nx) ≤ ∠a(e, �˜nx). (b) The angle ∠a(', nx) is an
increasing function of ∠a(', �˜nx).

Claim 1. Every edge of g that contains an endpoint of I is included in some
edge of h.
Proof. Consider an endpoint z of I. The point z lies on the boundary of g,
which means that the other facet(s) of Vp that share z with g are intersected by
C. So the affine hulls of these facets bound P. It follows that the edges of g
containing z are included in some edges of h. "

By Claim 1, the endpoints of I lie on the boundary of h, and hence, C ∩ h = C ∩ g = I.
Let x be the point closest to y on I. Then x ∈ I ⊂ C ⊂ B ∩ Σ and y ∈ ρ ⊂ B ∩ Σ. So the
distances from p to x and y are at most radius(B) = ε f (p). Let L be the line through x and
y. There are two cases to consider.

• Case 1: x lies in the interior of h. Then L intersects I at x at a right angle. This
means that L is the projection of nx onto aff h. By Proposition 13.3(ii), ∠a(L, nx) ≤
α(ε) + arcsin ε ≤ α(ε) + β(ε). But then d(p, x) or d(p, y) is greater than ε f (p) by
Proposition 13.5, a contradiction.

• Case 2: x lies on the boundary of h. Let e be an edge of h containing x. By Claim 1, e
includes an edge of g that contains x. Let �˜nx be the projection of nx onto aff h. Refer
to Figure 13.12(a). Because x is the point closest to y on I, ∠a(L, �˜nx) ≤ ∠a(e, �˜nx).
For any line ' in aff h through x, the angle ∠a(', nx) increases as the angle ∠(', �˜nx)
increases. Refer to Figure 13.12(b). We conclude that ∠a(L, nx) ≤ ∠(e, nx), which is
at most α(ε) + β(ε) by Proposition 13.4(ii). But then d(p, x) or d(p, y) is greater than
ε f (p) by Proposition 13.5, a contradiction.

It follows from the contradiction that BdΣp includes only one Type 1 loop. "

We now have all the ingredients to prove the Voronoi Cell Lemma.
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p p p
Σp Σp Σp

Figure 13.13: Let ε ≤ 0.09. If Σp is ε-small, the conguration at left is impossible by the
Small Intersection Theorem, but the conguration at center is possible because the small
cylindrical component is not part of Σp. If Σp is ε-small for every p ∈ S and at least
one Voronoi edge intersects Σ, the conguration at center is impossible by the Voronoi
Intersection Theorem (Theorem 13.14), and only the conguration at right is possible.

Lemma 13.12 (Voronoi Cell Lemma). If Σp is nonempty and ε-small for some ε ≤ 0.09,
then Σp is a topological disk and d(p, x) < ε f (p) for every point x ∈ Σp.

Proof. By Propositions 13.10 and 13.11, Σp has exactly one boundary loop C of Type 1 and
C bounds a topological disk D, which is a connected component of Σp. There is no other
connected component in Σp because, by the denition of Σp, such a component would have
another Type 1 boundary loop, contradicting Proposition 13.11. Hence, D = Σp. By Propo-
sition 13.10, the distance from every point in D to p is less than ε f (p). "

13.5 Global properties of restricted Voronoi faces
The Small Intersection Theorem does not rule out the possibility that a restricted Voronoi
face may have misbehaved components that do not adjoin a restricted Voronoi vertex, as
illustrated at center in Figure 13.13. It only guarantees that, if certain local constraints
are imposed, a restricted Voronoi face has at most one connected component that adjoins
a restricted Voronoi vertex, ruling out the conguration at left in Figure 13.13; and that
component is a topological ball. The forthcoming Voronoi Intersection Theorem shows
that if Σp is ε-small for every sample point p and at least one edge in Vor S intersects the
surface Σ, then every restricted Voronoi face is a topological ball, as illustrated at right in
Figure 13.13. Moreover, it guarantees that the topological ball property holds.

Proposition 13.13. Let S be a nite sample of a connected, smooth surface Σ. If some edge
in Vor S intersects Σ and there is an ε ≤ 0.09 such that Σp is ε-small for every p ∈ S , then
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Vp ∩ Σ = Σp for every p ∈ S .

Proof. Assume for the sake of contradiction that there is a sample point q ∈ S such
that Vq ∩ Σ " Σq. It follows from the Small Intersection Theorem that some connected
component σq of Vq ∩ Σ does not intersect any Voronoi edge.

By assumption, there exists a sample point s such that some edge of Vs intersects Σ.
By the Voronoi Cell Lemma (Lemma 13.12), Σs is a topological disk. Consider a path in
Σ connecting a point in σq to a point in Σs. Let q = p0, p1, ..., pk = s be the sequence of
sample points in S whose Voronoi cells are visited along this path. Let σpi be the connected
component of Vpi ∩ Σ visited by the path when it visits Vpi in the sequence. There must
be two consecutive points pi and pi+1 in this sequence such that σpi does not intersect
any Voronoi edge and σpi+1 intersects a Voronoi edge, because σp0 does not intersect any
Voronoi edge and σpk = Σs does.

The boundaries of σpi and σpi+1 intersect. Because the former boundary intersects
no Voronoi edge, the intersection must be one or more complete boundary loops. By the
Voronoi Cell Lemma (Lemma 13.12), σpi+1 is the topological disk Σpi+1 ; hence, σpi+1 has
only one boundary loop. But this loop intersects a Voronoi edge, a contradiction. "

Theorem 13.14 (Voronoi Intersection Theorem). Let S be a nite sample of a connected,
smooth surface Σ. If some edge in Vor S intersects Σ and there is an ε ≤ 0.09 such that Σp
is ε-small for every p ∈ S , then the following properties hold for every p ∈ S .

(i) Vp|Σ = Σp.

(ii) Σp is a topological disk and the distance from p to every point in Σp is less than
ε f (p).

(iii) Every edge of Vor S that intersects Σ does so transversally at a single point.

(iv) Every facet of Vor S that intersects Σ does so transversally in a topological interval.

(v) The point set S is an ε/(1 − ε)-sample of Σ.

Proof. Assertions (i)�–(iv) follow from the Small Intersection Theorem (Theorem 13.6) and
Proposition 13.13. For assertion (v), let x be a point in Σ. It follows from (i) that x ∈ Σp
for some p ∈ S . Assertion (ii) and the Feature Translation Lemma (Lemma 12.2) give
d(p, x) < ε f (p) ≤ ε

1−ε f (x). Hence, S is an ε/(1 − ε)-sample of Σ. "

The Voronoi Intersection Theorem offers stronger guarantees than the Small Intersec-
tion Theorem (Theorem 13.6). First, every restricted Voronoi cell Vp|Σ is a topological disk.
Second, a facet of Vor S cannot intersect Σ in a loop or degenerate curve. Third, the topo-
logical ball property holds. Fourth, S is guaranteed to be a dense sample of Σ.

The preconditions of the Voronoi Intersection Theorem imply that S is dense, being
an ε/(1 − ε)-sample. The implication can be reversed, thereby showing that a sufficiently
dense sample guarantees the same good consequences.



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Restricted Delaunay triangulations of surface samples 291

Theorem 13.15 (Dense Sample Theorem). Let S be an ε-sample of Σ for some ε ≤ 0.08.
Then, for every p ∈ S , Σp is nonempty and 0.09-small. Moreover, the consequences of the
Voronoi Intersection Theorem (Theorem 13.14) hold.

Proof. Suppose for the sake of contradiction that some Σp is empty. Then the loops in
(BdVp)∩Σ reside in the relative interiors of the facets of Vp. Let C be such a loop and let g
be the facet of Vp that includes C. Consider a line 'x ⊂ aff g that is perpendicular to C at a
point x ∈ C. The line 'x intersects C at another point y because C is a loop in a plane. As S is
an ε-sample and p is a nearest sample point to x, d(p, x) ≤ ε f (x) ≤ ε

1−ε f (p) by the Feature
Translation Lemma (Lemma 12.2). Similarly, d(p, y) ≤ ε

1−ε f (p). As ε ≤ 0.08, d(p, x) <
0.09 f (p) and d(p, y) < 0.09 f (p). The line 'x contains the projection of nx onto g because
it is perpendicular to C at x. By Proposition 13.3(ii), we have ∠a(xy, nx) = ∠a('x, nx) ≤
α(0.09)+arcsin 0.09, which is less than α(0.09)+β(0.09). But then Proposition 13.5 implies
that one of d(p, x) or d(p, y) is greater than 0.09 f (p), a contradiction.

Because Σp is nonempty for every p ∈ S , it follows that Σ intersects a Voronoi edge.
For any p ∈ S , let x be a restricted Voronoi vertex of Σp. As S is an ε-sample and p is a
sample point nearest x, d(p, x) ≤ ε

1−ε f (p). It follows that Σp is ε/(1 − ε)-small and thus
0.09-small for ε ≤ 0.08.

The assumptions of the Voronoi Intersection Theorem are satised and its consequences
follow. "

13.6 The delity of the restricted Delaunay triangulation
The meshing algorithms described in subsequent chapters generate the restricted Delaunay
triangulation Del|Σ S or a tetrahedral mesh bounded by Del|Σ S . Here we use the Voronoi
Intersection Theorem (Theorem 13.14) to show that the underlying space of Del|Σ S is
topologically equivalent to Σ and that the two manifolds are geometrically similar. For a
precise statement of the nature of the geometric similarity, see the Surface Discretization
Theorem (Theorem 13.22) at the end of this chapter.

Observe that the topological ball property is one consequence of the Voronoi Intersec-
tion Theorem (Theorem 13.14). We put it together with the Topological Ball Theorem.

Theorem 13.16 (Homeomorphism Theorem). Let S be a sample of a connected, smooth
surface Σ ⊂ R3. If some edge in Vor S intersects Σ and there is an ε ≤ 0.09 such that for
every p ∈ S , Σp is ε-small, then the underlying space of Del|Σ S is homeomorphic to Σ.

Thus Del|Σ S is a triangulation of Σ by Denition 12.6.

13.6.1 The nearest point map is a homeomorphism

The Homeomorphism Theorem is purely topological; it establishes that, under the right
conditions, Del|Σ S is a triangulation of Σ, but it does not say that they are geometrically
similar. Most of the remainder of this chapter is devoted to showing that |Del|Σ S | and
Σ can be continuously deformed to one another by small perturbations that maintain a
homeomorphism between them; thus, they are related by an isotopy. Let M be the medial
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axis of Σ. To construct the homeomorphism, we recall from Section 12.6 the function that
maps every point z ∈ R3 \ M to the unique point �˜z nearest z on Σ. We call this function the
nearest point map.

Denition 13.5 (nearest point map). Let T be a triangulation of a 2-manifold Σ ⊂ R3. The
nearest point map on T maps every point z ∈ |T| to the nearest point �˜z on Σ.

For the nearest point map to be dened, |T| must be disjoint from the medial axis M. If
that restriction is satised, the nearest point map is continuous. For the nearest point map
to be bijective, and therefore a homeomorphism, the triangulation must satisfy additional
conditions, which we encapsulate in the notion of ε-dense triangulations.

Denition 13.6 (ε-dense). A triangulation T of a 2-manifold Σ ⊂ R3 is ε-dense if

(i) the vertices in T lie on Σ,

(ii) for every triangle τ in T and every vertex p of τ, the circumradius of τ is at most
ε f (p), and

(iii) |T| can be oriented such that for every triangle τ in T and every vertex p of τ, the
angle between np and the vector nτ normal to τ is at most π/2.

One implication of this denition is that for sufficiently small ε, an ε-dense triangula-
tion of Σ does not intersect the medial axis.

Proposition 13.17. For ε < 0.5, an ε-dense triangulation T of Σ does not intersect the
medial axis of Σ.

Proof. Let τ be an arbitrary triangle in T. Let p be a vertex of τ. Because T is ε-dense, τ
lies in B(p, 2ε f (p)), which is included in the interior of B(p, f (p)) as ε < 0.5. By the de-
nition of LFS, the medial axis of Σ intersects the boundary of B(p, f (p)) but not its interior.
It follows that τ is disjoint from the medial axis of Σ. "

Another implication is that for ε ≤ 0.09, the nearest point map is bijective and so it is a
homeomorphism. We will also use it to dene an isotopy relating |Del|Σ S | to Σ.

Proposition 13.18. If there is an ε ≤ 0.09 such that T is an ε-dense triangulation of Σ,
then the nearest point map on T is bijective.

Proof. For every point x ∈ Σ, let 'x be the line segment connecting the centers of the two
medial balls at x. Observe that 'x is orthogonal to Σ at x. If there is only one medial ball at
x, let 'x be the ray originating at the center of the medial ball and passing through x.

Let ν : |T| → Σ be the nearest point map of T. Let z be a point in 'x ∩ |T|. Observe that
the ball B(z, d(x, z)) is included in the medial ball at x containing z. Recall that Σ does not
intersect the interiors of the medial balls, so x is the point nearest z on Σ. Hence, �˜z = x for
every point z ∈ 'x ∩ |T|.

Now we show that ν is injective: for every point x ∈ Σ, 'x intersects |T| in at most one
point. Assume to the contrary that for some x ∈ Σ, 'x intersects |T| at two points y1 and y2.



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Restricted Delaunay triangulations of surface samples 293

We nd a triangle τ intersecting 'x such that nx makes an angle at least π/2 with the
normal nτ to τ. Such a triangle always exists. This claim is trivial if 'x is parallel to a
triangle that it intersects. Suppose that it is not. Then y1 and y2 lie in distinct triangles not
parallel to 'x. We can thus choose y1 and y2 to be consecutive intersection points in 'x ∩ |T|.
Without loss of generality, we assume that 'x enters the volume bounded by |T| at y1 and
leaves this volume at y2. Then, nx makes an angle more than π/2 with the normal to one of
the two triangles containing y1 and y2.

Let y be an intersection point in 'x ∩ τ. Let v be the vertex of τ having the largest angle
in τ. Because T is ε-dense, the circumradius of τ is at most ε f (v). By the Triangle Normal
Lemma (Lemma 12.14), ∠(nv, nτ) < arcsin ε + arcsin

(
2√
3
sin(2 arcsin ε)

)
. Therefore,

∠(nv, nx) ≥ ∠(nx, nτ) − ∠(nv, nτ)

≥ π

2
− arcsin ε − arcsin

(
2√
3
sin(2 arcsin ε)

)
. (13.1)

On the other hand, since the circumradius of τ is at most ε f (v), d(v, y) ≤ 2ε f (v). We have
argued that �˜y = x. So d(x, y) ≤ d(v, y). This gives d(v, x) ≤ d(x, y) + d(v, y) ≤ 4ε f (v)
and so ∠(nv, nx) ≤ α(4ε) by the Normal Variation Theorem (Theorem 12.8). We reach a
contradiction because α(4ε) is less than the lower bound (13.1). We conclude that, for any
point x ∈ Σ, there is at most one point in 'x ∩ |T|.

It remains to show that ν is surjective: for every point x ∈ Σ, 'x intersects |T|. Assume to
the contrary that for some point x0 ∈ Σ, 'x0 does not intersect |T|. As |T| is disjoint from the
medial axis of Σ, we can pick any point z′ ∈ |T|, and there is a unique point x1 ∈ Σ closest
to z′, implying that 'x1 intersects |T| at z′. Move a point x continuously from x0 to x1 on Σ,
and stop when 'x intersects |T| for the rst time. When we stop, the segment 'x is tangent to
|T| at a point y. Let τ be a triangle in T containing y. The point y cannot lie in the interior of
τ because 'x would then intersect τ in more than one point, violating the injectivity of ν. So
y lies in a boundary edge e of τ. We can move to a point x′ ∈ Σ arbitrarily close to x such
that 'x′ intersects |T| in more than one point because each edge in T lies in two triangles.
We reach a contradiction to the injectivity of ν. "

13.6.2 Proximity and isotopy

The geometric similarity between two point sets is often measured in terms of Hausdorff
distances. The Hausdorff distance between two point sets A, B ⊆ Rd is

dH(A, B) = max{max
y∈B

d(y, A),max
x∈A

d(x, B)};

that is, we nd the point that is farthest from the nearest point in the other object. Observe
that if the maxima are replaced by minima, we have d(A, B) instead.

We will show that the nearest point map sends a point z ∈ |T| over a distance that is
tiny compared to the local feature size at �˜z, the point nearest to z on Σ. It follows that the
Hausdorff distance between |T| and Σ is small in terms of the maximum local feature size.
Proposition 13.19. Let T be an ε-dense triangulation of Σ for some ε < 0.09. Then,
d(z, �˜z) < 15ε2 f (�˜z) for every point z ∈ |T|.
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Figure 13.14: Proposition 13.19. (a) Case 1: z is in B1. (b) Case 2: z is outside B1 and B2.

Proof. Let z be a point in |T|. Let τ be a triangle in T that contains z. Let p be the vertex of
τ nearest to z. Therefore, d(p, z) ≤ ε f (p). By the Triangle Normal Lemma (Lemma 12.14)
and the Normal Variation Theorem (Theorem 12.8),

∠a(nτ, np) ≤
2ε

1 − 2ε + arcsin ε + arcsin
(
2√
3
sin(2 arcsin ε)

)

< 6ε for ε < 0.09.

This implies that for any point r ∈ τ, the segment pr makes an angle less than 6ε with the
plane tangent to Σ at p.

Let B1 and B2 be two balls with radii f (p), tangent to Σ at p, and lying on opposite
sides of Σ. The medial balls at p are also tangent to Σ at p and their radii are f (p) or larger.
So B1 and B2 are included in these two medial balls, and Σ does not intersect the interiors
of B1 and B2.

There are two cases in bounding the distance d(z, �˜z), depending on whether z ∈ B1∪B2.

• Case 1: z lies in B1∪B2. Assume without loss of generality that z lies in B1. Let Π be
the tangent plane at p. Let z′ be the reection of z with respect to Π. By symmetry,
the point z′ lies in B2. Refer to Figure 13.14(a). As B1 and B2 lie on opposite sides
of Σ, the segment zz′ intersects Σ. Let x be an intersection point in zz′ ∩ Σ. Clearly,
d(z, �˜z) ≤ d(z, x) ≤ d(z, z′). By construction, zz′ also intersects the tangent plane Π
orthogonally at a point w. Consider the right-angled triangle zpw. We have

d(z,w) = d(p, z) sin ∠zpw
≤ ε f (p) sin(6ε)
< 5.72ε2 f (p). (13.2)

It follows that
d(z, �˜z) ≤ d(z, z′) = 2d(z,w) < 11.5ε2 f (p).

• Case 2: z lies outside B1 ∪ B2. Extend a line segment through z perpendicular to
Π until the extension stops at points u and v on the boundaries of B1 and B2, re-
spectively. Again, uv intersects Σ, which is sandwiched between B1 and B2. Refer to



!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Restricted Delaunay triangulations of surface samples 295

Figure 13.14(b). Either the segment zu or zv intersects Σ. It follows that d(z, �˜z) is at
most max{d(z, u), d(z, v)}. Assume without loss of generality that d(z, u) ≥ d(z, v), so
u and z lie on opposite sides of the plane Π.

Let w = zu ∩Π. The same analysis that obtains (13.2) applies here, so

d(z,w) < 5.72ε2 f (p).

If we can bound d(u,w), then a bound on d(z, u) follows since d(z, u) = d(z,w) +
d(u,w). Consider the triangle puw in Figure 13.14(b). Then

d(p, u) cos ∠upw = d(p,w) ≤ d(p, z) ≤ ε f (p).

At the same time,

d(p, u) = 2 f (p) sin ∠pcy = 2 f (p) sin ∠upw.

Thus,
2 f (p) sin ∠upw cos ∠upw ≤ ε f (p)

⇒ ∠upw ≤ (arcsin ε)/2.

It follows that

d(u,w) ≤ d(p,w) tan ∠upw ≤ ε f (p) tan
(
1
2
arcsin ε

)
≤ ε2 f (p).

Hence, d(z, u) ≤ d(z,w) + d(u,w) < 6.72ε2 f (p).

Cases 1 and 2 together yield d(z, �˜z) ≤ 11.5ε2 f (p). By the triangle inequality and the
fact that T is ε-dense, d(p, �˜z) ≤ d(p, z)+d(z, �˜z) ≤ 2.1ε f (p). The Feature Translation Lemma
(Lemma 12.2) implies that 11.5ε2 f (p) ≤ 11.5ε2 f (�˜z)/(1 − 2.1ε) < 15ε2 f (�˜z). "

Next, we use the nearest point map of an ε-dense triangulation T to construct an isotopy
relating |T| and Σ. Each point in |T| is very close to its image in Σ under the isotopy.

Proposition 13.20. If there is an ε < 0.09 such that T is an ε-dense triangulation of Σ,
then the nearest point map of T induces an ambient isotopy that moves each point x ∈ Σ by
a distance less than 15ε2 f (x), and each point z ∈ |T| by a distance less than 15ε2 f (�˜z).

Proof. We dene a map ξ : R3 × [0, 1] → R3 such that ξ(|T|, 0) = |T| and ξ(|T|, 1) = Σ
and ξ(·, t) is a continuous and bijective map for all t ∈ [0, 1]. Consider the following tubular
neighborhood of Σ.

NΣ = {z ∈ R3 : d(z,Σ) ≤ 15ε2 f (�˜z)}.
Proposition 13.19 implies that |T| ⊂ NΣ. We dene an ambient isotopy ξ as follows. For
z ∈ R3\NΣ, ξ is the identity on z for all t ∈ [0, 1]; that is, ξ(z, t) = z. For z ∈ NΣ, we use a map
that moves points on |T| toward their closest points on Σ. Consider the line segment s that
is normal to Σ at �˜z, thus passing through z, and has endpoints si and so on the two boundary
surfaces of NΣ. Because 15ε2 < 1, the tubular neighborhood NΣ is disjoint from the medial
axis of Σ; thus, s intersects Σ only at �˜z. Likewise, by Proposition 13.18, s intersects |T| only
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Figure 13.15: Two triangles that share an edge.

at a single point z. Let zt = (1 − t)z + t�˜z be a point that moves linearly from z ∈ |T| at time
zero to �˜z ∈ Σ at time 1. Let ξ(·, t) linearly map the segments siz to sizt and soz to sozt. That
is,

ξ(z, t) =




si +
d(zt , si)
d(z, si)

(z − si) if z ∈ siz,

so +
d(zt, so)
d(z, so)

(z − so) if z ∈ soz.

The map ξ is continuous and bijective for all z ∈ R3 and t ∈ [0, 1], so it is an ambient
isotopy, and ξ(|T|, 0) = |T| and ξ(|T|, 1) = Σ. "

13.6.3 Fidelity and dihedral angles of the discretized surface

We wish to prove that the restricted Delaunay triangulation is ε-dense and apply Propo-
sition 13.20 to conclude that Del|Σ S approximates Σ. It requires some work to show that
Del|Σ S satises the orientation property (iii) in Denition 13.6. The rst step is to prove
that the dihedral angles between adjoining triangles are obtuse.

Proposition 13.21. Let τ1 and τ2 be two triangles in Del|Σ S that share an edge. Suppose
that there is an ε ≤ 0.09 such that for every vertex p of each τ ∈ {τ1, τ2}, there is an empty
circumball of τ with radius at most ε f (p) centered at a point on Σ. Then τ1 and τ2 meet at
a dihedral angle greater than π/2.

Proof. For i ∈ {1, 2}, let Bi be the smallest empty circumball of τi whose center oi lies on
Σ. The boundaries of B1 and B2 intersect in a circle C. Let H = affC. The plane H contains
the common edge of τ1 and τ2, as illustrated in Figure 13.15. The triangles τ1 and τ2 must
lie on opposite sides of H; otherwise, either the interior of B1 would contain a vertex of τ2
or the interior of B2 would contain a vertex of τ1.

We have d(o1, o2) ≤ d(p, o1) + d(p, o2) ≤ 2ε f (p), which implies that d(o1, o2) ≤
2ε
1−ε f (o1) by the Three Points Lemma (Lemma 12.3). Hence the segment o1o2 meets no1
at an angle of at least π/2−arcsin ε

1−ε by the Edge Normal Lemma (Lemma 12.12). In turn,
∠a(no1 , np) ≤ ε/(1 − ε) by the Normal Variation Theorem (Theorem 12.8). It follows that
the angle between H and np is at most ε/(1 − ε) + arcsin ε/(1 − ε), which is less than 0.2
radians for ε ≤ 0.09.
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As ε ≤ 0.09, the Triangle Normal Lemma (Lemma 12.14) and the Normal Variation
Theorem (Theorem 12.8) imply that the normal of τ1 differs from np by at most

arcsin 0.09 + arcsin
(
2√
3
sin (2 arcsin 0.09)

)
+

0.18
1 − 0.18 < 0.52.

The angle between the normal of τ2 and np is also less than 0.52 radians.
Therefore, τ1 and τ2 lie on opposite sides of H and the angle between H and either

triangle is greater than π/2 − (0.52 + 0.2) > 0.85. So, the dihedral angle between τ1 and τ2
is greater than 1.7 > π/2 radians. "

We come to the climax of the chapter, the Surface Discretization Theorem, which states
that the underlying space of Del|Σ S is related by isotopy and geometrically close to Σ. It
also states several other geometric properties of Del|Σ S , including an upper bound on the
circumradii of the triangles, an upper bound on the deviation between the surface normal
at a sample point and the normal of any triangle having it as a vertex, and a lower bound on
the dihedral angle between two adjoining triangles.

Theorem 13.22 (Surface Discretization Theorem). Let S be a sample of a connected,
smooth surface Σ ⊂ R3. If some edge in Vor S intersects Σ and there is an ε ≤ 0.09 such
that Σp is ε-small for every p ∈ S , then Del|Σ S is a triangulation of Σ with the following
properties.

(i) For every triangle τ in Del|Σ S and every vertex p of τ, the circumradius of τ is at
most ε f (p).

(ii) |Del|Σ S | can be oriented so that for every triangle τ ∈ Del|Σ S and every vertex p of
τ, the angle between np and the oriented normal nτ of τ is less than 7ε.

(iii) Any two triangles in Del|Σ S that share an edge meet at a dihedral angle greater than
π − 14ε.

(iv) The nearest point map ν : |Del|Σ S | → Σ, z 1→ �˜z is a homeomorphism that induces an
isotopy relating |Del|Σ S | to Σ.

(v) For every point z in |Del|Σ S |, d(z, �˜z) < 15ε2 f (�˜z).

Proof. We argue that Del|Σ S is a ε-dense triangulation of Σ. The correctness of (i)�–(v) is
established along the way.

By the Homeomorphism Theorem (Theorem 13.16), the underlying space of Del|Σ S
is homeomorphic to Σ and Del|Σ S is a triangulation of Σ. Let τ be a triangle in Del|Σ S
and let p be a vertex of τ. Because Σp is ε-small for every p ∈ S , the dual edge of τ in
Del|Σ S intersects Σ at a point within a distance of ε f (p) from p. Therefore, τ has an empty
circumball with radius at most ε f (p) whose center lies on Σ. As this is true for every vertex
of every triangle in Del|Σ S , Proposition 13.21 applies.

By Proposition 13.2, the circumradius of τ is at most ε f (p), proving (i). By Proposi-
tion 13.4, ∠a(nτ, np) ≤ β(ε), which is less than 7ε for ε ≤ 0.09. Furthermore, as no dihedral
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angle is less than π/2 by Proposition 13.21, one can orient the triangles in Del|Σ S con-
sistently so that for any p ∈ S and for any triangle τ adjoining p, the angle between np
and the oriented normal of τ is less than 7ε, proving (ii). The correctness of (iii) follows
by comparing the oriented normals of two adjoining triangles with the surface normal at a
common vertex.

We conclude that Del|Σ S is an ε-dense triangulation of Σ. Thus Proposition 13.20
gives (iv) and (v). "

13.7 Notes and exercises
The earliest appearance of the restricted Delaunay triangulation of a surface is in a paper
by Chew [61] on Delaunay surface meshing. Given a sufficiently ne triangulation of a
surface, Chew presents methods to make the triangulation �“Delaunay�” through edge ips
and to rene the triangulation so it satises quality guarantees. He did not recognize that
his triangulations are usually a subcomplex of the Delaunay tetrahedralization. Restricted
Delaunay triangulations were formally introduced by Edelsbrunner and Shah [92], who
also introduced the topological ball property and proved the Topological Ball Theorem
(Theorem 13.1).

The earliest applications of restricted Delaunay triangulations were in algorithms for
reconstructing curves and surfaces from point clouds. These algorithms try to recover the
shape and topology of an object from a dense sample of points collected from the object�’s
surface by a laser range scanner or stereo photography. Amenta and Bern [3] show that for
a sufficiently dense sample, the Voronoi cells are elongated along the directions normal to
the surface, and that the Voronoi diagram satises the topological ball property. Hence, the
restricted Delaunay triangulation is homeomorphic to the surface.

Cheng, Dey, Edelsbrunner, and Sullivan [47] adapt these ideas to develop a theory of
surface sampling for generating an ε-sample whose restricted Delaunay triangulation is
homeomorphic to a surface, which they use to triangulate specialized surfaces for molecu-
lar modeling. This paper includes early versions of the Voronoi Edge, Voronoi Facet, and
Voronoi Cell Lemmas that require an ε-sample, which is a global property. The stronger,
local versions of the Voronoi Edge and Voronoi Facet Lemmas presented here are adapted
from Cheng, Dey, Ramos, and Ray [53], who use them to develop a surface meshing algo-
rithm described in the next chapter. The versions of the Voronoi Cell Lemma and the Small
Intersection Theorem (Theorem 13.6) in this chapter appear for the rst time here.

Boissonnat and Oudot [29, 30] independently developed a similar theory of surface
sampling and applied it to the more general problem of guaranteed-quality Delaunay re-
nement meshing of smooth surfaces. The notion of an ε-small Σp, used heavily here, is
related to Boissonnat and Oudot�’s notion of a loose ε-sample [30]. They prove the Surface
Discretization Theorem (Theorem 13.22) not by using the topological ball property, but by
showing that restricted Delaunay triangulations of loose ε-samples satisfy the preconditions
for homeomorphic meshing outlined by Amenta, Choi, Dey, and Leekha [6]: a simplicial
complex T has |T| homeomorphic to Σ if it satises the following four conditions. (i) All
the vertices in T lie on Σ. (ii) |T| is a 2-manifold. (iii) All the triangles in T have small
circumradii compared to their local feature sizes. (iv) The triangle normals approximate
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closely the surface normals at their vertices. Boissonnat and Oudot [29, 30] extend the
homeomorphism to an isotopy with a nearest point map similar to that of Denition 13.5.
Here we prove the Discretization Theorem more directly by showing that the topological
ball property holds for loose ε-samples, then extending the homeomorphism to isotopy.

Exercises
1. Let Σ be a 2-manifold without boundary in R3. Let S ⊂ Σ be a nite point sample.
Let τ1 and τ2 be two tetrahedra in Del S that share a triangular face σ ⊂ Σ. In other
words, the surface Σ just happens to have a at spot that includes the shared face.
Give a specic example that shows why σ might nonetheless not appear in the re-
stricted Delaunay triangulation Del|Σ S .

2. [3] Let S be an ε-sample of a smooth surface Σ without boundary. For a sample
point p ∈ S , the Voronoi vertex v ∈ Vp farthest from p is called the pole of p
and the vector vp = v − p is called the pole vector of p. Prove that if ε < 1, then
∠a(np, vp) ≤ 2 arcsin ε

1−ε .

3. Let S be an ε-sample of a smooth surface Σ without boundary for some ε ≤ 0.1.
Prove that the intersection of Σ and a Voronoi facet in Vor S is either empty or a
topological interval.

4. Let S be an ε-sample of a smooth surface Σ without boundary for some ε ≤ 0.1.
Prove that for any p ∈ S , the restricted Voronoi cell Vp ∩ Σ is a topological disk.

5. Construct an example where Σp is 0.09-small for exactly one sample point p in S .

6. Show that the TBP is not necessary for the underlying space of Del|Σ S to be home-
omorphic to Σ.

7. Let S be a sample of a smooth, compact manifold Σ without boundary in R3.

(a) Show an example where Σ is a 1-manifold and the TBP holds, but there exists
no isotopy that continuously deforms |Del|Σ S | to Σ.

(b) If Σ is a surface, prove or disprove that if the TBP holds, there is an isotopy
relating |Del|Σ S | to Σ.

8. [6] Let S be a sample of a smooth surface Σwithout boundary. Let T be a subcomplex
of Del S such that |T| is a 2-manifold and the Voronoi edge dual to each triangle τ ∈ T
intersects Σ, and all the intersection points are within a distance of 0.09 f (p) from a
vertex p of τ. Prove that |T| is homeomorphic to Σ.

9. [93] Let Σ be a smooth surface without boundary. Let λ : Σ → R be a 1-Lipschitz
function that species an upper bound on the spacing of points in a sample S ⊂ Σ:
for every point x ∈ Σ, d(x, S ) ≤ λ(x). Prove that if λ(x) ≤ f (x)/5 for every x ∈ Σ,
then S contains Ω

(∫
Σ
dx/λ(x)2

)
sample points. For example, every ε-sample of Σ for

any ε ≤ 1/5 has Ω
(
ε−2
∫
Σ
dx/ f (x)2

)
sample points.


