
!
!

�“C7303�” �— 2012/10/25 �— 9:49 !
!

!
!

!
!

Chapter 9

Weighted Delaunay renement for
PLCs with small angles

The Delaunay renement algorithm DelTetPLC in the previous chapter requires that the
input PLC satisfy the projection condition, which rules out linear cells adjoining each other
at dihedral angles or plane angles less than 90◦. For many engineering applications, this
restriction is not acceptable. Unfortunately, DelTetPLC, like Ruppert�’s original algorithm,
can fail to terminate because of ping-pong encroachment (recall Figure 6.12). Ruppert�’s
�“modied segment splitting using concentric circular shells,�” described in Section 6.6, ex-
tends easily to spherical shells, and it copes reasonably well with segments that meet at
small plane angles in tetrahedral meshes. It is not a complete solution, because of the sedi-
tious edges discussed in Section 6.6.

Three-dimensional domains introduce the additional danger of ping-pong encroach-
ment among adjoining polygons, which is substantially harder to control than mutual en-
croachment among segments, especially if many polygons share a single segment. Efforts
have been made to adapt spherical or cylindrical shells for the protection of segments where
such polygons meet at small dihedral angles. However, algorithms for constructing Steiner
Delaunay triangulations of three-dimensional PLCs often place undesirably many vertices
in the vicinity of small domain angles and create undesirably short edges�—even when they
are not concerned with the quality of the tetrahedra.

This chapter offers an alternative approach to small domain angles that takes advan-
tage of the properties of the weighted Delaunay triangulation, and does not overrene as
algorithms that use shells often do. We present here a new Delaunay renement algorithm
(it has not previously appeared in the literature) that generates a graded mesh in which no
tetrahedron has a radius-edge ratio greater than 2, except possibly tetrahedra that adjoin a
vertex or segment where two linear cells in the PLC meet at an acute angle. The tactic is to
place positively weighted vertices at those meeting points. A weighted Delaunay triangu-
lation tends to preferentially create edges and triangles adjoining more strongly weighted
vertices, thereby helping to enforce domain conformity at the cost of locally sacricing
quality.

Because we use weighted vertices and a weighted Delaunay triangulation, we insert
new vertices at orthocenters of simplices instead of their circumcenters. Orthocenters are
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190 Delaunay Mesh Generation

further from the highly weighted vertices and closer to the unweighted vertices than cir-
cumcenters are. The weighted vertices act as protecting balls that prevent new vertices from
being inserted too close to an apex of a small angle. The cycle of mutual encroachment in
Figure 6.12 cannot occur because the apex is protected by a ball in which no new vertex can
appear. Although we must compromise on tetrahedron quality near the apex, we guarantee
that no tetrahedron has an orthoradius greater than twice the length of its shortest edge. The
value of this guarantee is weakest where the vertex weights are greatest. Tetrahedra that do
not adjoin small domain angles do not have weighted vertices, so their radius-edge ratios
are at most 2, as usual.

9.1 The ideas behind weighted Delaunay renement
Recall that each weighted vertex v[ωv] is represented by a ball Bv = B(v, √ωv). We
call these balls protecting balls. The weighted Delaunay renement algorithm creates a
weighted vertex with the intention that no vertex shall ever be inserted inside its protecting
ball. It never assigns a vertex a negative weight. Most of the vertices that the algorithm cre-
ates are unweighted, meaning they have weight zero; we conceive of their protecting balls
as being single points.

Weighted Delaunay renement is similar to ordinary Delaunay renement, but en-
croachment is dened in terms of orthospheres instead of circumspheres, and new vertices
are inserted at orthocenters instead of circumcenters. Roughly speaking�—we will be more
precise later�—a simplex σ with vertices from a weighted point set S [ω] is encroached
if some other vertex in S [ω] is orthogonal or closer than orthogonal to the diametric or-
thoball of σ. In particular, an unweighted vertex must lie in σ�’s diametric orthoball to
encroach upon σ. An encroached simplex is split with a new vertex at its orthocenter. The
new vertex is not too close to any other vertex, because no vertex lies in the interior of that
simplex�’s diametric orthoball, as no vertex has negative weight.

Several other observations are crucial to understanding the algorithm. First, if the inter-
section of the interiors of the protecting balls centered at σ�’s vertices is nonempty, then σ
has an imaginary orthoradius. It follows that no unweighted vertex can encroach upon σ.
The renement stage of the algorithm inserts only unweighted vertices, so simplices with
imaginary orthoradii are invulnerable to encroachment or to removal from the weighted
Delaunay triangulation. In terms of the parabolic lifting map, the entirety of σ+ is below
the paraboloid, so no vertex inserted on the paraboloid can remove σ+ from the convex
hull. Our algorithm begins with a protection stage that identies segments where polygons
meet at acute dihedral angles and covers them with overlapping protecting balls, thereby
ensuring that their subsegments cannot be split.

Second and conversely, if the intersection of the interiors of the protecting balls centered
at σ�’s vertices is empty, then σ�’s orthocenter does not lie inside its vertices�’ protecting
balls. If in addition σ is weighted Delaunay, then σ�’s orthocenter does not lie inside any
protecting ball whatsoever. Therefore, splitting an encroached simplex never entails the risk
of inserting a new vertex inside a protecting ball. Neither does splitting a tetrahedron with
positive orthoradius.
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Third, a tetrahedron is split if its orthoradius-edge ratio, its orthoradius divided by the
length of its shortest edge, exceeds a threshold ρ̄. If a tetrahedron has no weighted vertex,
its orthoradius is its circumradius. Therefore, most tetrahedra in the nal mesh have good
circumradius-edge ratios, but tetrahedra that adjoin the apex of an acute domain angle might
not. This is a reasonable compromise, as it is sometimes impossible to achieve high quality
near small domain angles.

The weighted Delaunay renement algorithm, called DelTetAcutePLC, takes as input
a function λ : |P| → R, called a size eld, that reects the user�’s locally desired spacing of
vertices in the domain. The algorithm might be forced to generate much shorter edges in
the vicinity of small angles and small geometric features, but it will not leave behind edges
that are substantially longer than the user requests. A user desiring the sparsest possible
mesh can simply set λ ≡ ∞. We require that infx∈|P| λ(x) > 0.

DelTetAcutePLC begins with a protection stage called Protect that centers protecting
balls on vertices and segments in P where linear cells meet at acute angles. A protected
segment is covered by a union of protecting balls. The initial vertex set S [ω] contains a
weighted vertex v[r2] for each protecting ball B(v, r) and an unweighted vertex for each
vertex in P that is not protected. When the protection stage is done, DelTetAcutePLC
constructs the weighted Delaunay triangulation Del S [ω] and executes a renement stage
called Refine, which inserts unweighted vertices into Del S [ω] to enforce domain confor-
mity and eliminate poor-quality tetrahedra.

DelTetAcutePLC(P, λ, ρ̄)

1. S [ω]← Protect(P, λ).
2. Construct Del S [ω].
3. S [ω]← Refine(P, S [ω], λ, ρ̄).
4. Return the mesh {σ ∈ Del S [ω] : σ ⊆ |P|}.

9.2 Protecting vertices and segments
The protection stage, implemented by the Protect pseudocode below, rst identies every
vertex v in P that adjoins two linear cells that fail the projection condition (Denition 8.3),
and for each such vertex constructs a protecting ball Bv = B(v,min{λ(v), f (v)/(2

√
2)}),

where f is the local feature size function. Then, it identies every segment in P that is an
edge of two polygons in P that fail the projection condition, and covers each such segment
with protecting balls (with the subroutine Cover). We call these specially treated vertices
and segments acute. Clearly, both vertices of an acute segment are acute.

Protect(P, λ)

1. Let S [ω] be an empty point set.
2. For each vertex v in P, determine whether v is acute. If so, add the
weighted point v[ωv] to S [ω] to represent the protecting ball Bv =
B(v, √ωv), where

√
ωv = min{λ(v), f (v)/(2

√
2)}. Otherwise, add the un-

weighted point v to S [ω].
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g(x)
x
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Figure 9.1: Local gap size g(x) versus local feature size f (x).

3. For each segment uv in P, if uv is acute, call Cover(S [ω], u, v).
4. Return the weighted point set S [ω].

To set the radii of the protecting balls on segments, we use the notion of the local gap
size.

Denition 9.1 (local gap size). For every x ∈ |P|, the local gap size g(x) is the smallest
radius r > 0 such that B(x, r) intersects two linear cells in P, one of which does not contain
x.

Figure 9.1 illustrates the difference between the local gap size and the local feature size.
At a vertex v in P, the two notions coincide: g(v) = f (v). Observe that g is not continuous:
it approaches zero as x approaches a vertex, but is nonzero at the vertex. However, g is
1-Lipschitz in the interior of a segment.

We require the radius of every protecting ball with center x to be less than or equal to
g(x)/2. Hence, no protecting ball centered on the interior of a segment s may reach more
than halfway to a segment other than s, nor halfway to a polygon that does not include
s. This restriction limits the ability of protecting balls to encroach upon subsegments and
subpolygons, and ensures that no three protecting balls have interiors with a common in-
tersection.

A recursive procedure Cover covers each acute segment in P with protecting balls
such that any two consecutive balls are orthogonal. Let Bx and By be two balls that have
already been placed on a segment. Cover(S [ω], x, y) begins by computing the unique ball
on xy orthogonal to both Bx and By. If that ball is not too big, it is accepted to cover the
remainder of xy. Otherwise, Cover centers a smaller ball at a point z in the middle of the
gap between Bx and By and recursively calls itself to cover xz and zy. To ensure that it
will not produce an unduly small ball, Cover maintains the invariant that the gap between
nonorthogonal balls is always at least 2

√
2 − 2 ! 0.828 times the radius of the smaller of

the two balls that bookend the gap. Figure 9.2 illustrates its workings.

Cover(S [ω], x, y)

1. Compute the center z on xy of the ball orthogonal to Bx and By with the
relation

d(x, z) =
d(x, y)2 + radius(Bx)2 − radius(By)2

2d(x, y)
.
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Figure 9.2: (a) The middle solid ball is orthogonal to Bx and By. Because its radius exceeds
g(z)/2, we (b) use a ball of radius proportional to the gap size and (c) recursively cover xz
and zy.

Compute its radius Z =
√
d(x, z)2 − radius(Bx)2.

2. If Z ≤ min{λ(z), g(z)/2}, add the weighted point z[Z2] to S [ω] to repre-
sent the protecting ball B(z, Z) and return.

3. Let G = d(x, y) − radius(Bx) − radius(By) be the length of the gap
between Bx and By. Let w be the point in the middle of the gap; i.e.
d(x,w) = radius(Bx) +G/2. Let W = min{λ(w), g(w)/2,G/(4

√
2 − 2)}.

4. Add the weighted point w[W2] to S [ω] to represent the protecting ball
B(w,W), call Cover(S [ω], x,w), and call Cover(S [ω],w, y).

Cover ensures that protecting balls with consecutive centers on a segment are orthog-
onal. With this property, the subset of P in the union of the protecting balls can be trian-
gulated with Delaunay tetrahedra whose aspect ratios have an upper bound that depends
on the domain angles�—that is, so that the protecting balls do not include arbitrarily thin
slivers (see the notes at the end of the chapter). For simplicity, we will not make use of this
property.

Protect and Cover must compute local gap sizes at points on acute vertices and seg-
ments. These can be determined by computing the distances from a point to all the linear
cells in P that do not contain it and taking the minimum.

We show that Protect terminates and does not create unduly short edges by deriving a
lower bound on the radius of every protecting ball. The following proposition is a prelimi-
nary step to that bound.
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Proposition 9.1. Protect and Cover maintain the invariant that if two balls have consecu-
tive centers on a segment but are not orthogonal, there is a gap between them whose length
is at least 2

√
2− 2 ! 0.828 times the radius of the smaller ball. The gap can accommodate

a ball that is at least as large as the smaller neighbor and not closer than orthogonal to
either neighbor.

Proof. For an acute segment uv, step 2 of Protect creates a ball Bu whose radius is at most
f (u)/(2

√
2) ≤ d(u, v)/(2

√
2) and a ball Bv whose radius is also at most d(u, v)/(2

√
2). The

gap between the two balls has length at least (2
√
2−2) d(u, v)/(2

√
2), so the invariant holds

before Cover(S [ω], u, v) is called.
Step 3 of Cover places a ball of radius at most G/(4

√
2 − 2) in the center of a gap of

length G, leaving smaller gaps of length at least (2
√
2 − 2)G/(4

√
2 − 2) on either side of

it. Again the invariant holds.
If we place at the center of the gap a ball with the same radius as the smaller ball ad-

joining the gap, the distance from its center to the center of the smaller ball is at least
√
2

times their radius. Therefore, it is not closer than orthogonal to either neighbor. !

Proposition 9.2. Let uv be an acute segment in P. The radius of every protecting ball Bz
centered on uv is between c · infx∈(uv\(Bu∪Bv))∪{u,v}min{λ(x), g(x)/2} and min{λ(z), g(z)/2},
where c =

(
4
√
2 − 2

)−1 (
1 − 1/

√
2
)1/2
> 1/7. If infx∈uv λ(x) is positive, Cover(S [ω], u, v)

terminates, whereupon uv is covered by protecting balls such that any two balls with con-
secutive centers are orthogonal.

Proof. Every ball placed by step 2 of Protect or step 2 or 4 of Cover satises the upper
bound by construction. The radii of Bu and Bv, placed by step 2 of Protect, also satisfy the
lower bound by construction.

Any ball placed by step 4 of Cover is centered at a point w ∈ uv \ (Bu ∪ Bv) at the
midpoint of a gap of width G, and has radius either W = min{λ(w), g(w)/2}, satisfying the
lower bound, or W = G/(4

√
2 − 2). Let us nd a lower bound for W in the latter case. By

Proposition 9.1, the gap is next to a ball By of radius at most G/(2
√
2 − 2); let y be the

center of By. The fact that Cover reached step 4 means that a ball Bz constructed by step 1
was rejected for being too large; specically, radius(Bz) > min{λ(z), g(z)/2}. As the center
z of Bz lies in the gap, d(y, z) ≤ G + radius(By). As By and Bz are orthogonal, radius(Bz)2 =
d(y, z)2 − radius(By)2 ≤ G2 + 2G · radius(By) ≤ G2 + G2/(

√
2 − 1) =

√
2G2/(

√
2 − 1).

Combining inequalities yields W ≥ c · radius(Bz) > c ·min{λ(z), g(z)/2}.
Every ball placed on uv by step 2 of Cover is at least as large as one of its two neighbors

by Proposition 9.1. It satises the lower bound because its neighbor does.
The inmum infx∈(uv\(Bu∪Bv))∪{u,v} g(x) is positive for every PLC. If infx∈uv λ(x) is posi-

tive, there is a constant lower bound on the size of every protecting ball, so Cover termi-
nates. By design, it can terminate only when any two balls with consecutive centers are
orthogonal. !

See the end of Section 9.4 for a discussion of the mysterious expression
infx∈(uv\(Bu∪Bv))∪{u,v} g(x) and its relationship to the small angles of P.
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In practice, it may be wise to modify step 2 of Cover to make Z somewhat smaller than
g(z)/2 (perhaps g(z)/3) to make room for more Steiner points to be inserted between two
segments meeting at a small angle, and thereby make room to create tetrahedra with good
radius-edge ratios in the gap.

9.3 The renement stage
After the protection stage ends, the renement stage triangulates P. Each protecting ball
Bx is represented by a weighted point x[ωx] in S [ω], where ωx = radius(Bx)2. Unprotected
vertices in P are represented by unweighted points in S [ω]. DelTetAcutePLC constructs
the weighted Delaunay triangulation Del S [ω], and the procedure Refine renes it by in-
serting new vertices, all unweighted. We recall the notions of subsegments, subpolygons,
and encroachment from Chapter 8, but we adjust their denitions to treat weighted vertices.

Denition 9.2 (subsegment encroachment). A vertex v encroaches upon a subsegment s if
v is not a vertex of s and v has a nonpositive power distance from the diametric orthoball
of s.

Denition 9.3 (subpolygon encroachment). For a polygon h ∈ P, if no subsegment of h
is encroached, then the two-dimensional weighted Delaunay triangulation Del (S [ω] ∩ h)
includes a Steiner triangulation of h. The subpolygons of h are the triangles in this Steiner
triangulation, whether they appear in Del S [ω] or not. A vertex v ∈ S [ω] encroaches upon
a subpolygon σ of h if the power distance between v[ωv] and the diametric orthoball of σ
is nonpositive, unless v lies on aff h and the power distance is zero. (The exception is anal-
ogous to the exception for cocircular vertices in Denition 8.2. If the weighted Delaunay
subdivision of S [ω] ∩ h contains a polygon that is not a triangle, each weighted Delau-
nay triangulation subdivides the polygon into triangles, and those triangles should not be
encroached upon by each other�’s vertices.)

There are three differences between the Refine stage and the Delaunay renement algo-
rithm in Chapter 8. First, encroachment is determined by orthoballs; second, new vertices
are inserted at orthocenters. Even subsegments are split at their orthocenters rather than
their midpoints.

SplitWeightedSubsegment(e, S [ω])

Insert the orthocenter of e into S [ω].

Observe that every subsegment of an acute segment has a diametric orthoball of imagi-
nary radius and is never encroached, so no such subsegment is ever passed to SplitWeight-
edSubsegment. Observe also that some segments are not acute but have one or even two
vertices that are acute, and therefore weighted; it is these segments that necessitate insert-
ing subsegment orthocenters rather than midpoints.

SplitWeightedSubpolygon(σ, S [ω])

1. Let c be the orthocenter of σ.
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2. If c encroaches upon a subsegment e, call SplitWeightedSubsegment(e, S [ω])
and return. Otherwise, insert c into S [ω].

The procedure for splitting encroached subpolygons is similar to that of Chapter 8: if no
subsegment is encroached and a vertex v encroaches upon some subpolygon of a polygon
h, the Monotone Power Lemma (Lemma 7.5) in Chapter 7 shows that v also encroaches
upon the subpolygon σ of h that contains the orthogonal projection of v onto h. We split σ
by inserting a new vertex at σ�’s orthocenter. Splitting σ rather than an arbitrary encroached
subpolygon makes it possible to guarantee a better bound on the quality of the tetrahedra.

The third difference is that a tetrahedron is split if its orthoradius-edge ratio exceeds ρ̄.

SplitWeightedTetrahedron(τ, S [ω])

1. Let c be the orthocenter of τ.
2. If c encroaches upon a subsegment e, call SplitWeightedSubsegment(e, S [ω])
and return.

3. If c encroaches upon a subpolygon of some polygon h ∈ P, let σ be a
subpolygon of h that contains the orthogonal projection of c onto h. Call
SplitWeightedSubpolygon(σ, S [ω]) and return.

4. Insert c into S [ω].

The procedure Refine is the entry point for the renement stage. Termination is guaran-
teed only if the bound ρ̄ on the largest permissible orthoradius-edge ratio is 2 or greater. For
simplicity, we omit from the pseudocode the necessary record-keeping of the subsegments,
the subpolygons, and the mesh, addressed by the pseudocode in Chapter 8.

Refine(P, S [ω], λ, ρ̄)

1. While some vertex v in S [ω] encroaches upon a subsegment e, call Split-
WeightedSubsegment(e, S [ω]) and repeat Step 1.

2. If some vertex v in S [ω] encroaches upon a subpolygon of a polygon
h ∈ P, let σ be a subpolygon of h that contains the orthogonal projection
of v onto h. Call SplitWeightedSubpolygon(σ, S [ω]) and go to Step 1.

3. If Del S [ω] contains a tetrahedron τ ⊆ |P| whose orthoradius-edge ratio
exceeds ρ̄ or whose orthoradius exceeds λ(c) where c is the orthocenter
of τ, then call SplitWeightedTetrahedron(τ, S [ω]) and go to Step 1.

4. Return S [ω].

SplitWeightedSubpolygon is invoked only when there is no encroached subsegment, in
which case for every polygon h in P, the subcomplex {σ ∈ Del S [ω] : σ ⊆ h} triangulates
h and is a quarantined complex. By the Orthocenter Containment Lemma (Lemma 7.7), h
contains the orthocenters of all its subpolygons. Therefore, when SplitWeightedSubpoly-
gon inserts the orthocenter of a subpolygon σ ⊆ h, the orthocenter renes h.

Likewise, SplitWeightedTetrahedron is invoked only when there is no encroached
subsegment or subpolygon, in which case the subcomplex {τ ∈ Del S [ω] : τ ⊆ |P|} is a
quarantined complex. By the Orthocenter Containment Lemma, |P| contains the orthocenter
of every tetrahedron in it, so it is safe to insert the orthocenters.
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9.4 A proof of termination and good grading
In this section, we prove that if ρ̄ ≥ 2, then, DelTetAcutePLC terminates and returns a
mesh of P in which no tetrahedron has an orthoradius-edge ratio greater than ρ̄, hence no
tetrahedron with unweighted vertices has a circumradius-edge ratio exceeding ρ̄. We derive
a lower bound on the distances between points in S , thereby showing that DelTetAcutePLC
terminates and produces nicely graded meshes.

The edge lengths in the nal mesh are proportional to the local feature size function for
a modied version of P we call a eunuch structure. Let C be the set of vertices at centers
of protecting balls, and let U be the union of the interiors of all the protecting balls. Let
E = {g \ U : g ∈ P} ∪ C be a set of cells dened by removing from each linear cell
every protecting ball, then adding the protecting ball centers as vertices. E is not generally
a complex, as the boundary of a cell in E is not necessarily a union of cells in E. It is
important to keep it this way. Observe that E satises the projection condition, because if
two adjoining cells in P fail the projection condition, their counterparts in E do not adjoin
each other at all.

The cells in E are not necessarily polyhedra, but E has a well-dened local feature size
function, denoted fE. Multiplied by the right constant, this function is a lower bound on the
edge lengths in the mesh generated by DelTetAcutePLC (see Theorem 9.4). All vertices
in that mesh lie on cells in E. Thus fE gives useful intuition on how mesh vertices are
distributed.

The analysis follows the pattern established in Chapters 6 and 8. A vertex is of type
i if it lies on a linear i-cell in P but not on a lower-dimensional cell. Every vertex in the
mesh has a type, and so does every rejected orthocenter that SplitWeightedSubpolygon
or SplitWeightedTetrahedron declines to insert because of encroachment. Vertices in P

are of type 0. Other vertices lying on segments are of type 1, including vertices placed on
segments by Cover and vertices inserted by SplitWeightedSubsegment. Vertices inserted
or rejected by SplitWeightedSubpolygon are of type 2. Vertices inserted or rejected by
SplitWeightedTetrahedron are of type 3. Protecting balls are centered on some vertices of
types 0 and 1.

We take the notion of insertion radius from Chapters 6 and 8, but change the denition.
The insertion radius rx of a vertex x of type 0 or a weighted vertex (of type 0 or type 1),
created during the protection stage, is the Euclidean distance from x to the nearest other
vertex created during the protection stage. For a vertex x inserted during the renement
stage�—every unweighted vertex not of type 0�—the power distance replaces the Euclidean
distance: rx is the square root of the power distance from x to the vertex in S (weighted or
unweighted) that is nearest to x by power distance, at the instant before x is inserted into S
or rejected. In other words, r2x = miny∈S π(x, y) = miny∈S

(
d(x, y)2 − ωy

)
. When a vertex is

inserted at the center of an orthoball of a weighted Delaunay simplex, the insertion radius
of the vertex is equal to the radius of the orthoball.

Each unweighted vertex inserted during the renement stage has a parent vertex, whose
insertion radius helps to place a lower bound on the child�’s. Centers of protecting balls
do not have parents. The parent of an unweighted type 1 or 2 vertex x, inserted at the
orthocenter of an encroached subsegment or subpolygon, is the closest encroaching vertex
by power distance; this vertex might be in S or might be a rejected circumcenter. The parent
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of a type 3 vertex x, inserted at the orthocenter of a tetrahedron τ, is the most recently
inserted vertex of τ�’s shortest edge. If both vertices were present from the start, choose one
arbitrarily.

The following proposition places a lower bound on the insertion radius rx of a vertex x
in terms of fE(x), λ(x), and the insertion radius rp of x�’s parent p. Recall that the relationship
between rx and rp is the crux of the proof by induction of Proposition 8.5.

Proposition 9.3. Let x be a vertex. Let p be its parent, if x has one.

(i) If x is a type 0 vertex or a weighted vertex, then rx ≥ fE(x).

(ii) If x is an unweighted vertex of type i ∈ {1, 2} and p is of type j ≤ i, then rx ≥√
3 fE(x)/2.

(iii) If x is an unweighted vertex of type i ∈ {1, 2} and p is of type j > i, then rx ≥ rp/
√
2.

(iv) If x is of type 3, then rx > ρ̄rp or rx > λ(x).

Proof. If x is a type 0 vertex or a weighted vertex, rx ≥ fE(x) because at the end of the
stage Protect, rx is the Euclidean distance from x to the nearest weighted vertex, and fE(x)
cannot exceed that value as E contains every weighted vertex.

If x is of type 3, it is the orthocenter of a tetrahedron τ whose orthoradius-edge ratio
ρ(τ) exceeds ρ̄ or whose orthoradius exceeds λ(x). The insertion radius of x is the radius
rx =

√
π(x, p) of τ�’s orthoball because the vertices of τ are orthogonal to the orthoball but,

as τ is weighted Delaunay, no mesh vertex is closer than orthogonal to the orthoball. In the
case where τ is split because its orthoradius exceeds λ(x), clearly rx > λ(x). In the case
where ρ(τ) > ρ̄, the parent p of x is the most recently inserted endpoint of τ�’s shortest edge.
As no vertex in S [ω] is negatively weighted, rp is no greater than the length ' of τ�’s shortest
edge. Therefore, rx = ρ(τ)' > ρ̄rp.

If x is an unweighted vertex of type i ∈ {1, 2}, it is the orthocenter of an encroached
subsegment or subpolygon σ. Let X be its orthoradius. If p is of type j > i, then p is
a simplex orthocenter rejected for encroaching upon σ. Because σ was not encroached
before p was rejected, rx = X. The simplex σ contains the orthogonal projection of p onto
aff σ by the algorithm�’s design. Therefore, σ has a vertex a such that ∠pxa ≤ 90◦, which
implies that

d(p, a)2 ≤ d(p, x)2 + d(x, a)2 ≤ X2 + d(x, a)2.

It follows that

r2p ≤ π(p, a) = d(p, a)2 − ωa ≤ X2 + d(x, a)2 − ωa = X2 + π(x, a) = 2X2 = 2r2x ,

so rx ≥ rp/
√
2 as claimed.

If x is an unweighted vertex of type i ∈ {1, 2} and p is of type j ≤ i, then let h be the
linear cell of least dimension in P that includes the simplex σ split by x, and let h′ be the
linear cell of least dimension in P that contains p. Whether or not h and h′ are disjoint,
their counterparts h \ U, h′ \ U ∈ E are disjoint, where U is the union of the interiors of
the protecting balls. To see this, observe that if h′ adjoins h, the encroachment implies that
together they do not satisfy the projection condition, so h ∩ h′ is covered by U.
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Unweighted vertices are never inserted in protecting balls, so x ∈ h \ U, and if p is
unweighted, p ∈ h′ \ U. If p is weighted, it is a vertex in E with a protecting ball whose
radius does not exceed half the local gap size, so √ωp ≤ g(p)/2 ≤ d(x, p)/2. In either case,
by the denition of local feature size, fE(x) ≤ d(x, p), so

r2x = π(x, p) = d(x, p)2 − ωp ≥ d(x, p)2 −
(
d(x, p)
2

)2
≥ 3
4
fE(x)2,

thus rx ≥
√
3 fE(x)/2 as claimed. !

We use Proposition 9.3 to show that the algorithm generates graded meshes with strong
lower bounds on the edge lengths. We wish to incorporate the effect of the size eld in
addition to the local feature size. Dene the eld

µ(x) = min
{
fE(x), inf

y∈|P|
(C3λ(y) + d(x, y))

}
,

whereC3 = (ρ̄+
√
2+1)/(ρ̄−2) (recall Proposition 8.5). Observe that the second expression

in the braces is 1-Lipschitz�—by design, it is the largest 1-Lipschitz function that is nowhere
greater than C3λ. The eld µ is 1-Lipschitz because it is a minimum of two 1-Lipschitz
functions. It captures the combined inuence of the local feature size and the size eld on
the edge lengths in the mesh.

Theorem 9.4. Let P be a PLC embedded in R3. If ρ̄ ≥ 2 and infx∈|P| λ(x) > 0, then DelTet-
AcutePLC(P, ρ̄) terminates and returns a Steiner weighted Delaunay triangulation of P in
which no tetrahedron has an orthoradius-edge ratio greater than ρ̄. Therefore, tetrahedra
with no weighted vertices have circumradius-edge ratios no greater than ρ̄. For any two
vertices p and q in the mesh, d(p, q) ≥ µ(p)/(C1 + 1) where C1 = (3 +

√
2)ρ̄/(ρ̄ − 2).

Proof. By Proposition 9.2, the stage Protect terminates.
The inequalities stated in Proposition 9.3 are nearly the same as in Proposition 8.4, so

we can reprise the proofs of Propositions 8.5 and 8.6 with µ replacing the local feature
size f . Proposition 8.5 states that the insertion radius rx of every vertex x of type i satises
rx ≥ µ(x)/Ci, where C0, C1, C2, and C3 are specied in the statement of Proposition 8.5.
There are two changes to the algorithm for which we must verify that these invariants
still hold. First, if a vertex x is inserted at the orthocenter of a tetrahedron because its
orthoradius exceeds λ(x), then rx > λ(x) ≥ µ(x)/C3 as stated. Second, the inequality rx ≥√
3 fE(x)/2 from Proposition 9.3 is looser than its counterpart from Proposition 8.4, but it is
tight enough to imply that rx > µ(x)/C2 > µ(x)/C1.

By Proposition 8.6, for any two vertices in the mesh, d(p, q) ≥ µ(p)/(C1 + 1). By the
Packing Lemma (Lemma 6.1), Refine terminates.

When DelTetAcutePLC terminates, no subsegment or subpolygon is encroached,
hence {σ ∈ Del S [ω] : σ ⊆ |P|} is a Steiner triangulation of P. Moreover, because DelTe-
tAcutePLC terminates, no tetrahedron�’s orthoradius-edge ratio exceeds ρ̄. !

The merit of the eunuch structure E is that it gives us intuition about how small angles
affect the edge lengths in the mesh. Theorem 9.4 shows that DelTetAcutePLC returns a
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Figure 9.3: (a) The complex E, shown as bold edges, has its minimum local feature size of
R sin(φ/2) at the midpoint of pq. (b) A protecting ball centered at z can have radius as great
as half the gap size, as shown, or as small as nearly seven times smaller. (c) The polygon
h meets another polygon h′ (not shown) at a small dihedral angle along an edge uv. After
the protecting balls are removed, the distance between the polygons depends partly on how
close they are to the meeting line '. A point p whose projection onto ' lies on h∩ h′ is kept
at a distance by the orthogonal protecting balls. A point whose projection does not lie on
h ∩ h′, like p′ and p′′, can lie much closer to ' or even on '.

mesh with edge lengths not much smaller than the size eld λ or the local feature size fE
of the eunuch structure, whichever is smaller. There are two reasons why fE(x) could be
smaller than f (x) at a point x: there are two adjoining linear cells in P whose counterparts
in E are disjoint and whose distance from x is less than f (x); or a new vertex was added to
E at a protecting ball center near x.

Let us examine how small fE can be in terms of the angles in P. Recall from Chapter 8
that there are several notions of the angle at which two linear cells adjoin each other. For
simplicity, we use the linear cells�’ affine hulls as proxies: if two segments or polygons
(possibly one of each) h and h′ adjoin each other and fail the projection condition, we take
the smallest angle at which aff h meets aff h′, and we say that h and h′ meet at that angle.

Every acute vertex u is protected by a ball of radius R = min{λ(u), f (u)/(2
√
2)}. Con-

sider a segment uv ∈ P and another segment or polygon h ∈ P that meet at u at an angle
of φ. Their counterparts in E, namely, uv \ Int B(u,R) and h \ Int B(u,R), can jointly gen-
erate a local feature size fE as small as R sin(φ/2), but not smaller (ignoring contributions
from other linear cells). As Figure 9.3(a) shows, this value is achieved at the midpoint of a
line segment pq where p = uv ∩ Bd B(u,R) and q ∈ (aff h) ∩ Bd B(u,R) is chosen so that
∠qup = φ.
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The success of Protect depends on the local gap size having a positive lower bound
wherever protecting balls can be centered. If φ is the smallest angle at which an edge
uv meets any other edge or polygon, then the local gap size g(z) for a point z in the
interior of uv is at least min{ f (z), d(u, z) sin φ, d(v, z) sin φ}; see Figure 9.3(b). Recall
from Proposition 9.2 that every protecting ball centered on uv has radius greater than
infx∈(uv\(Bu∪Bv))∪{u,v}min{λ(x)/7, g(x)/14} ≥ infx∈(uv\(Bu∪Bv))∪{u,v}min{λ(x)/7, f (x)/14, d(u, x)
sin φ/14, d(v, x) sin φ/14}. As the protecting balls at u and v do not contain the centers of
the other protecting ball centered on uv, both d(u, x) and d(v, x) are greater than the radius
R of the smaller of the protecting balls centered at u and v. Thus, the other balls centered
on uv have radii at least infx∈uvmin{λ(x)/7, f (x)/14,R(sin φ)/14}. A very small angle φ can
yield very small protecting balls and a proportionally small local feature size fE near the
protecting balls.

Consider two polygons h and h′ that meet at a small dihedral angle θ along a shared
edge uv (or perhaps at a single vertex). How close can their counterparts in E be to each
other? Let U be the union of the interiors of the protecting balls placed on h ∩ h′. Let p be
a point in h \U and q be a point in h′ \U such that d(p, q) is globally minimized. There are
two cases. If the projection of p onto the line ' = aff h ∩ aff h′ lies on h ∩ h′, as at left in
Figure 9.3(c), then p cannot be closer to the line than R′/

√
2, where R′ is the radius of the

smallest protecting ball on uv. This follows because consecutive balls are orthogonal and
the distance is minimized where the boundaries of two radius-R′ balls meet. In this case,
d(p, q) can be as small as

√
2R′ sin(θ/2) if p and q are on the boundaries of the same two

protecting balls, forcing the local feature size fE to be as small as R′ sin(θ/2)/
√
2 at the

midpoint of pq. (Recall Figure 9.3(a), but imagine a dihedral angle.)
If p�’s projection does not lie on h ∩ h′, as at the points p′ and p′′ in Figure 9.3(c), it

is possible for d(p, q) to be much smaller. Because d(p, q) is minimized, at least one of p
or q lies on an edge of its polygon; suppose p lies on an edge s of h. If s adjoins h′ (see
p′ in the gure), let φ ≤ θ be the an angle at which they meet, let R be the radius of the
protecting ball at the vertex where s and h′ meet, and recall that their counterparts in E can
be as close as 2R sin(φ/2); this is the minimum for h \U and h′ \U as well. Therefore, they
can generate a local feature size fE as small as R sin(φ/2), but not smaller.

Conversely, if s and h′ are disjoint (see p′′ in the gure), it is possible that h and h′
make fE smaller than f at some points, but h and h′ cannot make minx∈R3 fE(x) smaller than
minx∈R3 f (x) because s and h′ are disjoint, and the distance between h and h′ is minimized
by p ∈ s and q ∈ h′.

The worst circumstance is when an edge uv participates in both a very small plane angle
φ that induces a tiny local gap size and forces Protect to place tiny protecting balls on uv,
and a very small dihedral angle θ that forces Refine to produce tinier edges just outside the
protecting balls. The lengths of these edges are Θ(φθ) as φ and θ approach zero.

9.5 Notes and exercises
If a PLC in R3 has segments or polygons that adjoin each other at small angles, it can be
quite difficult to triangulate it with Delaunay simplices, even if there is no constraint on the
quality of the tetrahedra. Most algorithms for generating Steiner Delaunay triangulations
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Figure 9.4: Three polyhedra that have small dihedral angles, and their tetrahedral meshes
generated by a precursor of the algorithm described here.
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of three-dimensional PLCs use the idea to protect PLC vertices and segments with balls
inside which vertices may not be inserted. These algorithms do not use weighted vertices;
rather, they prevent the insertions of vertices into the protecting balls by placing vertices
on the boundary of the union of the protecting balls. Different protection methods have
been proposed by Murphy, Mount, and Gable [156], Cohen-Steiner, Colin de Verdière,
and Yvinec [65], Cheng and Poon [57], Cheng, Dey, Ramos, and Ray [52], and Pav and
Walkington [165].

Murphy et al. [156] protect PLC vertices with balls whose radii are uniform�—a frac-
tion of the minimum local feature size among the vertices�—and protect the segments with
cylinders whose radii are uniform�—a fraction of the minimum local gap size among the
segments. The balls and cylinders are protected by vertices placed at points where PLC
segments and polygons meet ball boundaries and cylinder boundaries. Finally, they trian-
gulate the polygons by calling Chew�’s algorithm, described in Section 1.2. The triangles
have uniform sizes, and their circumradii are a fraction of the minimum local gap size
among the polygons. There are no restrictions on the shapes of the tetrahedra generated.
This algorithm has the distinction of being the rst proof that every three-dimensional PLC
has a Steiner Delaunay triangulation, but it generates far more vertices than necessary.

Cohen-Steiner et al. [65] protect PLC vertices with balls whose radii are proportional
to the local feature size and protect the segments with balls whose radii are proportional to
the local gap size�—much as we do in this chapter, except that two adjacent protecting balls
may have a very small overlap, whereas the algorithm in this chapter places them so they
are orthogonal. The balls are protected by vertices placed where ball boundaries intersect
PLC polygons, as determined by special encroachment rules. These rules also recover the
polygons. The algorithm produces graded triangulations in practice, but unduly short edges
can appear.

The two algorithms above do not attempt to control the quality of the tetrahedra. The
rst Delaunay renement algorithm to claim some theoretical guarantees on tetrahedron
quality for domains with small angles is by Shewchuk [199]. It uses constrained Delaunay
triangulations, the CDT Theorem (Theorem 4.9), and concentric spherical shell segment
splitting to guarantee domain conformity. The nal mesh is a graded Steiner CDT of the
input PLC. The paper proves that for some PLCs, no algorithm can x every skinny ele-
ment, or even every skinny element that does not immediately adjoin a small domain angle:
inherently, part of the problem of meshing domains with small angles is to decide when and
where to leave skinny elements alone. The algorithm decides which skinny tetrahedra not
to try to split by explicitly computing insertion radii and declining some of the vertex in-
sertions that violate the consequences of Proposition 8.4, even if it means leaving a skinny
tetrahedron intact.

Cheng and Poon [57] describe an algorithm that produces well-graded, high-quality
Steiner Delaunay triangulations without the need for CDTs. They place protecting balls
of graded sizes on vertices and segments, using a precursor of the scheme described in
this chapter; then they run Delaunay renement outside the protecting balls while placing
vertices on the protecting ball boundaries according to encroachment rules. The union of the
protecting balls is lled with Delaunay tetrahedra that are compatible with the triangulation
outside the union. The algorithm guarantees an upper bound on the aspect ratios of the
tetrahedra inside the protecting balls, ruling out the worst slivers. The bound depends on
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the domain angles, and degrades as the domain angles do. All the other tetrahedra in the
domain have bounded radius-edge ratios.

The Delaunay meshing algorithm of Cheng, Dey, Ramos, and Ray [52] also protects
vertices and segments with balls of graded sizes. The radii of the protecting balls centered at
input vertices are chosen by computing local feature sizes, but the protecting balls on acute
segments are chosen and rened adaptively by a specialized Delaunay renement method.
Once the algorithm has computed a Steiner Delaunay triangulation, the protecting balls are
frozen. Then skinny tetrahedra are rened as described in Chapter 8, but tetrahedron cir-
cumcenters that fall in protecting balls are discarded. The algorithm is guaranteed to work
only for polyhedra, i.e. domains in which there are no internal boundaries and no segment is
a face of more than two polygons. This restriction makes it easier to produce a conforming
Delaunay triangulation and obviates the need to compute ball-polygon intersections. The
meshes in Figure 9.4 are generated by this algorithm.

Very shortly thereafter, Pav and Walkington [165] proposed a similar meshing algo-
rithm that generates graded Steiner Delaunay triangulations of general PLCs. An advan-
tage of the algorithm is related to local feature size computations: the algorithms of Cohen-
Steiner et al. [65] and Cheng and Poon [57] require expensive explicit computations of local
feature sizes at protecting ball centers; Cheng et al. [52] require them only at PLC vertices;
Pav and Walkington [165] (and Shewchuk [199]) infer the local feature sizes inexpensively
from the process of meshing itself, as do the algorithms DelTriPLC and DelTetPLC.

The constrained Delaunay renement algorithm of Si [206] copes with small domain
angles by maintaining a CDT and declining to insert a new vertex v if its insertion will
create an edge shorter than b · λ(v), where b is a user-specied constant and λ is the user-
specied size eld. The algorithm takes advantage of the CDT Theorem (Theorem 4.9) to
guarantee that a CDT exists; hence, some vertices may be inserted on segments despite
creating short edges.

The new algorithm presented in this chapter adapts the segment protection scheme of
Cheng and Poon [57], but it uses a Steiner weighted Delaunay triangulation both inside and
outside the protecting balls. The ideas to turn protecting balls into weighted points and to
rene by inserting orthocenters come from Cheng, Dey, and Ramos [51], whose algorithm
for meshing piecewise smooth complexes appears in Chapter 15.

Exercises
1. Let s be a linear cell in a PLC, and let s be the union of its proper faces in the PLC.
Prove that the local gap size function g is 1-Lipschitz on the domain s \ s; that is, for
any two points x and y in s \ s, g(x) ≤ g(y) + d(x, y).

2. (a) Derive the expressions in Step 1 of Cover for the position and radius of a ball
orthogonal to two other balls with collinear centers.

(b) Step 3 of Cover can be made more aggressive. Suppose that we modify it to
compute three new balls having equal radii that ll the gap between Bx and By
tightly, so that in the sequence of ve balls from Bx to By, each consecutive pair
of balls is orthogonal. Then the center ball is shrunk if necessary to accommo-
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date the size eld and the local gap size, and the corresponding weighted point
is inserted into S [ω].
Derive expressions for the radius and positions of the three balls. They need not
be closed-form expressions, as the radius is the root of a quartic polynomial.

3. Let pqr be a triangle in R2. Suppose that we protect the segments of pqr as described
in this chapter. Prove that for every protecting ball center x, g(x) = φ ·Θ( f (x)), where
φ is the smallest angle of the triangle. Can you extend your proof to a polygon with
polygonal holes?

4. Rather than have separate protection and renement stages, we could change the
algorithm so that it protects segments lazily during renement, deciding whether to
place a protecting ball on a segment only when one of its subsegments is encroached.

(a) Write pseudocode for this algorithm.
(b) When your algorithm decides to place a new protecting ball, can this ball con-

tain an existing vertex? Why or why not?
(c) Describe an advantage of the modied algorithm.
(d) Prove that your algorithm produces a Steiner triangulation of the input PLC.

5. Derive formulae for computing the coordinates of the orthocenter of a triangle, given
the coordinates of its vertices.

6. DelTetAcutePLC does not protect nonacute segments. The advantage is that every
mesh tetrahedron that does not adjoin an acute segment or vertex is guaranteed to
have a good radius-edge ratio. However, if a Delaunay renement algorithm protects
every segment, acute and nonacute, then ρ̄ can be reduced to less than 2, and Refine
can still be guaranteed to terminate and work correctly. For this modied algorithm,
what is the best upper bound ρ̄ on the orthoradius-edge ratio that can (without ex-
traordinary efforts) be guaranteed with the same proof techniques employed in this
chapter? Explain your answer.


