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Preface

The study of algorithms for generating unstructured meshes of triangles and tetrahedra be-
gan with mechanical and aeronautical engineers who decompose physical domains into
grids for the nite element and nite volume methods. Very soon, these engineers were
joined by surveyors and specialists in geographical information systems, who use meshes
called �“triangulated irregular networks�” to interpolate altitude elds on terrains, in the ser-
vice of mapmaking, contouring, and visualization of topography. More recently, triangu-
lar meshes of surfaces have become prevalent as geometric models in computer graphics.
These three groups of customers are the most numerous, but hardly the only ones; triangu-
lations are found in most applications of multivariate interpolation.

Unfortunately, it is endishly hard to implement a reliable mesh generator. The de-
mands on a mesh are heavy: it must conform to the geometric domain being modeled; it
must contain triangles or tetrahedra of the correct shapes and sizes; it may have to grade
from very short edges to very long ones over a short distance. These requirements are some-
times contradictory or even impossible. Most mesh generators are fragile, and sometimes
fail when presented with a difficult domain, such as an object with many sharp angles or
strangely curved boundaries.

One of the most exciting developments in computational geometry during the last sev-
eral decades is the development of provably good mesh generation algorithms that offer
guarantees on the quality of the meshes they produce. These algorithms make it easier to
trust in the reliability of meshing software in unanticipated circumstances. Most mesh gen-
erators fall into one of three classes: advancing front mesh generators, which pave a domain
with triangles or tetrahedra, laying down one at a time; meshers that decompose a domain
by laying a grid, quadtree, or octree over it; and Delaunay mesh generators, which maintain
a geometric structure called the Delaunay triangulation that has remarkable mathematical
properties. To date, there are no provably good advancing front methods, and Delaunay
meshers have proven to be more powerful and versatile than grid and octree algorithms,
especially in their ability to cope with complicated domain boundaries.

In the past two decades, researchers have made progress in answering many intricate
questions involving mesh generation: Can a mesher work for all input domains, includ-
ing those with curved boundaries and sharp edges? If not, when and where must it make
compromises? How accurately can a mesh composed of linear triangles or tetrahedra ap-
proximate the shape and topology of a curved domain? What guarantees can we make
about the shapes and sizes of those triangles or tetrahedra? As a community, we now have
algorithms that can tackle complex geometric domains ranging from polyhedra with inter-

xi
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xii Preface

nal boundaries to smooth surfaces to volumes bounded by piecewise smooth surfaces. And
these algorithms come with guarantees.

This book is about algorithms for generating provably good Delaunay meshes, with an
emphasis on algorithms that work well in practice. The guarantees they offer can include
well-shaped triangles and tetrahedra, a reasonably small number of those triangles and
tetrahedra, edges that are not unnecessarily short, topologically correct representations of
curved domains, and geometrically accurate approximations of curved domains. As a foun-
dation for these algorithms, the book also studies the combinatorial properties of Delaunay
triangulations and their relatives, algorithms for constructing them, and their geometric and
topological delity as approximations of smooth surfaces. After setting out the basic ideas
of Delaunay mesh generation algorithms, we lavish attention on several particularly chal-
lenging problems: meshing domains with small angles; eliminating hard-to-remove �“sliver�”
tetrahedra; and generating meshes that correctly match the topology and approximate the
geometry of domains with smooth, curved surfaces or surface patches.

We have designed this book for two audiences: researchers, especially graduate stu-
dents, and engineers who design and program mesh generation software. Algorithms that
offer guarantees on mesh quality are difficult to design, so we emphasize rigorous mathe-
matical foundations for proving that these guarantees hold and providing the core theoreti-
cal results upon which researchers can build even better algorithms in the future. However,
one of the glories of provably good mesh generation is the demonstrated fact that many
of its algorithms work wonderfully well in practice. We have included advice on how to
implement them effectively. Although we promote a rigorous theoretical analysis of these
methods, we have structured the book so readers can learn the algorithms without reading
the proofs.

An important feature of this book is that it begins with a primer on Delaunay trian-
gulations and constrained Delaunay triangulations in two and three dimensions, and some
of the most practical algorithms for constructing and updating them. Delaunay triangula-
tions are central to computational geometry and have found hundreds, probably thousands,
of applications. Later chapters also cover Voronoi diagrams, weighted Voronoi diagrams,
weighted Delaunay triangulations, restricted Voronoi diagrams, and restricted Delaunay tri-
angulations. The last is a generalization of Delaunay triangulations that permits us to mesh
surfaces in a rigorous, reliable way. We believe that this book is the rst publication to
combine so much information about these geometric structures in one place, and the rst
to give so much attention to modern algorithms.

The book can be divided into three parts of nearly equal length. The rst part introduces
meshes and the problem of mesh generation, denes Delaunay triangulations and describes
their properties, and studies algorithms for their construction. The second part gives algo-
rithms for generating high-quality meshes of polygonal and polyhedral domains. The third
part uses restricted Delaunay triangulations to extend the algorithms to curved surfaces and
domains whose boundaries are composed of curved ridges and patches.

The rst chapter begins by describing the goals of mesh generation and telling a
brief history of research in the eld. Then it formally denes triangulations as simpli-
cial complexes, and it denes the domains that those triangulations triangulate as other
types of complexes. Chapters 2�–5 cover Delaunay triangulations, constrained Delaunay
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triangulations, and algorithms for constructing and updating them in two and three di-
mensions. Chapter 2 introduces Delaunay triangulations of sets of points in the plane,
their properties, and the geometric criteria that they optimize. It also introduces piecewise
linear complexes (PLCs) as geometric structures for modeling polygonal domains; and
triangulations of PLCs, particularly constrained Delaunay triangulations (CDTs), which
generalize Delaunay triangulations to enforce the presence of specied edges. Chapter 3
presents algorithms for constructing Delaunay triangulations and CDTs, specically, the
incremental insertion and gift-wrapping algorithms. Chapter 4 extends Delaunay trian-
gulations to higher dimensions and reviews geometric criteria that Delaunay triangula-
tions of all dimensions optimize, some of which govern the accuracy of piecewise lin-
ear interpolation over triangles and tetrahedra. Chapter 5 reprises the incremental insertion
and gift-wrapping algorithms for constructing Delaunay triangulations and CDTs in three
dimensions.

Chapter 6 kicks off the middle third of the book with a discussion of Delaunay re-
nement algorithms for generating provably good triangular meshes of PLCs in the plane.
Chapter 7 is an interlude in which we return to studying geometric complexes, includ-
ing Voronoi diagrams, weighted Voronoi diagrams, and weighted Delaunay triangulations,
which arm us with additional power to mesh polyhedral domains with small angles, elimi-
nate some particularly troublesome tetrahedra of poor quality known as slivers, and handle
curved surfaces.

Chapters 8�–11 study algorithms for constructing tetrahedral meshes of polyhedral do-
mains represented by three-dimensional PLCs. Chapter 8 presents a straightforward exten-
sion of the two-dimensional Delaunay renement algorithm to three-dimensional domains
with no acute angles. Chapter 9 describes an algorithm, new with this book, that meshes
PLCs with small angles by constructing a weighted Delaunay triangulation. Chapters 10
and 11 describe a sliver exudation technique for removing slivers from a Delaunay mesh,
thereby providing a mathematical guarantee on the quality of the tetrahedra. Although this
guarantee is weak, the algorithm�’s success in practice exceeds what the theory promises. In
both of these chapters, we have substantially improved the results in comparison with the
previously published versions.

The nal third of the book is devoted to meshing curved surfaces. A piecewise linear
mesh cannot exactly conform to a curved surface, so we develop tools in approximation
theory and topology to help guarantee the delity of a mesh to an underlying curved surface.

Chapter 12 covers topological spaces, homeomorphisms, isotopies, manifolds, and
properties of point samples on manifolds. Chapter 13 introduces restricted Voronoi dia-
grams, whose Voronoi cells lie on a manifold, and their dual complexes, restricted Delau-
nay triangulations. We study conditions under which a restricted Delaunay triangulation
is a topologically correct and geometrically close representation of a manifold. Chapter 14
describes mesh generation algorithms for curved surfaces and for the volumes they enclose;
the meshes are restricted Delaunay triangulations. Chapter 15 makes the difficult jump from
smooth surfaces to piecewise smooth surfaces, represented by a very general input domain
called a piecewise smooth complex (PSC). PSCs bring with them all the difficulties that
arise with polyhedral domains, such as enforcing boundary conformity and handling small
domain angles, and all the difficulties that arise with smooth surfaces, such as guaran-
teeing topological correctness and small approximation errors. The algorithms described
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in the last two chapters and their analyses are considerably improved since their original
publication.

At the end of each chapter, we provide historical and bibliographical notes and citations
to acknowledge the pioneers who introduced the ideas in each chapter and to reference
related ideas and publications. We include exercises, some of which we have assigned in
graduate courses on mesh generation or computational geometry. We also use exercises as
a way to include many interesting topics and improvements that we did not have enough
room to discuss in detail, and theorems we did not have room to prove.

This book would have been impossible without help and advice. We thank our students
who implemented versions of many of the algorithms presented in this book and gener-
ated pictures of the meshes they produced. Tathagata Ray meshed polyhedra with acute
angles and remeshed polygonal surfaces. Joshua Levine meshed piecewise smooth com-
plexes. Kuiyu Li helped to generate some of the gures. The Computational Geometry
Algorithms Library (CGAL) project offered us a wonderful platform on which many of our
implementations were carried out.

Joshua Levine read the manuscript at an early stage of the book and gave some valuable
suggestions. Andrew Slatton read the last chapter carefully and pointed out some decien-
cies in an early draft. For conversations that improved the writing in this book, we thank
Nina Amenta, Marshall Bern, Jean-Daniel Boissonnat, L. Paul Chew, Herbert Edelsbrun-
ner, Lori Freitag, Omar Ghattas, Anand Kulkarni, François Labelle, Gary Miller, Scott
Mitchell, James O�’Brien, David O�’Hallaron, Edgar Ramos, Jim Ruppert, and Dafna Tal-
mor. We also thank the researchers cited in the bibliography. Skype made possible our
intercontinental conversations while writing this book.

We are grateful for the funding provided by the National Science Foundation, the
Research Grant Council of Hong Kong, the University of California Lab Fees Research
Program, the Alfred P. Sloan Foundation, and the Okawa Foundation that supported not
only this book, but also much of the research that made it possible. We also wish to
acknowledge the support of our departments: the Department of Computer Science and
Engineering at the Hong Kong University of Science and Technology, the Department
of Computer Science and Engineering at The Ohio State University, and the Depart-
ment of Electrical Engineering and Computer Sciences at the University of California,
Berkeley.

We are indebted to our families for encouraging us in our intellectual pursuits and
giving us unfailing support throughout the years it took to write this book. Siu-Wing gives
his thanks and love to Garmen Szeto and Nicole Cheng. Nicole is as old as this book project.
The joint endeavour of book writing and child raising would not be as joyous without
Garmen�’s immense energy and loving care. Tamal cannot thank enough his wife Kajari for
taking care of many of the family chores which created the space for him to devote time
to the book. Soumi and Sounak, their children, kept asking about the book. Their curiosity
and enthusiasm helped Tamal remain engaged with the book for six years. Gopal Dey and
Hasi Dey, his parents, were a constant inspiration even in their absence since it is they
who implanted the love for books in Tamal. Jonathan wishes to acknowledge the cafés
in which he wrote his part: the 61C Café in Pittsburgh, Masse�’s Pastries and Far Leaves
Teas in Berkeley, Leland Tea Company and Samovar Tea Lounge in San Francisco. But his
favorite is still Chez Bill and Lynne Shewchuk in Cranbrook, British Columbia, Canada,
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the world�’s warmest writing retreat and maker of the best baked macaroni and cheese. His
love and blessings rest upon this house.

Siu-Wing Cheng
Tamal Krishna Dey

Jonathan Richard Shewchuk
21 May 2012

Hong Kong, Columbus,
and Cranbrook


