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Abstract

Graph partitioning is the problem of cutting a graph into two or more subgraphs of specified sizes while
minimizing the total weight of the edges cut or a similar objective function. Spectral partitioning algorithms
find approximate solutions to graph partitioning problems by computing one or more eigenvectors of a
symmetric matrix that represents the connectivity of the graph, then inferring a cut from the eigenvectors.
Spectral partitioning has a rich mathematical theory, both for deriving guaranteed bounds on the quality of
spectral partitions and for creating expander graphs that are useful because they do not have good partitions.
Isoperimetric partitioning is an alternative algorithm that has similar foundations in linear algebra, but it is
faster and simpler because it replaces the eigenvalue computation with the solution of a symmetric linear
system. However, it lacks the theoretical guarantees of spectral partitioning and it is too new to have been
tested in a wide variety of applications.

The first half of this report describes the spectral and isoperimetric graph partitioning algorithms and the
virtues and limitations of spectral partitioning as an approximation algorithm. The second half is a miscel-
lany of variations and implications of these algorithms. Topics include Cheeger’s inequality, the normalized
cut criterion, vertex separators, negative edge weights, eigenvector computations, singular value decompo-
sitions for bipartite graphs, the use of multiple eigenvectors, and partitioning a graph into more than two
subgraphs.
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About this Report

These lecture notes are a sequel to my technical report An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain (available from my web page), in the sense that I do not reprise material here that
I cover there. There are a few sections of that report that might make this one easier to read. If you, like me,
got through your undergraduate linear algebra class with no intuitive or visual understanding of eigenvectors,
I suggest Section 5 of that report. Seeing eigenvectors as actors with a distinctive body language will open
up spectral graph partitioning in a way not otherwise possible. Section 3 of that report offers a visual
introduction to the quadratic form. Section 7.1 visually illustrates the meaning of M-orthogonality. Section
7.2 explains Gram–Schmidt conjugation. Appendix C2 has a proof that a symmetric matrix has n orthogonal
eigenvectors. Finally, the conjugate gradient method itself is useful for isoperimetric graph partitioning.

I thank Gilbert Bernstein, Marc Khoury, and Darsh Ranjan for proofreading a draft. I thank Inderjit
Dhillon, Bruce Hendrickson, Ravi Kolluri, James Lee, Gary Miller, James O’Brien, Horst Simon, Shang-
Hua Teng, Luca Trevisan, and Stella Yu for discussions that clarified my understanding of spectral graph
partitioners. I thank Dan Spielman, whose lecture notes filled many gaps, and (again) Luca Trevisan, whose
lecture notes provided the proof of Cheeger’s inequality. And I thank Dylan Scott and Maurya Talisetti,
whose Mathematica code rendered some of the figures.



Part I

Spectral and Isoperimetric Graph Partitioning

1 Graph Partitioning, Linear Algebra, and Constrained Optimization

1.1 Graph Partitioning

The goal of graph partitioning is to cut a weighted, undirected graph into two or more subgraphs that are
roughly equal in size, so that the total weight of the cut edges is as small as possible.

There are many variants of the graph partitioning problem. The simplest variant requests a bisection of
a graph G into two subgraphs G1 and G2 that have an equal number of vertices, as illustrated at upper left
in Figure 1, or differ in size by at most one vertex. A more general variant assigns a mass to each vertex,
and asks that the sum of the vertex masses in G1 be approximately equal to the sum of the vertex masses
in G2. Most of the uses of graph partitioning are not so demanding that they require the subgraphs to be
perfectly balanced; for instance, it might suffice that the larger piece be no more than twice as big as the
smaller. In some graphs, this looser restriction makes it possible to find a much smaller cut. However, the
constraints should not be too liberal: if you simply ask for the smallest cut possible, a partitioner might slice
just a single vertex from the rest of the graph, as illustrated at upper right in Figure 1. Thus, some versions
of the graph partitioning problem trade off the weight of the cut against the imbalance of the subgraphs, as
illustrated at lower left.

Graph partitioning can be formalized as a constrained optimization problem. You may choose among
several objective functions, such as the total cut weight or the ratio of cut weight to lightest subgraph. Most
of them are NP-hard to optimize.

This report summarizes two ways of reducing graph partitioning to problems in linear algebra that can
be solved by effective, well-known algorithms. Spectral graph partitioning reduces graph partitioning to
finding an eigenvector of a symmetric matrix. Isoperimetric graph partitioning reduces graph partitioning
to solving a symmetric linear system.

Neither of these methods is a true reduction, though, as both reductions use the techique of relaxing a
binary-valued unknown to a real-valued unknown. Ordinarily, a partition assigns each vertex of G to one
subgraph, either G1 or G2. By contrast, the relaxed graph partitioning problem makes vertices divisible—it
might assign two thirds of one vertex to G1, and the other third to G2. It might even assign three halves of
one vertex to G1, and minus one half to G2. Relaxation turns a combinatorial optimization problem into a
numerical optimization problem. The relaxed problems can be solved by polynomial-time algorithms.

Having solved a relaxed problem, you convert the real-valued solution to an approximately optimal
solution of the original graph partitioning problem by rounding the vertex values—assigning each vertex to
G1 or G2 by comparing it with some threshold value. The obvious threshold is to assign a vertex to G1 if
more than half of it is in G1, or to G2 otherwise, but that might give you a very unbalanced cut. If you prefer
a partition that is as balanced as possible, place the threshold at the median vertex.

By rounding an optimal solution of a continuous problem, you produce a discrete partition, which you
hope retains some semblance of near-optimality. An attractive feature of spectral partitioning is that a bound
called Cheeger’s inequality guarantees that you can always find a decently good cut. But “good” may fall
well short of optimal, and well short of perfectly balanced. In practical applications, we are usually pleased,
but there are graphs for which the spectral bisector is almost as bad as possible.
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Figure 1: Several ways to cut a graph whose edge weights and vertex masses are all 1. The minimum bisection,
at upper left, comprises five edges. The minimum cut, at upper right, comprises two edges but detaches just one
vertex. The maximum cut, at lower right, comprises all but three edges, and for this graph also happens to be the
maximum bisection. The sparsest cut, at lower left, has a sparsity of 4/(11 · 9), and for this graph also has the
minimum isoperimetric ratio, 4/9.

Spectral partitioning was introduced by Kenneth Hall [31] in 1970 (in the setting of clustering; he didn’t
use the word “partition”), rediscovered by Wilm Donath and Alan Hoffman [17] in 1972 and by Miroslav
Fiedler [23] in 1975, and popularized by Pothen, Simon, and Liou [58] in 1990.1 It has become a mainstay
of scientific computing and image processing. Isoperimetric partitioning was introduced by Leo Grady and
Eric Schwartz [29] in 2006, and it appears to be a faster and easier alternative. Time will tell whether it will
prove to be as effective or as popular as spectral partitioning.

Graph partitioners have many applications. They assign computations to processors in parallel comput-
ers [33, 58, 62, 68]: vertex masses represent the running times of computations, and cut weights represent
communication times between processors. They segment images—that is, they find boundaries separating
objects in photographs or medical images [61, 69, 70]. They are used in divide-and-conquer graph algo-

1Many publications credit the 1973 articles by Donath and Hoffman [18] and Fiedler [22], but a careful reading of those papers
reveals no hint of a spectral partitioning algorithm. Sections 1.5, 2.7, and E.3 mention a few of those two papers’ accomplishments.
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rithms such as nested dissection [47], which orders the rows and columns of a sparse matrix to reduce the fill
(nonzero components) in its Cholesky or LU decomposition. They cluster words that are frequently found
together in documents, and cluster documents that have similar words [12]. Many of the earliest graph par-
titioning algorithms were motivated by circuit layout (on circuit boards and in integrated circuits), for which
designers seek partitions of circuit components that minimize the number of long interconnections between
physically distant components [2, 17, 31, 38].

In addition to graph partitioning algorithms, this report surveys a touch of spectral graph theory, notably
Cheeger’s inequality, which bounds the quality of the optimal cut (as measured by an objective function
called the isoperimetric ratio) in terms of a graph eigenvalue. This theory’s influence extends well beyond
cutting graphs. The mixing times of random walks on graphs and the running times of approximate counting
algorithms are governed by the optimal cut [63]. Graphs with no good partition, called expanders, are used
in robust network design and error-correcting codes. Expanders are central in several results in complexity
theory, including the complexity class equivalence SL = L (symmetric log-space = log-space, meaning
that undirected graph reachability is solvable in logarithmic space) [59] and a proof of the famous PCP
Theorem [14], which characterizes the complexity class NP in terms of probabilistically checkable proofs.

1.2 Definitions

Let G = (V,E) be an undirected graph with vertex setV and edge set E. A subgraph of G (more properly,
an induced subgraph) is a graph obtained from G by removing a subset of its vertices and all the edges
adjoining them (but leaving intact every edge whose endpoints both remain in the subgraph.) A partition of
G is a set of subgraphs G1, G2, . . . , G j such that every vertex inV appears in exactly one of the subgraphs.

Given a partition of G, the cut or edge separator is the set of edges in E whose endpoints lie in different
subgraphs. We say that the partition cuts those edges. (Another type of separator, the vertex separator, is
discussed in Section C.) Each edge has a specified numerical weight, which indicates how bad it is to cut
that edge. The weight of a cut is the sum of the weights of all the edges in the cut. We wish to minimize this
weight.

Most of this report addresses a bipartition of G into two subgraphs. Multipartitions into three or more
subgraphs earn a lot of ink in Section E. A bisection is a perfectly balanced bipartition, and a multisection
is a perfectly balanced multipartition. Most applications can benefit by sacrificing perfect balance to obtain
a smaller cut; weakly balanced bipartitions are discussed starting in Section 2.2.

To influence how a partition should be balanced, we can assign each vertex a mass. The mass of a
subgraph is the sum of the masses of its vertices. We might request that the subgraphs have equal mass
(a multisection, which isn’t always possible), or that their masses differ by at most a factor of two (which
also isn’t always possible). As linear algebraic partitioners operate by rounding a fractional solution, we can
choose a rounding method that minimizes the difference between the subgraphs’ masses. Alternatively, we
can look for a partition that optimizes some objective function that trades cut weight against mass imbalance.

Two objective functions for judging unbalanced partitions are popular, in part because they emerge
naturally from the mathematics of spectral graph theory. The isoperimetric ratio of a bipartition is

Cut(G1,G2)
min{Mass(G1),Mass(G2)}

,

where Cut(G1,G2) is the weight of the cut severing G1 from G2 and Mass(Gi) is the total mass of the
vertices in Gi. The minimum isoperimetric ratio among all cuts of G is called the isoperimetric number of G.
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If every vertex has mass 1, thus Mass(Gi) = |Vi|, the isoperimetric number is also called the edge expansion.
If each vertex has mass equal to the sum of the adjoining edge weights (as described in Section A), the
isoperimetric number is also called the conductance or the Cheeger constant of G. The graph in Figure 1
has an isoperimetric number of 4/9, obtained by the cut at lower left.

The sparsity of a bipartition, also known as its uniform sparsity or cut ratio,2 is

Cut(G1,G2)
Mass(G1) Mass(G2)

.

The cut with minimum sparsity is called the (uniform) sparsest cut. If each vertex mass is the sum of the
adjoining edge weights, the sparsest cut is also called the normalized cut, and the sparsity is also called the
normalized cut criterion (see Section A). Figure 1 illustrates a cut of sparsity 1/20 at upper left, and the
sparsest cut, having sparsity 4/99, at lower left.

The average cut criterion

Cut(G1,G2)
(

1
Mass(G1)

+
1

Mass(G2)

)
is equal to the sparsity times Mass(G), so optimizing one is equivalent to optimizing the other. Note that the
average cut criterion is also equal to the sum of the isoperimetric ratios of the subgraphs G1 and G2.

This report focuses on NP-hard graph partitioning problems that are particularly well treated by spectral
algorithms: finding the minimum bisection, the cut with minimum isoperimetric ratio, and the cut with
minimum uniform sparsity. It neglects several graph partitioning problems that can be solved in polynomial
time. For example, the minimum cut problem, illustrated at upper right in Figure 1, asks for the cut of
minimum weight that disconnects the graph, though it might isolate just a single vertex. This problem can
be solved in O(|V| |E| + |V|2 log |V|) time [66]. In the classic source-target minimum cut problem, there are
one or more source vertices that must be in G1, and one or more target vertices that must be in G2. The
goal is to find the minimum cut that separates the source vertices from the target vertices. By the max-flow
min-cut theorem [19, 24], this problem is equivalent to the maximum network flow problem, for which there
is a rich literature of polynomial-time algorithms.

Most graph partitioning algorithms are formulated for graphs with positive edge weights; negative edge
weights make many algorithms fail. For graphs with negative edge weights, the max-flow min-cut theorem
does not hold, and both the minimum cut problem and the source-target minimum cut problem become
NP-hard. Observe that finding the minimum cut of a graph with all edge weights negative is equivalent to
finding the maximum cut of a graph with positive edge weights. Finding the maximum cut, illustrated at
lower right in Figure 1, is one of the twenty-one problems that Karp [37] proved NP-complete in his famous
paper that established the importance of the theory of NP-completeness.

An advantage of the spectral and isoperimetric partitioning algorithms is that they can accommodate
negative edge weights; see Section G. Even though negative edge weights make some graph partitioning
problems harder in principle, their careful use makes some applications faster and better.

1.3 The Laplacian Matrix and the Weight of a Cut

Linear algebraic methods for graph partitioning begin with the idea that we can express the weight of a cut
in matrix notation as a quadratic function of binary variables.

2The uniform sparsest cut is a special case of the notion of a nonuniform sparsest cut in multicommodity flows. Uniformity
arises when every vertex i wishes to route to every vertex j a flow proportional to mim j, where mi is the mass of vertex i. The term
“cut ratio” refers to the amount of flow that can cross the cut divided by the amount of demand across the cut.
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Number the vertices of G = (V,E) from 1 to n = |V|. Let (i, j) denote an edge connecting vertex i to
vertex j, and let wi j be its weight, with wi j = 0 if (i, j) < E. As G is undirected, (i, j) = ( j, i) and wi j = w ji.
Assume that there are no self-edges of the form (i, i).

Suppose we are given a partition of G into subgraphs G1 and G2. Let x be an n-component indicator
vector that represents the partition as follows. Let c1 and c2 be two distinct, arbitrary constants. We set
xi = c1 if vertex i is in subgraph G1, and xi = c2 if vertex i is in subgraph G2. The contribution of an edge
(i, j) to the cut weight is

wi j
(xi − x j)2

(c1 − c2)2 =

{
wi j, (i, j) is cut,
0, (i, j) is not cut.

(1)

Hence, the weight of the cut is

Cut(G1,G2) =
∑

(i, j)∈E

wi j
(xi − x j)2

(c1 − c2)2 (2)

=
1

(c1 − c2)2

∑
(i, j)∈E

(
wi jx2

i − 2wi jxix j + wi jx2
j

)

=
1

(c1 − c2)2

 ∑
(i, j)∈E

−2wi jxix j︸             ︷︷             ︸
off-diagonal terms

+

n∑
i=1

x2
i

∑
k,i

wik︸          ︷︷          ︸
diagonal terms



=
xTLx

(c1 − c2)2 , (3)

where L is a symmetric n × n matrix called the Laplacian matrix for G, whose components are

Li j =

{
−wi j, i , j,∑

k,i wik, i = j.
(4)

L is effectively a matrix representation of G. (For the purpose of partitioning a graph, there is no need to
distinguish edges of weight zero from edges that are not in the graph.)

Equation (3) shows that minimizing the weight of the cut is equivalent to minimizing xTLx, the Lapla-
cian quadratic form. This is a core observation underlying spectral and isoperimetric graph partitioners.

If every weight wi j is nonnegative, Expression (2) implies that xTLx ≥ 0 for all x—said differently, L is
positive semidefinite and thus L has no negative eigenvalues. Moreover, if G is a connected graph and all
its edges have positive weight, then Expression (2) is zero if and only if all the components of x are equal
to each other. Define 1 = [1, 1, . . . , 1]T and observe that L1 = 0 (each row of L sums to zero), so 1 is an
eigenvector of L with eigenvalue zero.3 It is the only eigenvector (aside from scaled versions of 1) with a
nonpositive eigenvalue, reflecting the fact that the cut has weight zero if and only if every vertex is in one
subgraph and the other subgraph is empty.

Figure 2 depicts isosurfaces of the form xTLx = c for a three-vertex graph. The isosurfaces are concentric
elliptical cylinders whose central axis is parallel to 1.

If G is not connected, but all its edges have positive weight, then L has one zero eigenvalue for each
connected component of G: setting xi = 1 for each vertex i in a component and xi = 0 for each vertex in
the other components yields an eigenvector with eigenvalue zero. The central axis in Figure 2 is no longer

3Recall that v is an eigenvector of L with eigenvalue λ if Lv = λv.
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x

= 24LxTx

1
x

2

x
3

xTLx

xTLx = 16

= 8

x = 0TLx

Tx= 01

1

1

5

3

2

3
1

Figure 2: Isosurfaces of the function xTLx for the graph at upper left. The shaded region represents the linear
balance constraint 1Tx = 0.

a line, but rather a plane or higher-dimensional subspace spanned by these eigenvectors. There are other
eigenvectors with eigenvalue zero (including 1), but they are all linear combinations of these ones, because
Expression (2) is zero if and only if x assigns all the vertices in a connected component the same value.

The foregoing discussion assumes that c1 and c2 are constant and distinct, but it holds regardless of their
specific values. Their role will become nebulous in two ways. First, a partitioning problem is relaxed by
permitting the components of x to take on any real value, not just c1 or c2. Second, c1 and c2 do not always
need to be chosen in advance. In Section 2.6, we will choose them to be a function of the cut—specifically,
a measure of the balance.

1.4 Graph Partitioning as Constrained Quadratic Optimization

The cut weight achieves its minimum value, xTLx = 0, when G1 = G and G2 = (∅, ∅), but that’s not useful.
Hence, we impose a balance constraint.

Suppose we choose the constants c1 = 1 and c2 = −1 to signify which vertices are in G1 and which are
in G2; thus we call x a signed indicator vector. (This name is in contrast to the 0-1 indicator vectors used in
isoperimetric partitioning and some spectral multipartitioning algorithms.) We can specify that exactly half
the vertices are in G1 and half are in G2 by imposing the constraint

1Tx = 0, (5)

which dictates that the number of components of x that are 1 is equal to the number that are −1. Figure 2
illustrates this constraint as a shaded planar cross-section of the cylindrical isosurfaces. Of course, this
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constraint can only be satisfied if the number n of vertices is even—but that will be no impediment once we
relax the partitioning problem, so don’t worry about it.

Thus, we reduce the graph bisection problem to the optimization problem of choosing x to

minimize xTLx

subject to ∀i, xi = 1 or xi = −1 (6)

and 1Tx = 0.

This problem is NP-complete [25]. Moreover, it is NP-hard to find a cut within a constant factor of the
minimum, even if no vertex has degree greater than three, even if you relax (5) to permit a constant multiple
of imbalance (e.g. if one subgraph is permitted to be at most 100 times larger than the other) [8].

What if you want a biased cut? For example, suppose you want G1 to have exactly four times as many
vertices as G2. Although your first impulse might be to revise the balance constraint, spectral partitioning
naturally enforces (5) exactly as written. A more compatible way to enforce the constraint is by choosing
c1 = 1 and c2 = −4—that is, every component of x is constrained to be −4 or 1—while leaving the balance
constraint (5) unchanged. This trick has surprisingly broad implications, which Sections 2.6, 2.7, and E.5
explore.

1.5 Bounds on the Weight of a Bisection

The balance constraint (5) specifies that x be orthogonal to 1, which happens to be an eigenvector of L with
eigenvalue zero, which is the smallest eigenvalue of L if no edge has negative weight. This fact implies
that there is a relationship between the smallest balanced cut and the second-smallest eigenvalue of L. This
relationship points directly to a spectral partitioning algorithm. Let’s take a look.

Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L (including multiplicities) in order from least to greatest.
Let v1, v2, . . . , vn be the corresponding unit eigenvectors. Thus, λ1 = 0 and v1 = (1/

√
n)1. Let V =

[v1, v2, . . . , vn] ∈ Rn×n, and let Λ be the diagonal n × n matrix whose diagonal entries are the eigenvalues.
By the definition of eigenvector, Lvi = λivi, so

LV = VΛ.

As L is symmetric, its eigenvectors are all orthogonal to each other (except perhaps eigenvectors that have
the same eigenvalue, as any linear combination of these is also an eigenvector; but assume we choose the
vi’s to be mutually orthogonal). The columns of V form an orthonormal basis for Rn. V is said to be an
orthonormal matrix, meaning that VTV = I.

We seek an x that minimizes xTLx. If you are familiar with the Rayleigh quotient xTLx / xTx, you might
suspect a connection. As each component of x is constrained to be 1 or −1, the denominator xTx is always
n, so minimizing the cut weight is equivalent to minimizing the Rayleigh quotient. By the well known
Rayleigh–Ritz theorem, for every nonzero vector x, its Rayleigh quotient is in the range [λ1, λn]; moreover,
if x satisfies (5)—that is, if x is orthogonal to v1—then the Rayleigh quotient is in the range [λ2, λn].

To prove that this is true, write x as a linear combination of the unit eigenvectors,

x = Va, (7)

where a ∈ Rn. As V is orthonormal, we can view V as a rotation (or reflection), and we can view a as the
vector x rotated into the coordinate system of the eigenvectors. Rotation does not change the length of x; in
other words,

n = xTx = aTVTVa = aTa.
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The objective function is

xTLx = aTVTLVa

= aTVTVΛa

= aTΛa

=

n∑
i=1

λia2
i . (8)

Because x is orthogonal to 1, its expression as a linear combination of orthogonal eigenvectors does not
include a contribution from v1 = 1, so the coefficient a1 is zero. To make this rigorous, observe that
a = VTVa = VTx, so a1 = vT

1 x = 1Tx = 0. Thus we drop the first term of the summation (8), which is
therefore bounded by the inequalities

λ2

n∑
i=2

a2
i ≤ xTLx ≤ λn

n∑
i=2

a2
i . (9)

But
∑n

i=2 a2
i = aTa = xTx, verifying that the Rayleigh quotient is in [λ2, λn].

Substitution of
∑n

i=2 a2
i = xTx = n into (9) and (9) into Equation (3), with c1 = 1 and c2 = −1, yields

bounds on the weight of every bisection:

λ2n
4
≤ Cut(G1,G2) ≤

λnn
4
. (10)

It is a bit magical that linear algebra can place bounds on a combinatorial optimization problem. In
particular, the lower bound of λ2n/4 sometimes informs us that there is no small bisection, without our
needing to solve the NP-hard problem of trying to find one. Donath and Hoffman [18] derived the lower
bound (10) in 1973 (albeit for the special case where every edge has weight 1).

Suppose that the components of the vector
√

nv2 all just happen to be ±1, so the second eigenvector
represents a bisection. (The coefficient

√
n appears because v2 is a unit vector but every indicator vector has

length
√

n.) Substituting x =
√

nv2 into the objective function Cut(G1,G2) = xTLx/4 gives λ2n/4, which
matches the lower bound. Therefore, in this lucky circumstance

√
nv2 describes an optimal bisection!

The vector v2 is often called the Fiedler vector4, after Miroslav Fiedler, who suggested using it to
partition graphs [23]. Sadly, to hope that every component of

√
nv2 will be 1 or −1 is usually too much

magic to ask for. But we will see that we can often find a good cut by rounding the Fiedler vector.

Likewise, λ2 is occasionally called the Fiedler value, but Fiedler himself calls λ2 the algebraic connec-
tivity of G. In the special case where every edge has weight 1 and G is not a complete graph, Fiedler [22]
showed in 1973 that the vertex connectivity of G—the minimum number of vertices we must remove to sep-
arate G into two or more connected components—is at least λ2. The edge connectivity of G—the number
of edges in the minimum cut (without any balance condition)—is never less than the vertex connectivity,
and thus also is at least λ2. (Compare with the bound of λ2n/4 for the minimum balanced cut.) Hence
every vertex of G has degree at least λ2. These relationships do not hold for weighted graphs, but we will
see a slightly weaker inequality for the minimum cut weight of a weighted graph in Section 2.7. We will
see in Section B that λ2 also induces bounds—lower bounds and, more crucially, upper bounds—on G’s
isoperimetric number and sparsity.

4Fiedler calls v2 the characteristic valuation, which was an excellent strategy for getting it renamed after him.
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2 Spectral Graph Partitioning

2.1 The Relaxed Optimization Problem

Relax the optimization problem (6) by dropping the constraint that xi = ±1, replacing it with the weaker
constraint that x has length

√
n. The relaxed problem is

minimize xTLx

subject to xTx = n (11)

and 1Tx = 0.

The relaxation changes the domain of x from the corners of a hypercube to a hypersphere passing through
those corners. The eigenvector x =

√
nv2 is always a solution, because it achieves the lower bound (10).

Figure 3 illustrates the relaxed optimization problem for the three-vertex graph example. The diagram
has you peering down the central axis of the cylindrical isosurfaces from Figure 2. The eigenvectors of
L (except v1) are the axes of the ellipses, and the eigenvalues determine their ellipticity. The quadratic
constraint forces the solution to lie on a sphere, and the balance constraint forces the solution to lie on
the page (representing the planar cross-section from Figure 2). The intersection of the two constraints is a
circle. (If there were more than three vertices, it would be a hypersphere.) We seek the point on this circle
that minimizes xTLx. A solution,

√
3v2 = (−1.366, 1, 0.366), appears as a black point. (Its negation, −

√
3v2,

is the only other solution.) The Fiedler vector cleanly separates vertex 1 from the other two vertices.

x

xTLx

= 3

= 6

= 12

x

= 16.6077

1
x

3

x
2

2
v v

3

xTLx

xTLx

1

5

3

2

3
1

Tx

Figure 3: The view down the central axis of the cylindrical isosurfaces of xTLx (recall Figure 2) for the graph at
upper left. The eigenvector v1 = (1/

√
3)1 points directly at you. Only the plane induced by the balance constraint

1Tx = 0 is drawn. The large circle is the intersection of the balance constraint (a plane) with the quadratic
constraint xTx = 3 (a sphere). The black dot is one of the two constrained minima.
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Figure 4: The search spaces for four optimization problems (ignoring the balance constraint). From left to right:
The domain of the discrete optimization problem is the vertices of a hypercube. The domain of the relaxed
optimization problem solved by the simplest spectral partitioner is a hypersphere passing through those vertices.
The domain of the relaxed problem solved by a spectral partitioner with vertex masses is an ellipsoid. The domain
of the relaxed problem solved by an isoperimetric partitioner is a hyperplane.

5 10 15 20

-0.4

-0.2

0.2

0.4

0.6

Figure 5: A graph and its Fiedler vector. All the edge weights and vertex masses are 1. The vertices have been
sorted in clockwise order by increasing component in the Fiedler vector. The graph is partitioned by a sweep cut
that finds the threshold offering the minimum sparsity.

There are two reasons to constrain the length of x in the relaxed problem (11): first, to prohibit the
useless minimizer x = 0; second, as we saw in Section 1.5, the Fiedler vector naturally minimizes xTLx
subject to the constraint that x has fixed length.

This constraint is arbitrary; we choose it because it yields a problem that somebody knows how to solve.
We treat vertex masses by replacing the spherical constraint with an ellipsoidal constraint (see Section 2.3).
Isoperimetric partitioning is faster and simpler simply because it replaces the quadratic constraint with a
linear constraint that is easier to satisfy (see Section 3.2). Figure 4 illustrates the different relaxations.

Curiously, the relaxed problem retains no memory of whether we want a balanced cut or a biased cut,
because c1 and c2 do not appear in the problem (11). This might seem like a shortcoming, but it’s really a
virtue. Only when we round the solution vector do we need to decide how we want to balance the partition.

2.2 The Spectral Partitioning Algorithm (without Vertex Masses)

Given a connected, weighted graph G, construct its Laplacian matrix L and compute an eigenvector v2
of L associated with L’s second-smallest eigenvalue (by methods described in Section H). Typically, the
components of v2 are not two-valued, but are distributed somewhat smoothly over a range of real values,
as illustrated in Figure 5. Thus, we round the components of the eigenvector. There are several rounding
heuristics to choose from, but nearly all the common heuristics are threshold cuts: they choose a threshold
value that separates the vertices assigned to G1 from the vertices assigned to G2.
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Figure 6: A graph whose sparsest cut (left) is dramatically better than its minimum bisection (right).

The simplest rounding method is the sign cut or zero threshold cut: assign vertex i to G1 if component
i of v2 is positive, and to G2 otherwise. Fiedler [23] proves that if no component of v2 is exactly zero,
then each of G1 and G2 is connected. (If some component is exactly zero, G2 is connected—presuming it
contains all the vertices with value zero—but G1 might not be.)

Rounding by sign does not usually produce a balanced cut. The balance constraint (5) ensures that the
mean component of x is zero, but as Figure 5 illustrates, it does not ensure that there are equal numbers of
positive and negative components.

We can guarantee perfect balance by finding the median component, then using it as the threshold for
bisecting the graph. (If several vertices are assigned a value equal to the median component, divide them
between the subgraphs so that the cut is balanced.) This partition is called the median cut. See Sections B.2,
D, and F for alternative bisection methods that are not threshold cuts.

Near-perfect balance is essential for some applications, such as the assignment of parallel computations
to processors, but applications that tolerate imperfect balance have an advantage. Some graphs admit a
much smaller cut if a little imbalance is permitted, like the graph in Figure 6, and many divide-and-conquer
algorithms such as nested dissection [47] can benefit from that leeway.

The most popular way to choose a threshold is called the sweep cut or criterion cut. Begin by sorting
the components of v2. Then try out every feasible threshold (i.e. cutting between each pair of successive
components) by explicitly computing the cut weight if that threshold is chosen. Choose the threshold that
delivers the smallest cut. Because the cut changes incrementally as you sweep through the list of sorted
components, this search can be done in O(|V| + |E|) time (with standard sparse matrix representations).

The sweep cut can employ criteria other than the cut weight. For example, you can choose the isoperi-
metric ratio, the sparsity, or the normalized cut criterion, all defined in Section 1.2. (Figure 5 illustrates
a sweep cut with the unit-mass sparsity as its criterion.) These choices trade cut weight against subgraph
imbalance in different ways.

A related rounding method is to sort the components and look for the largest gap between two successive
values (perhaps restricted to the middle third of the sorted list for balance). This partition is called the jump
cut or gap cut. It is far less reliable than the sweep cut, but it is easier to program.

A graph that is not connected deserves special treatment. If G has k connected components, the k
smallest eigenvalues of L are zero and the corresponding eigenvectors distinguish among the connected
components, but they do not differentiate vertices within each component. Subsequent eigenvectors could be
used to cut individual components (see Section D), but it is wiser to separate G into its connected components
and partition just one of them.



12 Jonathan Richard Shewchuk

Clustering is a form of graph partitioning in which the sizes of the subgraphs—and often the number
of subgraphs—are not known in advance, but are induced by the data. It works best when a graph can
be partitioned into subgraphs whose internal connectivity is much stronger than the connectivity between
subgraphs. Clustering is appropriate for image segmentation, document analysis, and many tasks in artificial
intelligence and statistical analysis.

Clustering typically begins with a weighted graph that represents the strengths of relationships, often
called affinities or similarities, within a set of objects. One way to cluster the objects is to compute the Fiedler
vector and partition its components with a one-dimensional spatial clustering algorithm, such as Lloyd’s
algorithm for k-means clustering [49]. As Section E details, another way is to use multiple eigenvectors to
assign each object a point in a low-dimensional space, then apply Lloyd’s algorithm to the points in that
space.

2.3 Vertex Masses

What if not all vertices are equal? Sometimes the notion of balance must accord more prominence to some
vertices than others, just as some edges are more expensive to cut. For example, if our goal is to partition
computations among parallel processors, we wish to assign each processor an equal amount of computation
time. Some vertices might represent more computation than others.

Suppose each vertex i has a specified positive mass mi. The mass of a graph G, denoted Mass(G), is the
sum of its vertices’ masses. The goal is to cut G into two subgraphs G1 and G2 of roughly equal mass.

Define a diagonal mass matrix M whose diagonal components are Mii = mi. As before, the signed
indicator vector x represents a partition by having xi = 1 if vertex i is in G1, and xi = −1 if vertex i is in G2.
The balance constraint is now

1TMx = 0. (12)

Recall that when we solve the relaxed optimization problem (11), we don’t enforce the balance con-
straint (5) explicitly; rather, it is enforced implicitly when we bypass the smallest eigenvalue of L for the
second-smallest. How do we replace the old balance constraint with the new one?

Van Driessche and Roose [68] observe that an elegant way to do so is to choose a different quadratic
constraint for the relaxed problem, namely, xTMx = Mass(G). The new relaxed problem is to

minimize xTLx (13)

subject to xTMx = Mass(G)

and 1TMx = 0.

The relaxation changes the domain of x from the corners of a hypercube to an ellipsoid (rather than a
hypersphere) passing through those corners, as illustrated in Figure 4.

To solve the problem (13), compute the eigenvector v2 associated with the second-smallest eigenvalue
of the symmetric generalized eigensystem Lv = λMv, and scale the eigenvector to satisfy the ellipsoid
constraint.5 The idea to use this generalized eigensystem to account for vertex masses dates back to the
1972 paper of Donath and Hoffman [17] (though they do not present their method as a relaxation of a
discrete optimization problem).

5A necessary condition for x to be a solution of the constrained optimization problem (13) is that ∇(xTLx) = λ∇(xTMx) for
some real-valued Lagrange multiplier λ. Taking the gradients, we have Lx = λMx.
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Observe that 1 is an eigenvector of the generalized eigensystem too, because L1 = 0. However, the
eigenvectors of a generalized eigensystem are not (generally) orthogonal to each other; rather, they are M-
orthogonal to each other, meaning that vT

i Mv j = 0 when i , j. Therefore, any linear combination of the
eigenvectors excluding 1 satisfies the balance constraint (12).

Let M1/2 be the diagonal matrix whose diagonal components are the positive square roots of the corre-
sponding components of M; thus (M1/2)2 = M. The eigenvalues of the generalized eigensystem Lv = λMv
are the same as the eigenvalues of the generalized Laplacian matrix M−1/2LM−1/2. Thus, the eigensystem
is positive semidefinite and has no negative eigenvalues. However, the eigenvectors are not the same. If
v is an eigenvector of Lv = λMv, then M1/2v is an eigenvector of M−1/2LM−1/2 associated with the same
eigenvalue.

In some applications, such as image segmentation algorithms and the analysis of random walks on
graphs, each vertex’s mass is the sum of the adjoining edge weights—that is, Mii = Lii (see Section A). In
this case, the matrix M−1/2LM−1/2 is called the normalized Laplacian, because its diagonal entries are all 1.

Let us revisit the bounds from Section 1.5 in the light of vertex masses. The analysis is almost the same,
but we must take care of the details to make sure that the masses appear in the right places. This time, λ1,
λ2, . . . , λn and v1, v2, . . . , vn are the eigenvalues and eigenvectors of the generalized eigensystem Lv = λMv.
As before, let V = [v1, v2, . . . , vn], and let Λ be the diagonal n × n matrix whose diagonal entries are the
eigenvalues. Because Lvi = λiMvi, we have LV = MVΛ.

Instead of using unit eigenvectors, scale the eigenvectors so that vT
i Mvi = 1. Because the eigenvectors

are mutually M-orthogonal, VTMV = I.

The generalized Rayleigh quotient is xTLx/xTMx. For every x , 0 that satisfies (12), this Rayleigh
quotient is in the range [λ2, λn]. To see this, write x again as a linear combination x = Va of the eigenvectors.
We are minimizing

xTLx = aTVTLVa

= aTVTMVΛa

= aTΛa

=

n∑
i=1

λia2
i .

Observe that a = VTMVa = VTMx and hence a1 = vT
1 Mx = 1TMx = 0. We can drop the first term of the

summation, which is then bounded by the inequalities

λ2

n∑
i=2

a2
i ≤ xTLx ≤ λn

n∑
i=2

a2
i . (14)

But xTMx = aTVTMVa = aTa =
∑n

i=2 a2
i , verifying that the generalized Rayleigh quotient is in [λ2, λn].

Substituting
∑n

i=2 a2
i = xTMx = Mass(G) into (14) and (14) into (3), we obtain the bounds

λ2 Mass(G)
4

≤ Cut(G1,G2) ≤
λn Mass(G)

4
. (15)

It follows that the eigenvector x =
√

Mass(G) v2 is a solution of the optimization problem (13), because
substitution gives Cut(G1,G2) = xTLx/4 = λ2 Mass(G)/4, which matches the lower bound. If all the com-
ponents of

√
Mass(G) v2 just happen to be ±1, it describes a minimum bisection. Likewise, the upper bound

implies that
√

Mass(G) vn is a maximum of the relaxed optimization problem, and if all its components are
±1, it describes a maximum bisection (and as Section 2.7 will show, a maximum cut). These facts justify
the use of v2 (or vn) for partitioning.
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Figure 7: The eigensystem models vibrational modes in a system of springs and masses.

2.4 The Spectral Partitioning Algorithm with Vertex Masses

Given a connected, weighted graph G and the vertex masses, construct G’s Laplacian matrix L and the
diagonal mass matrix M. Compute an eigenvector v2 associated with the second-smallest eigenvalue of the
generalized eigensystem Lv = λMv. (One way to do that is to compute the corresponding eigenvector of
the generalized Laplacian matrix M−1/2LM−1/2, then premultiply it by M−1/2.) Round the eigenvector as
described in Section 2.2.

2.5 The Vibration Analogy

To gain intuition about spectral partitioning, think of the eigenvectors as vibrational modes in a physical
system of springs and masses, illustrated in Figure 7.

Each vertex models a point mass mi that is constrained to move freely along a vertical rod. Each edge
models a vertical spring with rest length zero and stiffness proportional to its weight, pulling two point
masses together. The masses are free to oscillate sinusoidally on their rods. The eigenvectors of the gener-
alized eigensystem Lv = λMv are the vibrational modes of this physical system, and their eigenvalues are
proportional to their frequencies.

Figure 8 illustrates the first four eigenvectors for two simple graphs. The first eigenvector, v1 = 1,
represents a vertical translation of all the masses in unison—which isn’t really a vibration, as the eigenvalue
of zero indicates. The second eigenvector v2 represents the vibrational mode with the lowest frequency.
Each component of v2 indicates the amplitude with which the corresponding point mass oscillates. At any
point in time as the masses vibrate, roughly half the mass is moving up while half is moving down. A sign
cut cleaves the former mass from the latter. For the examples in Figure 8, the sign cut is an optimal bisection.
The third eigenvector v3 also induces a reasonable bisection of the grid graph, entirely different from the
bisection induced by v2.

To see why low-frequency modes of vibration induce good partitions, it is more intuitive to consider a
continuous physical system, rather than a discrete one (especially when a spectral graph partitioner is used
to parallelize the simulation of a physical system). Imagine you are an astronaut with a drumstick, tapping a
cymbal floating weightlessly inside your spaceship. The taps excite vibrational modes of the cymbal, which
you hear as harmonics of various pitches. As an approximation, think of the cymbal as a two-dimensional
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v1 v2 v3 v4

Figure 8: The first four eigenvectors of a path graph and a grid graph.

object whose vibrations are tiny displacements of the metal in the third dimension, perpendicular to the
cymbal. Represent these displacements as a function φ(p) that maps each point p in the cymbal to its
amplitude of vibration. A cymbal has normal modes, functions that represent the amplitude of motion of
points vibrating with a shared frequency, which is called a resonant frequency. These modes represent
patterns of motion in which the cymbal naturally “likes” to vibrate; vibrations in those modes last a long
time. These modes are eigenfunctions (the continuous analogue of eigenvectors) of Laplace’s equation
∇2φ = 0, and have associated eigenvalues that are proportional to the resonant frequencies of the vibration
(and of the sounds you hear).

The low-frequency modes of vibration appear as long waves, and the high-frequency modes as short
waves. The long wavelength of the lowest-frequency mode (excluding the zero-frequency translational
mode) is what makes it suitable for partitioning the cymbal: it divides the cymbal into two roughly balanced
halves along the curve where the amplitude of vibration is zero. (It also determines the cymbal’s lowest and
loudest pitch.) The long wavelength tends to imply that the dividing curve is simple and short (though this
isn’t an ironclad rule).

A computer can simulate a vibrating cymbal by modeling it discretely as a finite difference grid or a finite
element mesh, either of which is essentially a weighted graph. It is no accident that the matrix L is called a
Laplacian: the stiffness matrices used in finite difference or finite element methods to approximate a solution
of Laplace’s equation are Laplacian matrices. (In particular, the components of each row and column sum
to zero.) The least eigenvalues of the stiffness matrix are good approximations to the least eigenvalues of
Laplace’s equation for the physical cymbal, and the corresponding discrete eigenvectors approximate the
continuous eigenfunctions of the physical system.

2.6 Unbalanced Cuts: The Laplacian Objective Function, Revisited

When we relax the constraint that every component of x be ±1, we create an apparent flaw: the balance
constraint (5) appears to be impotent, because all it requires is that the components of x sum to zero. Suppose
that G1 has nine times as many vertices as G2. If we set xi = 1/3 for each vertex i in G1, and xi = −3 for
each vertex in G2, the balance constraint is satisfied, but the subgraphs aren’t balanced.
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This flaw is really a virtue. We will see that the relaxed optimization problem is a relaxation of not
merely one discrete optimization problem, but of multiple discrete optimization problems, each one assign-
ing different masses to the subgraphs.

Observe that if the indicator vector x uses values other than ±1 to denote G1 and G2, the objective
function xTLx is no longer equal to 4 Cut(G1,G2). By Equation (3), xTLx = (c1 − c2)2 Cut(G1,G2). The
penalty factor (c1 − c2)2 helps to fight excessive imbalance by preventing the components of x from getting
too large in magnitude. Let’s flesh out this insight for the more general partitioning problem with vertex
masses.

Dhillon [12] observes that the relaxed optimization problem (13) is a relaxation of other discrete op-
timization problems besides the bisection problem we originally considered. Suppose the components of
x are restricted to take on one of two values, c1 or c2, but those values are not necessarily ±1. What
values of c1 and c2 satisfy both constraints of problem (13)? The balance constraint 1TMx = 0 can be
rewritten c1 Mass(G1) + c2 Mass(G2) = 0, and the quadratic constraint xTMx = Mass(G) can be rewritten
c2

1 Mass(G1) + c2
2 Mass(G2) = Mass(G1) + Mass(G2). Both constraints are satisfied by

c1 =

√
Mass(G2)
Mass(G1)

, c2 = −

√
Mass(G1)
Mass(G2)

. (16)

So we see that the optimization problem (13) is a relaxation of the discrete optimization problem

minimize xTLx (17)

subject to ∀i, xi =

√
Mass(G2)
Mass(G1)

or xi = −

√
Mass(G1)
Mass(G2)

and 1TMx = 0.

This is true whether or not the masses of the subgraphs are fixed in advance. If we wish, we can make
Mass(G1) be an additional variable to optimize. The sweep cut described in Section 2.2 does exactly that.

Recalling Equation (3), we are minimizing

xTLx = (c1 − c2)2 Cut(G1,G2)

= Mass(G)2 Cut(G1,G2)
Mass(G1) Mass(G2)

(18)

= Mass(G)
(

1
Mass(G1)

+
1

Mass(G2)

)
Cut(G1,G2). (19)

Ignore the factor Mass(G), which is constant. Observe that this objective function is essentially the
sparsity (or the equivalent average cut criterion) defined in Section 1.2. If the mass of a subgraph approaches
zero, the objective function approaches infinity, thereby penalizing severely unbalanced partitions. This is
good news, and it entails no change to the spectral partitioner.

Don’t be misled, though: in practice, the sweep cut is usually effective for finding a cut with a good
isoperimetric ratio—or for any other criterion that simplifies to minimizing the cut weight if we fix the sub-
graph masses as constants. The sweep cut investigates every promising value of Mass(G1) (every possible
value if the vertices all have equal mass), and for each one solves a relaxed optimization problem that mini-
mizes the sparsity (18)—and thus the cut weight—subject to fixed subgraph masses. The magic is that every
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choice of Mass(G1) yields the same relaxed problem (13)! The continuous optimization problem is a relax-
ation of many discrete problems, each balancing the subgraphs differently. The Fiedler vector v2 encodes an
approximate solution for all of them.

If the sweep cut can approximately optimize several different objective functions, what is special about
the objective function (18)? The Fiedler vector minimizes (18) on the continuous domain, so if it miracu-
lously has components with only two values, it encodes the discrete sparsest cut. Section F.4 describes a
method that sometimes makes this miracle happen, thereby verifying that a cut optimizes the sparsity. If the
Fiedler vector is not two-valued, it nevertheless tells us a lower bound on the objective function achieved by
the discrete optimum. This interpretation of the objective function implies several bounds on the sparsity of
the sweep cut and of the sparsest cut, discussed in Sections 2.7 and B.

2.7 Bounds on the Weight of an Unbalanced Cut

It is an obvious principle of constrained optimization that the minimum value xTLx obtained by the solution
x to the relaxed optimization problem (13) is a lower bound for the minimum value obtained by the solution
x to the more strongly constrained discrete optimization problem (17). Therefore, the “sparsity” of the
relaxed solution is a lower bound for the sparsity of the unknown discrete solution. Likewise, the maximum
“sparsity” for the relaxed problem is an upper bound for the sparsity of every discrete cut.

Section 1.5 gives inequalities bounding the weight of a bisection. Equation (18) enables us to generalize
them to unbalanced cuts. Substituting (18) into (14) yields the inequalities

λ2

Mass(G)
≤

Cut(G1,G2)
Mass(G1) Mass(G2)

≤
λn

Mass(G)
, (20)

which bound the sparsity of every cut, balanced or not, except the trivial empty cut. If we constrain Mass(G1)
and Mass(G2) to be equal, we recover the bounds (15). But the bounds (20) apply to all cuts, not just
bisections, so they imply some general conclusions about graph cuts. Every cut—in particular, the maximum
cut—is subject to the upper bound

Cut(G1,G2) ≤ λn
Mass(G)

4
,

and that value can be obtained only by a balanced cut. This bound was proven by Mohar and Poljak [53].

Every cut has the lower bound

Cut(G1,G2) ≥ λ2
Mass(G1) Mass(G2)

Mass(G)
. (21)

If every vertex has equal mass, this bound implies that the weight of the minimum cut is at least λ2(n − 1)/n.
This bound is the weighted-graph analogue of Fiedler’s bound [22] on the edge connectivity of an un-
weighted G: Recall from Section 1.5 that if every edge has weight 1, every cut except the trivial cut has at
least λ2 edges. Fiedler’s bound does not hold for weighted graphs; the weaker bound of λ2(n − 1)/n is tight.

One practical use of the lower bound is as an indication of how close a rounded solution might be
to optimality. When the spectral partitioning algorithm runs, it computes as a byproduct both lower and
upper bounds on the sparsity of the optimal solution. The lower bound is λ2/Mass(G), which is the value
achieved by the optimal solution

√
Mass(G) v2 of the continuous optimization problem. The upper bound is

the sparsity of the rounded solution returned by the partitioner. If the lower and upper bounds are close to
each other, then the rounded solution must be close to the optimal solution. If not, Section F describes two
methods that might find a better partition or improve the lower bound.
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This discussion merely introduces the topic of spectral bounds on the cut weight. Section B derives
Cheeger’s inequality, which guarantees that if λ2 is small, there exists a cut with a low isoperimetric ratio
and low sparsity. Moreover, the sweep cut on the Fiedler vector is such a cut!

2.8 How Good Is Spectral Partitioning?

How well does the rounded result of the continuous optimization problem approximate the solution of the
discrete optimization problem? Consider bisections first, then unbalanced cuts.

Let us begin with what is known about the difficulty of approximating a minimum bisection. Assume
every edge weight and vertex mass is 1. Garey, Johnson, and Stockmeyer [25] show that the problem of
finding a minimum bisection is NP-complete. The best polynomial-time approximation algorithm known
is an O(log1.5 n)-approximation algorithm; that is, it finds a bisection that cuts at most O(e log1.5 n) edges,
where n = |V| is the number of vertices in G and e is the number of edges in the minimum bisection. The
algorithm combines a bisection algorithm of Feige and Krauthgamer [20] with a subsequent algorithm of
Arora, Rao, and Vazirani [5] used as a subroutine.

There is no evidence that a polynomial-time O(1)-approximation algorithm for the minimum bisection
cannot exist, but there are some inapproximability results. A polynomial-time approximation scheme is a
(1 + ε)-approximation algorithm that runs in polynomial time for any fixed ε > 0, with the proviso that
the running time may increase arbitrarily rapidly as ε approaches zero. Khot [40] shows that there is no
polynomial-time approximation scheme for graph bisection unless NP-complete problems can be solved in
randomized subexponential time. (Complexity theorists doubt that they can be, but it is not as unlikely as
P = NP.) Bui and Jones [8] give an inapproximability result that holds not only for exact bisections, but also
for bipartitions where the smaller subgraph must have at least some fixed proportion (e.g. 1%) of the vertices.
They show that for any ε > 0, it is NP-hard to find an acceptably balanced cut of at most e + n2−ε edges,
where e is the number of edges in the minimum acceptably balanced cut. Graphs with a small maximum
vertex degree cannot have many edges, but even for graphs with maximum degree 3, it is NP-hard to find an
acceptably balanced cut of at most e + n1/2−ε edges.

As an approximation algorithm, spectral partitioning with the median cut sometimes fails spectacularly.
The best known example is the roach graph of Guattery and Miller [30], illustrated in Figure 9. The roach
graph looks like a ladder in which exactly half the rungs are missing, giving it the appearance of a cockroach
with two long antennae. The optimal bisection cuts just two edges, severing the antennae from the body.
Guattery and Miller show that the median cut cleaves the roach lengthwise, cutting n/4 edges.

However, spectral bisection’s theoretical reputation has been partly salvaged for some classes of graph.
It is necessary to replace the median cut with another bisection method built from multiple sweep cuts,
described in Section B.2. This method is guaranteed to find a bisection of any planar graph cutting at most
8d
√

n edges, where d is the maximum vertex degree. (See Section B for some similar results.) For the roach
graph, it does better: it finds the optimal cut. This method computes eigenvectors of multiple Laplacian
matrices, so it is slower than the median cut.

Unbalanced cuts seem to be easier to approximate than minimum bisections. Again, assume every
edge weight and vertex mass is 1. Consider approximating the cut with the minimum isoperimetric ratio
Cut(G1,G2)/min{|V1|, |V2|} or the minimum uniform sparsity Cut(G1,G2)/(|V1| |V2|). (The two criteria
are roughly equivalent, differing by a factor between n/2 and n.) Mohar [52] shows that it is NP-hard
to determine the minimum isoperimetric ratio, and Matula and Shahrokhi [50] show that it is NP-hard to
find the uniform sparsest cut. The best polynomial-time approximation algorithm known, by Arora, Rao,
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Figure 9: The nemesis of spectral bisection, the roach graph. Below the graph is a plot of its Fiedler vector, with
the vertices plotted in clockwise order from antenna tip to antenna tip.

and Vazirani [5], finds an O(
√

log n)-approximation to the uniform sparsest cut or the cut of minimum
isoperimetric ratio.

Ambühl, Mastrolilli, and Svensson [3] extend Khot’s inapproximability result for bisections and show
that there is no polynomial-time approximation scheme for the sparsest cut unless NP-complete problems
can be solved in randomized subexponential time. It is a crucial open problem whether a polynomial-time
O(1)-approximation algorithm for the uniform sparsest cut exists.

The spectral sweep cut is better at finding a sparse cut than the spectral median cut is at finding a good
bisection, but Guattery and Miller [30] show that the sweep cut can miss the optimum by a factor of Θ(n1/3).
Consider the graph in Figure 10, which is the cross product graph of a path and a double tree, the latter
consisting of two complete balanced binary trees whose roots are connected by an edge. (See Guattery and
Miller for formal definitions of these terms. Most readers will get the idea much more quickly from the
figure than from the definitions.) If the double tree has p ≥ 14 vertices and the number of path vertices is
just over π

√
p, then the sparsest cut is the bisection that separates each double tree into two trees, cutting

Θ(
√

p) = Θ(n1/3) edges and thus having an isoperimetric ratio in Θ(1/n2/3). But Guattery and Miller show
that the sweep cut is the bisection that separates two copies of the double tree, cutting p ∈ Θ(n2/3) edges and
thus having an isoperimetric ratio in Θ(1/n1/3).

The good news is that the sweep cut cannot do worse. Spectral partitioning is an approximation al-
gorithm in the following sense: if a graph has an isoperimetric number (minimum isoperimetric ratio) of
h, the sweep cut has an isoperimetric ratio less than 2

√
dh, where d is the maximum vertex degree. Thus

spectral partitioning can be characterized as a 2
√

d/h-approximation algorithm or a
√

8d/λ2-approximation
algorithm. The main tool for proving this and related bounds on the quality of a sweep cut is Cheeger’s
inequality. See Section B for a proof of Cheeger’s inequality, a generalization of this approximation result
to arbitrary edge weights and vertex masses, and other implications of the inequality.

One other implication of Cheeger’s inequality is that the sweep cut works well on some classes of
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Figure 10: The cross product of a path and a double tree (left), its sparsest cut (upper right), and its spectral
sweep cut (lower right).

graphs that are partitioned frequently in practice, such as bounded-degree planar graphs and finite element
meshes. For any bounded-degree planar graph, the sweep cut has an isoperimetric ratio in O(1/

√
n). For any

bounded-degree high-quality tetrahedral mesh, the sweep cut has an isoperimetric ratio in O(1/n1/3). See
Section B.1 for details. These isoperimetric ratios are asymptotically optimal for these classes of graphs,
though of course some graphs in these classes have much smaller cuts. Unfortunately, graphs having vertices
with very large degree may have no small cut. For instance, if a vertex is connected to every other vertex,
then every bisection cuts more than half the edges adjoining it. (However, every planar graph has a small
vertex separator; see Section C.)

Spectral partitioning works well in most practical applications, and even the median cut is usually a
good bisection [58, 62]. But spectral partitions are rarely optimal; they usually can be improved by local
optimization methods. The most famous is the Kernighan–Lin heuristic [38] and its faster version by Fiduc-
cia and Mattheyses [21]. Spectral partitioning tends to find cuts that look good globally (if you squint),
but flawed locally. The Kernighan–Lin algorithm does the opposite. A combination of the two, wherein
Kernighan–Lin cleans up a spectral partition, offers the best of both [58].
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3 Isoperimetric Graph Partitioning

3.1 Graph Partitioning as Constrained Quadratic Optimization, Revisited

The main pitfall of spectral graph partitioning is that algorithms for extracting the Fiedler vector v2 (see
Section H) are slow and complicated. Grady and Schwartz [29] propose a different relaxation of the discrete
optimization problem that is easier to solve, because it requires only the solution of a linear system rather
than the computation of an eigenvector.

Their method requires a tiny change to the balance constraint. It also requires explicit enforcement of
the balance constraint, whereas in spectral partitioning the eigenvectors enforce the balance constraint (12)
for free, by virtue of 1 being an eigenvector with all the other eigenvectors M-orthogonal to it.

For technical reasons, the new balance constraint is

1TMx = µ, (22)

where µ is any constant you wish to choose except zero. As in Figure 2, this constraint defines a cross-
section of the cylindrical isosurfaces that is M-orthogonal to the central axis, but the cross-section no longer
passes through the origin.

At first blush, you might think that the requirement that µ , 0 means that we can request an unbalanced
partition of the graph, but not an exact bisection. Fortunately, that appearance is false, because we can also
choose the constants c1 and c2. Isoperimetric partitioning employs a 0-1 indicator vector x, which means we
choose c1 = 1 to signify which vertices are in G1 and c2 = 0 to signify which are in G2. The constraint (22)
specifies that

Mass(G1) = µ.

If we want a bisection, we simply choose µ = Mass(G)/2.

Thus, we reduce the graph partitioning problem to the discrete optimization problem of choosing x to

minimize xTLx

subject to ∀i, xi = 0 or xi = 1 (23)

and 1TMx = µ,

where µ > 0 is the desired mass of G1.

3.2 The Relaxed Optimization Problem, Revisited

We would like to relax the optimization problem (23) by simply dropping the first constraint, but we get into
trouble. The minimum value of xTLx (namely zero) is attained by assigning every vertex the same value, as
Equation (2) indicates. If we choose x = (µ/1TM1)1, the balance constraint is satisfied, but we don’t have a
partition.

This failing is a consequence of the fact that L is singular. The relaxed problem is analogous to solving
Laplace’s equation with a finite difference method without setting a boundary condition. As we shall see in
Section 3.5, it is also analogous to injecting current into an electrical circuit without attaching it to a ground.
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Figure 11: Isosurfaces of the function xTLx for the graph at upper left. The shaded cross-section represents the
linear constraint x3 = 0. The linear balance constraint 1Tx = µ is drawn for several values of µ. Black-tipped
vectors are solutions x for different values of µ, and white-tipped vectors are local gradients of the objective
function. Observe that µ determines the magnitude but not the direction of the solution.

A solution is to constrain one vertex i to lie in G2 by constraining xi to be zero in the optimization
problem (23). Call vertex i the ground vertex. By the symmetry of G1 and G2, this constraint does not rule
out finding the optimal cut. Substituting xi = 0 yields the problem of choosing x̂ to

minimize x̂TL̂x̂

subject to 1TM̂x̂ = µ, (24)

where x̂ is x with the ith component removed, and L̂ and M̂ are produced by removing the ith row and
ith column from L and M. If G is not connected, we must designate one ground vertex in each connected
component of G. This ensures that L̂ is nonsingular. (Section F.1 explains how to fix vertices at nonzero
values, if desired.)

Figure 11 depicts the cross-section induced by the constraint x3 = 0 in the cylinders from Figure 2. This
cross-section spans the x1-x2 plane, and cuts the central axis of the cylinders diagonally. The constraint
1TMx = µ also induces a cross-section (in the figure, M = I and the constraint is 1Tx = µ), and the two
cross-sections intersect in a line 1TM̂x̂ = µ. (If the graph had more than three vertices, the intersection
would be an (n − 2)-dimensional affine subspace.)

If µ is zero, xTLx is minimized by x = 0, which is why we forbid the choice µ = 0.
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3.3 Solving the Relaxed Optimization Problem

It is a well known property of constrained numerical optimization that a necessary condition for x̂ to be a
solution of the relaxed constrained optimization problem (24) is

∇(x̂TL̂x̂) = β∇(1TM̂x̂) (25)

for some real-valued Lagrange multiplier β. To see why Equation (25) holds,6 consider Figure 11. The
black points in the figure minimize x̂TL̂x̂ for different values of µ. It is visually apparent that the minima
occur where a linear constraint (1TM̂x̂ = µ) is tangent to an elliptical isosurface, because any motion of a
minimum point along the linear constraint will move it outside its ellipse and increase the objective function.
Therefore, the minima are points where the gradient of x̂TL̂x̂ (white-tipped vectors) points in the same
direction as a vector orthogonal to the linear constraint, which is what Equation (25) expresses.

Taking the gradients, we have7

2L̂x̂ = βM̂1. (26)

We solve the system (26) in two steps. First, solve the linear system

L̂y = M̂1 (27)

for y. Second, choose β so that x̂ = (β/2)y satisfies the balance constraint 1TM̂x̂ = µ; substituting that choice
gives x̂ = (µ/1M̂y)y.

It is fortunate that the first step is independent of the value of µ. As with spectral partitioning, only
after doing most of the work (solving the linear system) do we need to decide how we want to balance the
partition. (Figure 11 gives visual intuition for why the direction of x̂ is independent of µ.)

This independence justifies the use of a sweep cut (as described in Section 2.2) to try to minimize the
isoperimetric ratio, the sparsity, or the normalized cut criterion. Recall that if we fix the subgraph masses
as constants, these three criteria all simplify to minimizing the cut weight. The solution vector y, illustrated
in Figure 12, encodes a solution of the continuous optimization problem (24) for every choice of µ. By
rounding y to a 0-1 indicator vector, we produce what we hope is an approximate solution of the discrete
optimization problem (23) for a specific choice of µ = Mass(G1). The sweep cut heuristic tries out n − 1
different roundings, each assigning a different mass to G1, and returns the rounding that optimizes the chosen
criterion. By attempting to approximate a minimum cut for every practical choice of Mass(G1), the heuristic
finds a cut that tries to minimize the sparsity or isoperimetric ratio.

In the three-vertex graph in Figure 11, x̂ is some multiple of [7, 5]T, so x is a multiple of [7, 5, 0]T. This
solution could be rounded to separate vertex 1 from the others, giving the best possible cut, or to separate
vertex 3 from the others, giving the worst possible cut. A sweep cut will choose the former. However, the
ordering of the vertices implied by the indicator vector is not ideal. The spectral partitioner puts vertex 3 in
the middle, as it is more tightly bound to the other two vertices than they are to each other. The isoperimetric
partitioner precluded this outcome by fixing vertex 3 at zero. In graphs having more than three vertices, the
choice of ground vertex influences the quality of the partition. Isoperimetric partitioning seems unlikely to
find the optimal cut if the ground vertex is too close to the optimal cut.

6At the time of this writing, the Wikipedia page for “Lagrange multiplier” is a good resource for understanding Equation (25).
7If we had not constrained one of the vertices, the system (26) would be 2Lx = βM1, which is overconstrained and has no

solution except the trivial β = 0, x = 0. To see this, recall that the components of any column of L sum to zero; therefore, so do the
components of 2Lx, whereas the components of M1 are all positive.
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Figure 12: A graph and a corresponding isoperimetric solution vector y. All the edge weights and vertex masses
are 1. The vertices have been sorted in clockwise order by increasing component in y. The graph is partitioned
by a sweep cut that finds the threshold offering the minimum sparsity.

Grady and Schwartz [29] call their method isoperimetric partitioning because the continuous problem
optimizes the isoperimetric ratio

Cut(G1,G2)
Mass(G1)

=
xTLx
1TMx

, (28)

subject to the constraint that its denominator is fixed to be µ. (This expression is the classical isoperimetric
ratio only when Mass(G1) ≤ Mass(G)/2, but see below for an application where this asymmetric definition
of the ratio makes more sense.)

The minimum value xTLx obtained by the solution x to the relaxed optimization problem (24) is a lower
bound for the minimum value obtained by the solution x to the more strongly constrained discrete optimiza-
tion problem (23). (Recall that Section 2.7 describes a use for such a lower bound.) The same is true for
spectral partitioning, but the objective function is optimized subject to different constraints. In isoperimetric
partitioning, the “isoperimetric ratio” of the relaxed solution is a lower bound for the isoperimetric ratio of
the discrete solution, but a similar statement cannot be made for the sparsity. In spectral partitioning, the
“sparsity” of the relaxed solution is a lower bound for the sparsity of the discrete solution, but a similar
statement cannot be made for the isoperimetric ratio. However, as we have already seen, isoperimetric par-
titioning with the sweep cut works reasonably well for finding a sparse cut, although it does not provide a
lower bound on the sparsest cut.

The name “isoperimetric ratio” originates in geometry, where it refers to an object’s ratio of perimeter
to area, or its ratio of surface area to volume. Consider a partition of space into a finite number of cells,
including one unbounded “outer cell.” Suppose we want to find the subset of the bounded cells whose union
minimizes the ratio of surface area to volume. Let G be a graph that has one vertex for each cell. Assign each
vertex a mass equal to the corresponding cell’s volume. If two cells share a common boundary, G connects
them with an edge whose weight is the surface area of the shared boundary. For a 0-1 indicator vector x,
1TMx is the volume assigned to G1 and xTLx is the surface area separating G1 from G2. We optimize the
geometric isoperimetric ratio by optimizing its combinatorial analogue (28) with the unbounded outer cell
constrained to be in G2.

Recall that finding a cut that minimizes the isoperimetric ratio is NP-hard [52].
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Figure 13: An isoperimetric partitioner’s linear system models voltages in a resistor circuit with current sources.
The number next to each vertex is its approximate voltage, given equal resistors and equal current sources.

3.4 The Isoperimetric Partitioning Algorithm

Given a weighted graph G, the vertex masses, and the desired mass µ of G1, construct G’s Laplacian matrix
L and the mass matrix M. Choose a ground vertex in each connected component of G and fix its value to
zero so it lies in G2. Define L̂ and M̂ by deleting the ground vertices’ rows and columns from L and M.

Solve the linear system L̂y = M̂1 for y, and optionally compute x̂ = (µ/1M̂y)y.

Round y or x̂ as described in Section 2.2. We need x̂ only if we want to round with a preselected nonzero
threshold, which people rarely do in practice. The other rounding methods from Section 2.2 depend only on
the order of the sorted components of the vector, and not on their precise values, so they can operate on y.

The solution y does not need to be accurate to many decimal places, as reassigning or swapping com-
ponents near the threshold is almost as likely to improve the cut as to make it worse. This makes iterative
methods for solving the linear system (27) attractive, especially the conjugate gradient method [35], which
can often produce a good-enough solution faster than a direct method.

3.5 The Circuit Analogy

The linear system (27) models an electric circuit, illustrated in Figure 13, and the connection provides
intuition about how isoperimetric partitioning works.

Suppose that each edge with weight wi j represents a resistor with conductivity wi j (that is, resistance
1/wi j) connecting vertex i to vertex j. Each mass mi represents a current source that injects mi amperes of
current into vertex i. Current leaves the circuit through the ground vertex, which is fixed at voltage zero.

By the following argument, the solution y indicates the potential (voltage) at each vertex of this circuit.
By Ohm’s law, the current flowing from vertex i to vertex j is (yi− y j)wi j. Kirchhoff’s current law states that
the sum of currents flowing out of a vertex is zero, so for each vertex i,∑

j:(i, j)∈E

(wi jyi − wi jy j) = mi,

which is the ith row of the system (27).

The circuit analogy reveals several properties of isoperimetric partitioning.
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• The reason we need to fix a vertex is that if we connect current sources to a circuit but provide no
ground vertex for current to exit through, current cannot flow, and there is no solution.

• Because all the current sources are positive and there is no negative voltage source, every vertex must
have a nonnegative voltage; hence, the solution y of (27) has no negative component.

• If there is only one ground vertex, and we choose a threshold cut—that is, G2 contains the vertices i
for which xi is less than some threshold—then G2 is connected, because every vertex in G2 has a path
of monotonically decreasing voltage to the ground vertex.

These statements can be proven formally [29], but the circuit analogy is more revealing than the proofs.

3.6 Spectral vs. Isoperimetric Partitioning

Spectral and isoperimetric partitioning minimize the same objective function, subject to balance constraints
that are only superficially different. The real difference between spectral and isoperimetric partitioning is in
the other constraints. The spectral partitioner optimizes xTLx subject to the quadratic constraint that xTMx
is fixed. The isoperimetric partitioner optimizes xTLx subject to the constraint that a vertex value is fixed.
The former constraint treats the vertices more symmetrically. The latter constraint tends to yield a numerical
problem that is easier to solve.

Spectral partitioning is an approximation algorithm with a rich theory governing the relationship be-
tween the sparsest cut and the smallest eigenvalues and their eigenvectors. Isoperimetric partitioning does
not appear to lend itself to an analogue of Cheeger’s inequality (Section B), which establishes spectral
partitioning’s claim to be an approximation algorithm.

In their experiments, Grady and Schwartz [29] find that isoperimetric partitioning runs three to ten
times faster than spectral partitioning, and produces results of similar quality (with spectral partitioning
winning some contests, and isoperimetric partitioning winning others). The spectral partitioner’s symmetric
treatment of the vertices sometimes helps the quality of the partitions, but it can be a liability when a graph
has symmetries that must be broken arbitrarily. Figure 14 shows a (somewhat contrived) example of a graph
whose symmetry works against spectral bisection and in favor of isoperimetric bisection. Isoperimetric
partitioning is sensitive to the choice of the ground vertex, which naturally breaks symmetries and sometimes
improves performance on nearly symmetric graphs, but can compromise the quality of the partition if the
chosen vertex is close to the true minimum cut. Isoperimetric partitioning is a new algorithm, and it is too
soon to know how it performs across a variety of applications.

The running times of spectral and isoperimetric partitioning both depend on the spectrum of the Lapla-
cian matrix L (or the normalized Laplacian M−1/2LM−1/2), albeit in different ways. Most implementations
of spectral partitioning for large graphs find the Fiedler vector v2 iteratively, with help from the Lanczos
algorithm [43]. The speed with which the Lanczos algorithm can determine λ2 (a prerequisite to computing
v2; see Section H) depends in part on the separation between the second and third eigenvalues, λ2 and λ3. If
they are close together—as is common for graphs with near-symmetries—convergence may slow apprecia-
bly. One reason can be inferred from Figure 3. If λ2 ≈ λ3, the elliptical isosurfaces in that diagram become
nearly circular. The quadratic constraint xTx = n is also circular, so it becomes difficult to precisely locate
the point where the constraint kisses the innermost isosurface. Performance is best when λ2 is well-separated
from λ3. (However, if λ2 = λ3, then it is the separation between λ3 and λ4 that matters, and if the difference
between λ2 and λ3 is tiny, we can sometimes stop the iterations early, not knowing if we have computed v2
or v3 or some linear combination of them.)
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Figure 14: Spectral and isoperimetric median cuts on the graph at center. The Fiedler vector appears at upper
left, and the spectral bisection at upper right. The isoperimetric solution vector appears at lower left (for the
ground vertex indicated in the center illustration), and the isoperimetric bisection at lower right. Courtesy of Leo
Grady and Eric Schwartz.

The linear system (27) is most commonly solved iteratively with the conjugate gradient algorithm [35],
which is almost entirely insensitive to the value of λ3 or to graph symmetry. Its speed depends in part on the
condition number of L̂ (or M̂−1/2L̂M̂−1/2); it is fastest when the condition number is small. The condition
number tends to grow with the size of the graph, the ratio between the largest and smallest vertex masses,
and the ratio between the maximum and minimum cut weights. However, the condition number of L̂ is
not an entirely reliable guide; if the eigenvalues of L̂ are mostly tightly clustered with a few outliers, the
conjugate gradient method will perform almost as well as if the outliers were absent. For example, we can
inflate the largest eigenvalue of L̂ by attaching one new vertex of very small mass to the rest of the graph
via one new edge of very large weight, but one extra iteration of the conjugate gradient method suffices to
nullify its effect.

The Lanczos algorithm is difficult to implement robustly; see Section H for some reasons. The conjugate
gradient algorithm is much easier.
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Part II

Variations on a Theme
The remainder of this report describes variations and implications of the spectral and isoperimetric partition-
ing algorithms. There are sections on the normalized cut criterion used in image segmentation and random
walks on graphs (Section A); vertex separators, which cut vertices rather than edges (C); using multiple
eigenvectors or isoperimetric solutions to find better cuts (D); partitioning a graph into more than two sub-
graphs (E); constraining vertex values or otherwise biasing the partition (F); negative edge weights (G);
computing eigenvectors (H); and bipartite graphs (I), which are sometimes more efficiently treated by the
singular value decomposition. Most importantly, Section B explores Cheeger’s inequality governing the
isoperimetric number of a graph, with a proof that the spectral sweep cut achieves the bound.

The sections are almost independent of each other and may be read selectively. Most of the topics here
are less settled than the topics in Part I, and are rich with potential for future research.

A The Normalized Cut

In the study of random walks on graphs, it is natural to choose the vertex masses to be the diagonal com-
ponents of L; that is, Mii = mi = Lii =

∑
j:(i, j)∈E wi j. Shi and Malik [61] popularized this choice of masses

for problems in image segmentation, and named the cut thus derived the normalized cut (because the gen-
eralized Laplacian M−1/2LM−1/2, having 1’s on the diagonal, is also known as the normalized Laplacian).
A rationale comes from the following observation. Let Weight(G1) be the total weight of the edges in G1—
edges that are not cut. Define Weight(G2) likewise. As every edge contributes mass to each of its two
vertices,

Mass(G1) = 2 Weight(G1) + Cut(G1,G2) and Mass(G2) = 2 Weight(G2) + Cut(G1,G2).

We can rewrite the objective function (19) as

xTLx = Mass(G)
(
Cut(G1,G2)
Mass(G1)

+
Cut(G1,G2)
Mass(G2)

)
= 2 Mass(G)

(
1 −

Weight(G1)
Mass(G1)

−
Weight(G2)
Mass(G2)

)
.

Thus, minimizing xTLx is equivalent to maximizing what Shi and Malik call the normalized association,

Weight(G1)
Mass(G1)

+
Weight(G2)
Mass(G2)

.

Each fraction is the ratio of a subgraph’s internal connectivity to its total internal and external connectivity.

When every vertex has a mass of 1, the sparsest cut rewards cuts that are balanced so each subgraph
has roughly half the vertices, whereas the normalized cut objective function favors cuts balanced so each
subgraph has roughly half the internal connectivity (uncut edge weight). A cut that balances the vertices
poorly may be preferred if the smaller subgraph has strong internal connectivity. Shi and Malik observe that
the normalized cut works better for image segmentation than the sparsest cut with equal masses.

In an appendix to Shi and Malik’s paper, Christos Papadimitriou shows that finding the optimal discrete
normalized cut is NP-hard, even for planar graphs.
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B Cheeger’s Inequality and a Guarantee for the Sweep Cut

Fiedler [22] calls the second eigenvalue λ2 the algebraic connectivity of G—not only because G is connected
if and only if λ2 > 0, but also because the magnitude of λ2 is a measure of how strongly the graph is con-
nected. This relationship is quantified by Cheeger’s inequality, a famous bound on a graph’s isoperimetric
number (the minimum isoperimetric ratio among all possible cuts), namely

λ2

2
≤ min

G1

Cut(G1,G2)
min{Mass(G1),Mass(G2)}

≤

√
2λ2 max

1≤i≤n

Lii

Mii
, (29)

where λ2 is the second-smallest eigenvalue of the generalized eigensystem Lv = λMv. The left inequality
follows from Inequality (20). The right inequality is the real Cheeger’s inequality (though sometimes both
are called Cheeger’s inequality), and its proof appears in Section B.3.

The right inequality is valuable in at least two ways. First, it helps to bound the running times of approx-
imate counting algorithms [63]. Second, its proof is constructive: the proof demonstrates that the sweep
cut (with the minimum isoperimetric ratio criterion) on the Fiedler vector always satisfies the inequality.
Therefore, it guarantees that the spectral partitioning algorithm can find a cut with isoperimetric ratio no
greater than

√
2λ2 maxi(Lii/Mii).

Because both the optimum cut and the sweep cut satisfy the inequalities (29), the two inequalities to-
gether guarantee that the spectral partitioner can find a cut with isoperimetric ratio at most 2

√
h maxi(Lii/Mii),

where h is the isoperimetric number of G. On this result rests spectral partitioning’s claim to be an approxi-
mation algorithm, overestimating h by at most a factor of 2

√
maxi(Lii/Mii)/h ≤

√
8 maxi(Lii/Mii)/λ2.

In the literature, the right inequality usually appears in a simpler (but less general) form. Recall from
Section A that in the transition graphs used to study random walks, and in the normalized cut criterion,
Mii = Lii. For this choice, the upper bound is simply

√
2λ2, and the spectral partitioner overestimates h

by at most a factor of 2/
√

h (here h ≤ 1). Alternatively, if every edge weight and every vertex mass is 1,
then maxi(Lii/Mii) is the maximum vertex degree d, and the upper bound is

√
2dλ2. For this special case

only (and only if G is not a complete graph with three or fewer vertices), Mohar [52] proves that a stronger
version of the right inequality holds: the upper bound is at most

√
λ2(2d − λ2).

Both inequalities, but especially the left, help to bound the mixing times of random walks on a graph
G. The cut with the smallest isoperimetric ratio is a bottleneck that throttles the rate of mixing. If λ2
is sufficiently large, the left inequality guarantees that random walks on that graph mix quickly. In this
context, λ2 is often called the spectral gap or eigenvalue gap (referring to the gap between λ1 = 0 and λ2).

A pair of bounds on the sparsest cut are sometimes also called Cheeger’s inequality:

λ2

Mass(G)
≤ min

G1

Cut(G1,G2)
Mass(G1) Mass(G2)

≤
1

Mass(G)

√
8λ2 max

1≤i≤n

Lii

Mii
.

The left sparsity inequality is taken from Inequality (20), and is a stronger bound than the left isoperimetric
inequality (29). It dates back at least to Mohar [52]. The right sparsity inequality follows directly from (and
is weaker than) the right isoperimetric inequality (29).

Cheeger’s inequality was proven independently by Sinclair and Jerrum [63], Lawler and Sokal [45], and
Mohar [52], building on earlier, similar results by Dodziuk [16] and Alon and Milman [1]. It is named after
a theorem in geometry by Jeff Cheeger [9] that relates an eigenvalue of the Laplace–Beltrami operator on a
Riemannian manifold to the manifold’s isoperimetric number. Cheeger’s original theorem is a continuous
function-space analogue of the right inequality (29).
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graph λ2 isoperimetric ratio bisection edges
path 4 sin2(π/2n) < (π/n)2 2/n or 2/(n − 1) 1
cycle 4 sin2(π/n) < (2π/n)2 4/n or 4/(n − 1) 2
planar ≤ 8d/n ≤ 4d/

√
n ≤ 8d(

√
n − 1)

high-quality tetrahedral mesh O(d/n2/3) O(d/n1/3) O(dn2/3)
maximum vertex degree d < n − 1 ≤ d ≤ d ≤ d(n − 1)
expander Ω(1) Ω(1) Ω(n)
complete graph n dn/2e bn2/4c

Table 1: Bounds on the second-smallest eigenvalue λ2 of the Laplacian L, the isoperimetric ratio obtained by
the spectral partitioning algorithm with a sweep cut, and the bisection size obtained by a spectral algorithm of
Spielman and Teng (see Section B.2) for seven classes of graphs in which all the edge weights and vertex masses
are 1. Here, n is the number of vertices and d is the maximum vertex degree. For the three middle entries of the
seven, the bounds on the isoperimetric ratio of the sweep cut follow from λ2 by Cheeger’s inequality.

B.1 Spectral Cuts for Seven Classes of Graphs

One way to apply Cheeger’s inequality is to compute λ2 for a particular graph you are interested in, and see
what it tells you about the graph’s isoperimetric number. (You can usually obtain a yet tighter upper bound
by computing the sweep cut as well.) Another way is to observe that there are classes of graphs for which
λ2 is known, or at least bounded. Table 1 lists the values of λ2 for seven families of graphs. It also tabulates
the isoperimetric ratio of the spectral sweep cut and the size of the bisection found by a spectral algorithm
of Spielman and Teng described in Section B.2. The results described in this section apply solely to graphs
whose edge weights and vertex masses are all 1.

Two particularly important graphs in the table are planar graphs and high-quality tetrahedral meshes.
Spectral partitioners are frequently used to decompose finite element meshes to solve partial differential
equations on parallel computers [58, 62]. Spielman and Teng [64, 65] prove that every planar graph has
λ2 ≤ 8d/n, where d is the maximum vertex degree and n is the number of vertices in the graph. Cheeger’s
inequality thus guarantees that there is a cut with isoperimetric ratio at most 4d/

√
n. Section B.3 demon-

strates that the sweep cut is such a cut.8 The maximum vertex degree in a planar finite element mesh is
usually a small constant, in which case the isoperimetric ratio is in O(1/

√
n).

Spielman and Teng generalize their result to higher dimensions. Say that a tetrahedral mesh has “high
quality” if there is a lower bound on some reasonable measure of the quality of each tetrahedron; e.g. suppose
every dihedral angle is greater than 5◦. (See Spielman and Teng for a formal characterization of mesh
quality in terms of overlap graphs.) Then the graph representing the edges of the mesh has λ2 ∈ O(d/n2/3).
Typically d is a small constant and the isoperimetric ratio of the sweep cut is in O(1/n1/3).

Table 1 includes expander graphs, which by definition are families of sparse graphs (usually having a
constant maximum vertex degree) whose isoperimetric numbers remain bounded above some constant as n
increases. By design, they do not have sparse cuts. Expanders are used in robust network design and error-
correcting codes. The left inequality (29) provides a way to test whether a graph is an expander: explicitly
calculate λ2 and check that it exceeds some constant.

8This is not the strongest known upper bound on the isoperimetric number of a planar graph. Diks, Djidjev, Sykora, and
Vrto [13] show that every planar graph has a cut of 2

√
2dn edges such that each subgraph has at least one-third of the vertices,

and they give a linear-time algorithm for finding such a cut. This cut implies that the isoperimetric number cannot exceed 6
√

2d/n,
which is a stronger bound when d ≥ 5. However, the spectral partitioning algorithm is not guaranteed to find a cut this good. Diks
et al. also prove that there is a bisection that cuts at most (6

√
2 + 4

√
3)
√

dn edges, which beats the bound given here when d ≥ 4.
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B.2 A Better Bisection Method

What if you want to bisect a graph? The roach graph in Section 2.8 demonstrates that spectral partitioning
with the median cut can be truly terrible. A sweep cut that minimizes the isoperimetric ratio is more reliable,
as it satisfies Cheeger’s inequality, but the subgraphs are often unbalanced.

Spielman and Teng [64, 65] analyze an alternative to the median cut: they find a bisection by applying
the sweep cut repeatedly. Their algorithm begins with the graph G and two empty vertex sets V1 and V2.
Repeat the following steps: find a cut for G with small isoperimetric ratio, replace G with the larger of the
two subgraphs, and add the vertices of the smaller subgraph to V1 or V2, whichever is smaller. Repeat
these steps until either V1 or V2 has bn/2c vertices; these vertices induce a bisection of the original graph.
Spielman and Teng show that if you can find a cut of isoperimetric ratio h(i) or less for every i-vertex
subgraph of G, then the weight of the bisection produced by this procedure is at most∫ n

1
h(i) di.

For the middle three classes of graphs in Table 1, this formula produces the upper bounds on the number
of bisection edges. The procedure finds bisections of O(

√
n) edges for bounded-degree planar graphs and

O(n2/3) edges for bounded-degree high-quality tetrahedral meshes. These bounds are asymptotically tight:
there are graphs in each class that have no smaller bisection, and such graphs are common in practice.
Compare the O(

√
n) bound with the linear-size median cut for the roach graph in Section 2.8.

The disadvantage of this algorithm is that it requires multiple Fiedler vector computations (on matrices
of successively smaller sizes), and thus greater computation time.

B.3 Proof of Cheeger’s Inequality

Let v2 be an eigenvector such that Lv2 = λ2Mv2. Assume that the vertices whose components in v2 are
positive account for at most half the mass. (Otherwise, replace v2 with −v2.) Let x be the Fiedler vector v2
with its negative components changed to zero; that is,

xi = max{(v2)i, 0}.

Observe that xTMx = xTMv2 (because M is diagonal). The vector x− v2 is a sort of mirror of x: it lists only
the negative components of v2, albeit with their signs changed to positive. The inequality xTL(x − v2) ≤ 0
holds because every nonzero term of xTL(x − v2) is a product of a negative, off-diagonal component of L, a
positive component of x, and a positive component of x − v2. Hence,

xTLx = xTL(x − v2) + xTLv2 ≤ xTLv2 = λ2xTMv2 = λ2xTMx. (30)

To find a relationship between λ2 and the sweep cut, assume without loss of generality that the compo-
nents of x occur in order from greatest to least. This proof will show that there is a good cut in the positive
part of the Fiedler vector, whose vertices have at most half the mass. Let Gi... j denote the subgraph of G
having vertices i through j, inclusive. The positive-threshold sweep cut has isoperimetric ratio

h = min
k≥1,xk>0

Cut(G1...k,Gk+1...n)
min{Mass(G1...k),Mass(Gk+1...n)}

= min
k≥1,xk>0

Cut(G1...k,Gk+1...n)
Mass(G1...k)

. (31)
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cumulative edge weight

k
2

Mass(G1...k)

xk
2xk

2

kCut( ,G1... n)Gk+1...

x

Figure 15: Plots of Mass(G1...k) and Cut(G1...k,Gk+1...n) as functions of each vertex’s squared Fiedler component
x2

k . The vertices appear as circles, ordered from left to right by increasing index k and decreasing component xk.
Vertices with negative components are plotted at xk = 0, and most of them are not shown. In the center plot,
each horizontal bar represents an edge of G. The right plot is obtained by vertically compacting the center plot.

Figure 15 plots Mass(G1...k) and Cut(G1...k,Gk+1...n) as functions of x2
k . It follows from Equation (31)

that the shaded area under the latter plot is at least h times the shaded area under the former plot.

In the plot of Mass(G1...k) =
∑k

i=1 Mii, each horizontal (black-bordered) rectangle has a height equal
to the corresponding vertex’s mass Mii. The shaded area under the plot can be accounted for by summing
either the vertical (white-bordered) rectangles or the horizontal rectangles, giving the identity

n∑
k=1

Mass(G1...k)
(
x2

k − x2
k+1

)
=

n∑
i=1

Miix2
i

= xTMx. (32)

In the center plot of Figure 15, each horizontal (black-bordered) rectangle represents an edge whose
weight is the height of the rectangle. The weight of a threshold cut is the sum of the heights of the rectangles
that cross the threshold, so vertical compaction of the shaded area yields the plot of Cut(G1...k,Gk+1...n). The
shaded area under that plot can be accounted for by summing either its vertical rectangles or the horizontal
rectangles in the center plot, giving the identity∑

k≥1,xk>0

Cut(G1...k,Gk+1...n)
(
x2

k − x2
k+1

)
=

∑
(i, j)∈E

wi j
∣∣∣x2

i − x2
j

∣∣∣ . (33)

Substituting Equations (31) and (32) into Equation (33) gives∑
(i, j)∈E

wi j
∣∣∣x2

i − x2
j

∣∣∣ ≥ h
∑

k≥1,xk>0

Mass(G1...k)
(
x2

k − x2
k+1

)
= hxTMx. (34)

Observe that the left-hand side of Inequality (34) bears a resemblence to Expression (2). The latter
helps to impose an upper bound on the former, but the relationship is a bit opaque. By the Cauchy–Schwarz
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inequality and then Equation (3),∑
(i, j)∈E

wi j
∣∣∣x2

i − x2
j

∣∣∣ =
∑

(i, j)∈E

wi j|xi − x j|(xi + x j)

≤

 ∑
(i, j)∈E

wi j(xi − x j)2


1/2  ∑

(i, j)∈E

wi j(xi + x j)2


1/2

≤
√

xTLx

2 ∑
(i, j)∈E

wi j
(
x2

i + x2
j

)
1/2

=
√

xTLx

2 n∑
i=1

∑
j:(i, j)∈E

wi jx2
i


1/2

=
√

xTLx

2 n∑
i=1

Liix2
i

1/2

=
√

2xTLx xTLx,

where L is the diagonal matrix that has the same diagonal components as L.

Substituting this inequality into Inequality (34), then substituting Inequality (30) into that, gives

h ≤

√
2

xTLx
xTMx

xTLx
xTMx

≤

√
2λ2

xTLx
xTMx

≤

√
2λ2 max

1≤i≤n

Lii

Mii
,

and therefore

min
1≤k<n

Cut(G1...k,Gk+1...n)
min{Mass(G1...k),Mass(Gk+1...n)}

≤

√
2λ2 max

1≤i≤n

Lii

Mii
.

B.4 Higher-Order Cheeger Inequalities

Kwok, Lau, Lee, Oveis Gharan, and Trevisan [42] show that the isoperimetric number of a graph is in
O(kλ2/

√
λk) for any k ≥ 2. Moreover, a sweep cut achieves this bound, despite the fact that the spectral

partitioning algorithm does not use any information about the eigenvalues and eigenvectors besides λ2 and
v2. The bound is an improvement on Cheeger’s inequality when there is a sufficiently large gap between λ2
and a subsequent eigenvalue. It implies that spectral partitioning is not only an O(1/

√
λ2)-approximation

algorithm for the sparsest cut, but also an O(k/
√
λk)-approximation algorithm. In particular, if a family of

graphs has the property that for some fixed k ≥ 2, λk remains constant as the graph size grows, then spectral
partitioning is an O(1)-approximation algorithm for that family.

See Section E.6 for a related bound governing partitioning a graph into multiple subgraphs.
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C Vertex Separators

A vertex separator for a graph G is a set of vertices whose removal from G disconnects it into two or
more connected components. (Removing a vertex also entails removing the edges adjoining the vertex.)
Many divide-and-conquer algorithms on graphs, including nested dissection [47], find a vertex separator
and recurse on the subgraphs. Some parallel computing applications also use vertex separators, which
represent data that must be shared by two or more processors. (In the former application, neither subgraph
includes the separator vertices; in the latter application, both subgraphs do.) Usually, the goal is to find the
smallest vertex separator whose removal separates the graph into two subgraphs of roughly equal mass.

The literature of spectral graph theory includes inequalities governing the sizes of vertex separators.
Throughout this section, suppose that every edge weight and vertex mass is 1 and G is not a complete
graph. Recall from Section 1.5 that Fiedler [22] shows that the smallest vertex separator (with no balance
constraint) has at least λ2 vertices, where λ2 is the second-least eigenvalue of G’s Laplacian matrix. Pothen,
Simon, and Liou [58] prove an inequality akin to Inequality (21) in Section 2.7. They show that if G1 is
a subgraph of G covering ψn of the n vertices for some ψ ∈ (0, 1), then a vertex separator whose removal
disconnects G1 from the remainder of G comprises at least 4ψ(1 − ψ)n/ ((d/λ2) + 4ψ − 1) vertices, where d
is the maximum degree among G’s vertices.

Every planar graph has a small vertex separator, even if it has no small edge separator. An instructive
extreme case is the star graph in which one central vertex adjoins the other n − 1 vertices, which do not
adjoin each other. A star graph has a minimum edge bisection of bn/2c edges, but a vertex bisection of one
vertex. Djidjev [15] shows that every planar graph can be disconnected into two or more subgraphs, each
having no more than two thirds of the vertices, by the removal of

√
6n vertices. (A famous earlier paper by

Lipton and Tarjan [48] proved the first O(
√

n) bound, namely,
√

8n vertices.)

Pothen, Simon, and Liou [58] suggest an algorithm for computing a vertex separator by first finding an
edge separator, then converting it into a vertex separator by finding a minimum vertex cover. (Again we
assume that all edges have weight 1; this approach does not seem to generalize to a model where some
vertices cost more to remove than others.) Let S ⊆ E be an edge separator that cuts G = (V,E) into
subgraphs G1 and G2, as illustrated in Figure 16(a), and letW ⊆ V be the set of endpoints of edges in S.
The graph (W,S) is bipartite, because every edge in S connects a vertex of G1 to a vertex of G2. Because S
is an edge separator, removing one endpoint of each edge in S from G disconnects G (unless all the vertices
in G1 or G2 are removed). A vertex inW can be incident on multiple edges in S. The smallest subset ofW
that adjoins every edge in S is called the minimum bipartite vertex cover of S, illustrated in Figure 16(e).

To compute a minimum bipartite vertex cover, first compute a maximum bipartite matching of S—the
largest subset of S such that no two edges share an endpoint, illustrated in Figure 16(b). Clearly, every
vertex cover must include at least one endpoint of each edge in the matching. By Kőnig’s Theorem [39],
each minimum vertex cover contains only one endpoint of each edge in the matching.

A maximum bipartite matching can be found in O(|S|
√
|W|) time by a network flow algorithm of

Hopcroft and Karp [36], but some asymptotically slower algorithms are faster in practice. Cherkassky,
Goldberg, Martin, Setubal, and Stolfi [10] performed an experimental study of bipartite matching imple-
mentations, and recommend a variant of the push-relabel algorithm of Goldberg and Tarjan [26]. Pothen et
al. [58] report that in practice, several different bipartite matching algorithms appear to run in O(|S| + |W|)
time on the edge separators typical of scientific computing applications.

To produce a minimum bipartite vertex cover from a maximum matching in O(|S|+ |W|) time, initialize
the vertex cover to an empty set of vertices and iterate the following steps. First, for each vertex w ∈ W
that does not participate in the matching, add to the cover the other endpoint of each edge of S incident on
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ba edc

Figure 16: Computation of a vertex separator (e) from an edge separator (a). (b) A maximum bipartite matching
in the edge separator. (c, d) A greedy algorithm identifies vertices (drawn as targets) that are in every minimum
vertex cover. (e) The remaining vertices in the cover are chosen to help balance the subgraphs.

w. (Because w will not be in the cover, all its neighbors must be in the cover.) Second, remove w and its
neighbors fromW, and remove every edge adjoining them from both S and the matching, as illustrated in
Figure 16(c). Removing these edges from the matching may leave behind some newly unmatched vertices.
Repeat these two steps until no further changes occur, as illustrated in Figure 16(d).

There may still be edges left in the matching. Partition the graph induced by the surviving edges of the
matching into its connected components. For each of these components, we can choose between adding to
the cover the endpoints in G1 or the endpoints in G2. Pothen et al. use this flexibility to help balance the
subgraphs, as illustrated in Figure 16(e). Because a vertex separator removes vertices from G, a balanced
edge separator might yield an unbalanced vertex separator. The freedom to choose some of the vertices in
the separator often suffices to restore the balance, and sometimes helps to produce subgraphs that are better
balanced than G1 and G2. However, there is no guarantee that the vertex separator is optimal, even if the
edge separator is.

The number of vertices in a vertex separator found this way never exceeds the number of edges in the
edge separator provided as input. Therefore, Cheeger’s inequality guarantees the same upper bound on
the size of the vertex separator as it guarantees for the edge separator. The lower bound does not hold,
though, as the vertex separator might be much smaller than the edge separator. Therefore, although the
spectral partitioning algorithm often finds a good vertex separator, it cannot be considered an approximation
algorithm for finding the smallest vertex separator.
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D Better Partitions from Multiple Vectors

The idea to use multiple eigenvectors, and not just v2, for clustering and partitioning dates right back to
Hall’s 1970 paper [31], and has been revisited frequently by researchers. Just as the Fiedler vector positions
each vertex on the number line, we can use k eigenvectors to assign each vertex spectral coordinates in
a k-dimensional space, as illustrated in Figure 17. Vertices that are strongly linked by the graph tend to
be geometrically close to each other in spectral space. We can partition the points in spectral space with
a geometric clustering algorithm [17, 49] or a geometric partitioning algorithm [51]. Computing several
eigenvectors isn’t much more expensive than computing one; a better partition can cost only a little extra.

D.1 Exploiting Multiple Eigenvectors through Vector Partitioning

Alpert, Kahng, and Yao [2] offer a mathematically compelling approach that uses eigenvectors to reduce the
graph partitioning problem to another discrete optimization problem called vector partitioning. The vector
partitioning problem is also NP-hard, but heuristics work well for it.

For simplicity, use a 0-1 indicator vector x, so xi = 1 if vertex i is in subgraph G1, and xi = 0 otherwise.
(It is irrelevant that the eigenvectors aren’t a good fit to 0-1 vectors.) Let V = [v1, v2, . . . , vn] be the n × n
matrix whose columns are the eigenvectors of the eigensystem Lv = λMv, each scaled so that vT

i Mvi = 1.
Let Λ be the diagonal n × n matrix whose diagonal entries are the corresponding eigenvalues; thus

LV = MVΛ and VTMV = I.

Write the indicator vector as a linear combination of eigenvectors,

x = Va.

The vector a ∈ Rn of coefficients for that linear combination can be computed from x by the identity

a = VTMVa = VTMx.

Figure 17: Two graphs with their vertices positioned by the eigenvectors v2 (horizontally) and v3 (vertically). At
left is the roach graph from Section 2.8. At right is a graph representing the surface of a ball.
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We wish to minimize Cut(G1,G2), which by Equation (3) is

xTLx = aTVTLVa

= aTVTMVΛa

= aTΛa

=
∣∣∣Λ1/2a

∣∣∣2
=

∣∣∣Λ1/2VTMx
∣∣∣2

=

∣∣∣∣∣∣∣∣
∑
j∈G1

s j

∣∣∣∣∣∣∣∣
2

, (35)

where s j is the jth column of Λ1/2VTM, namely,

s j = m j
[ √

λ1V j1,
√
λ2V j2, . . . ,

√
λnV jn

]T
,

which serves as an n-coordinate spectral vector for vertex j. Observe that each eigenvector is scaled by
the square root of its associated eigenvalue, and each vertex is assigned one coordinate from each scaled
eigenvector, scaled by the vertex’s mass.

Vector partitioning is the problem of choosing a subset of G’s vertices that sum to a specified mass
and minimize the objective function (35)—the length of the sum of their spectral vectors. Because graph
partitioning reduces to vector partitioning, the latter is also NP-hard.

At first sight, the vector partitioning problem appears as menacing as the graph partitioning problem.
It is difficult to see a heuristic for choosing a subset of vectors whose sum is as close to zero as possible;
the problem is reminiscent of the famous NP-complete subset-sum problem. However, if the goal were
to maximize the objective function, the problem would admit simple heuristic solutions: we would try to
choose long vectors that point in roughly the same direction. Fortunately, the problem can be recast in this
form, by changing how the eigenvectors are scaled.

Let µ be the mass you want G1 to have, and impose the constraint

µ = Mass(G1) = xTMx = aTVTMVa = aTa.

For an arbitrary constant ξ, minimizing the cut weight is equivalent to maximizing

ξµ − Cut(G1,G2) = ξxTMx − xTLx

= ξaTa − aTΛa

= aT(ξI − Λ)a

=
∣∣∣(ξI − Λ)1/2VTMx

∣∣∣2
=

∣∣∣∣∣∣∣∣
∑
j∈G1

ŝ j

∣∣∣∣∣∣∣∣
2

, (36)

where the spectral vector ŝ j is the jth column of (ξI − Λ)1/2VTM, namely

ŝ j = m j
[ √

ξ − λ1V j1,
√
ξ − λ2V j2, . . . ,

√
ξ − λnV jn

]T
.
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Alpert et al. experimented with several values of ξ and recommend ξ = λn + λ2, for which all the
coefficients are positive. Note that

√
ξ − λ1V j1 =

√
ξ (because v1 = 1 and λ1 = 0), which can help speed up

the computation of (36). If all the vertex masses are equal, every spectral vector has the same first coordinate,
and the first coordinate of each vector may be dropped.

Our modified vector partitioning problem is to choose a subset of G’s vertices that sum to a specified
mass and maximize the length of the sum of the spectral vectors (36). An exact solution of this NP-hard
vector partitioning problem gives an exact solution of the graph partitioning problem. However, it is usually
impractical to compute all n eigenvectors (especially for large, sparse matrices), and the high-frequency
eigenvectors are of diminishing value for partitioning. Alpert et al. compute only the first k eigenvectors for
some small k, so each vertex has a k-dimensional spectral vector. Truncate V to be an n × k matrix, holding
only the first k eigenvectors; truncate Λ to be k × k; and truncate each spectral vector ŝ j to k coordinates.
Observe that the identities LV = MVΛ and VTMV = I still hold for these truncated matrices.

Unfortunately, it is unlikely that any 0-1 indicator vectors (except 0 and 1) are linear combinations of the
first k eigenvectors, and Equations (35) and (36) do not hold for vectors that are not 0-1 indicator vectors.
But every indicator vector can be projected into the subspace spanned by those eigenvectors. For any 0-1
indicator vector x, the vector a = VTMx specifies the coefficients of the projection of x onto the subspace
spanned by the columns of V , and x̄ = Va is the projection itself. (If V included all n eigenvectors, x̄ would
equal x.) The optimal vector partition of the truncated spectral vectors maximizes∣∣∣∣∣∣∣∣

∑
j∈G1

ŝ j

∣∣∣∣∣∣∣∣
2

= ξaTa − aTΛa

= ξaTVTMVa − aTVTMVΛa

= x̄T(ξM − L)x̄.

If x̄ approximates x well, then the algorithm approximately maximizes ξµ − Cut(G1,G2). The accuracy of
this approximation depends on how close x is to the subspace the eigenvectors span.

Alpert et al. use a greedy incremental algorithm to guess a solution to the truncated vector partitioning
problem. Suppose every vertex has mass 1. Their algorithm begins by placing the longest vector in G1.
Then it repeatedly adds the vector that maximizes the sum of vectors so far until µ vectors are chosen. It is
easy to adapt this heuristic to the case where vertices have different masses: each iteration greedily chooses
the vector that maximizes the vector sum divided by the total mass so far until mass µ has accumulated.
Unfortunately, this heuristic takes O(n2) time.

A faster heuristic follows from the following observation: if you knew the direction of the maximum
vector sum, you could determine the vectors in the sum in expected O(n) time by using the quickselect
algorithm to select the spectral vectors whose components in that direction are greatest. If you guess the
direction and are wrong by an angle of θ, you will choose vectors that approximate the length of the max-
imum vector sum to within a factor of cos θ. If the dimension k of the spectral vectors is small, there is a
polynomial-time approximation scheme for vector partitioning: discretize the set of directions by choosing
a finite subset such that every direction is within some angle θ of a direction in the subset, and try every di-
rection in the subset. The number of directions you must try grows exponentially with k but is independent
of the number n of spectral vectors, so the running time is linear in n. (Note that this heuristic does not give
an approximation scheme for graph partitioning, because it does not use all the eigenvectors and because it
approximates ξµ − Cut(G1,G2), not Cut(G1,G2)).

In summary, the algorithm computes the first k eigenvalues and eigenvectors of Lv = λMv, computes
one k-coordinate spectral vector for each vertex, and heuristically chooses spectral vectors of fixed total
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mass µ whose sum has approximately maximum length. If we use just one eigenvector v2, these heuristics
simply duplicate the standard spectral partitioning algorithm. Alpert et al. give evidence that the quality of
the partition tends to improve with the number of eigenvectors, at least up to ten eigenvectors (the largest
number they tried).

Why is the NP-hard problem of vector partitioning more tractable than the NP-hard problem of graph
partitioning? Alpert et al. [2] explain that vector partitioning

may not seem much different from a graph traversal, e.g., choose some vertex to be in its own
cluster and iteratively add vertices to the cluster to minimize the cluster degree. However, with
our approach each vector contains global partitioning information; the set of edges connected
to any vertex in the original graph representation comprises strictly local information.

Vector partitioning accommodates different objective functions—for instance, the minimum cut, the
sparsity, or the isoperimetric ratio. We can order the vertices with a greedy heuristic, then apply the sweep
cut described in Section 2.2 as usual. This has the effect of trying many different values of µ, approximately
minimizing the cut weight for each one, and choosing from these options the cut that minimizes the sparsity
or isoperimetric ratio.

D.2 Exploiting Multiple Isoperimetric Solutions through Vector Partitioning

The method of Alpert et al. doesn’t need eigenvectors. It can use any orthogonal set of vectors that form a
good basis for constructing partitions. One way to construct such a basis, faster than computing eigenvectors,
is to compute several isoperimetric partitions, grounding a different vertex at zero potential for each partition.

Let B (for “basis”) be a nonsingular n × n matrix whose column vectors are mutually M-orthogonal and
are scaled so that BTMB = I. (B is a basis for Rn; we will consider subspaces with much smaller bases
shortly.) To be useful, the basis vectors are not 0-1 vectors; they might be eigenvectors or isoperimetric
solution vectors prior to rounding. Let x be a 0-1 indicator vector. Write it as a linear combination of basis
vectors, x = Ba. Observe that a = BTMBa = BTMx, so the coefficients of a are easily computed from x.

Let us revisit the vector partition maximization problem of Section D.1. Let µ be the mass you want G1
to have, and constrain xTMx = µ. Let ξ be an arbitrary constant. Minimizing the cut weight is equivalent to
maximizing

ξµ − Cut(G1,G2) = ξxTMx − xTLx

= xT(ξM − L)x

= aTBT(ξM − L)Ba

≡ aTJa

= |J1/2a|2

= |J1/2BTMx|2

=

∣∣∣∣∣∣∣∣
∑
j∈G1

t j

∣∣∣∣∣∣∣∣
2

, (37)

where J = BT(ξM−L)B ∈ Rn×n; J1/2 ∈ Rn×n is the upper triangular square root of J, computed by Cholesky
decomposition [11, 27]; and t j ∈ Rn is the jth column of J1/2BTM.
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Call t j the fingerprint vector for vertex j. Equation (37) shows how to reduce the graph partitioning prob-
lem to a different vector partitioning problem for every M-orthogonal basis B you can think of. For example,
if the columns of B are the eigenvectors of L, we recover the Alpert–Kahng–Yao method of Section D.1:
B = V , J = ξI − Λ, and t j is a spectral vector. In general, though, J is dense.

Of course, it is too expensive to use a basis with full rank; we want to use a small number k of well-
chosen basis vectors. Then B is an n × k matrix and J is a k × k matrix, so it is inexpensive to explicitly
compute J and J1/2. The effect is to truncate the fingerprint vectors to their first k coordinates.

Unfortunately, few 0-1 indicator vectors lie in the subspace spanned by the k basis vectors. As discussed
in Section D.1, the objective function (37) only approximates the function we actually want to optimize.
Specifically, the algorithm maximizes x̄T(ξM − L)x̄, where x̄ = BBTMx is the projection of a 0-1 indicator
vector x onto the subspace spanned by the basis.

The algorithm, then, is to choose a basis B and a constant ξ, compute the k × k matrix J, its Cholesky
decomposition J1/2, and the fingerprint vectors t j, then apply the heuristics described in Section D.1 to find
an approximately maximum partition of the fingerprint vectors. So that J1/2 exists, ξ should be chosen
greater than the greatest eigenvalue of the generalized eigensystem Lv = λMv.

How should we choose a basis B? We want the subspace spanned by the basis to contain vectors that
round to good partitions, and to include enough variety that it is likely to come near the optimal partition.
Therefore, we should choose basis vectors that round to good partitions, but are quite different from each
other. For instance, we may take the (unrounded) vectors produced by several runs of isoperimetric partition-
ing, each time grounding a different vertex at zero potential. Probably these vectors are not M-orthogonal to
each other; use Gram–Schmidt conjugation [27, Section 5.2.8] to convert them into an M-orthogonal basis
for the same subspace, then scale the basis vectors so that BTMB = I.

Which vertex should be grounded at zero to generate each new indicator vector? Because the ground
vertex is always assigned the least voltage, it seems reasonable to ground a vertex that has not come close to
being an extreme (least or greatest) vertex in any of the previous indicator vectors. For example, the second
vector might be generated by grounding the median vertex of the first vector.
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E Beyond Bisection: k-Subgraph Partitions

The most common way of partitioning a graph into more than two subgraphs is to cut the graph and its
subgraphs repeatedly—an approach called recursive partitioning or, if all the subgraphs are to have equal
mass, recursive bisection—but it is not the most reliable approach, because the first cut is not chosen with
later cuts in mind.

This section considers five other approaches and illustrates the variety among them. We distinguish par-
titioning with prescribed subgraph masses from graph clustering, wherein the user permits the partitioner to
choose the subgraph masses that yield the most natural decomposition. The first and most flexible approach,
vector partitioning (introduced in Section D), uses an arbitrary number of eigenvectors or isoperimetric vec-
tors to cut a graph into an arbitrary number of subgraphs. It works with all the standard cut criteria, and
works equally well for clustering and for prescribed-mass subgraphs. Two algorithms designed mainly for
clustering, by Ng, Jordan, and Weiss [54] and Yu and Shi [70] (Sections E.2 and E.5, respectively), use the
first k eigenvectors to cut a graph into k subgraphs. The former method can be viewed as a vector partition
based on the angles between the spectral vectors, whereas the latter method can be viewed as a vector parti-
tion based on rotating the spectral vectors to turn them into indicator vectors that minimize the sparsity. By
contrast, an algorithm by Hendrickson and Leland [33] (Section E.4) is specialized for balanced multisection
(subgraphs of equal size). It produces 2k subgraphs from k eigenvectors.

Most methods of partitioning a graph into three or more subgraphs use multiple indicator vectors. Define
an indicator matrix X ∈ Rn×k such that X ji = cyes if vertex j is in subgraph Gi, and X ji = 0 otherwise. The
columns of X are indicator vectors for the k subgraphs, written X = [X∗1, X∗2, . . . , X∗k]. Each row of X
should have one entry of cyes, and all other entries zero. Rewrite Equation (3) as

Cut(Gi,G\Gi) =
XT
∗iLX∗i
c2

yes
.

The sum of this quantity over all the subgraphs counts each cut edge twice, so the weight of a cut that
decomposes G into k subgraphs is

Cut(G1,G2, . . . ,Gk) =

k∑
i=1

XT
∗iLX∗i
2c2

yes
=

trace
(
XTLX

)
2c2

yes
. (38)

The trace of a square matrix is the sum of its diagonal components. We will occasionally need the identity

trace(AB) = trace(BA), (39)

which holds for all square AB, even if A and B are not square (implying that AB and BA have different sizes).
The proof is simple: trace(AB) =

∑
i(AB)ii =

∑
i
∑

j Ai jB ji =
∑

j
∑

i B jiAi j = trace(BA).

E.1 Vector Partitioning

Alpert, Kahng, and Yao [2] express the k-subgraph partitioning problem as a k-way vector partitioning
problem. For best results, use k or more eigenvectors. Let X be a 0-1 indicator matrix, so cyes = 1.
Following Equations (36) and (37), for an arbitrary constant ξ, minimizing the cut weight (38) is equivalent
to maximizing

ξMass(G) −
k∑

i=1

XT
∗iLX∗i =

k∑
i=1

∣∣∣∣∣∣∣∣
∑
j∈Gi

t j

∣∣∣∣∣∣∣∣
2

, (40)
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where t j is the spectral vector (from Section D.1) or fingerprint vector (from Section D.2) for vertex j.

The objective function (40) is the sum of squares of the lengths of k vectors, one vector for each sub-
graph. Each vector is the sum of the fingerprint vectors of the vertices in the subgraph. Therefore, the goal
is to partition the vertices so that these vectors are as long as possible, and the partition is balanced as re-
quested. The same greedy heuristics mentioned in Section D.1 work for k-way vector partitioning too. See
Alpert et al. [2] for elaboration.

E.2 Spectral Clustering by Spectral Vector Directions

Ng, Jordan, and Weiss [54] suggest a spectral clustering method (refining a suggestion of Shi and Malik [61])
that uses multiple eigenvectors to partition a graph into multiple subgraphs, also called clusters. It works
best if the number of eigenvectors (including the seemingly useless v1 = 1) is at least as great as the intended
number of clusters. The method is related to vector partitioning (see Section D), but the clusters are chosen
by examining the similarity between spectral vectors, especially their directions, rather than the lengths of
sums of spectral vectors. Both groups assign each vertex a mass according to the normalized cut criterion
described in Section A, but their ideas generalize to arbitrary positive vertex masses.

Begin by computing the first k eigenvectors v1, . . . , vk of the generalized eigensystem Lv = λMv, where
M is the diagonal mass matrix defined in Section 2.3. Scale these eigenvectors so that vT

i Mvi = 1 and
collect them in an n × k matrix V = [v1, . . . , vk]. The generalized eigenvectors are mutually M-orthogonal,
so VTMV = I. Call row i of V the spectral vector for vertex i. (Note that these spectral vectors are different
from those of Alpert et al. [2], because the eigenvectors are scaled differently.) We will see that it makes
sense to cluster vertices together if their spectral vectors are similar.

Following Ng et al., a helpful way to understand the method is to imagine the extreme case where we are
given a graph G with exactly k connected components and asked to partition it into k clusters. The obvious
answer is to make each connected component be a cluster. Recall from Section 1.3 that for each connected
component there is an eigenvector with eigenvalue zero, namely, the vector whose components are 1 for
every vertex in the component and 0 for every vertex in the other components. Call these eigenvectors
the connected component eigenvectors. Let the n × k connected component matrix W be a matrix whose
columns are the connected component eigenvectors, scaled so that wTMw = 1 for each column w of W. By
construction, each row of W has just one nonzero component, so the connected component eigenvectors are
mutually M-orthogonal and WTMW = I.

However, every linear combination of the connected component eigenvectors is also an eigenvector
with eigenvalue zero. Hence an algorithm that computes V might compute eigenvectors different from the
connected component eigenvectors. In practice, most implementations will set v1 ∝ 1 to save eigenvector
computation time, so no column of V will be a connected component eigenvector, though every column of
V will be a linear combination of them. Express this fact by writing V = WR, where R ∈ Rk×k collects the
coefficients of the linear combinations. (The columns of V span the same k-dimensional subspace as the
columns of W, namely, the null space of the Laplacian L.)

Observe that I = VTMV = RTWTMWR = RTR, so R is an orthonormal matrix. It follows that R’s effect
is to rotate (or reflect) the rows of W in k-dimensional space to yield the rows of V—the spectral vectors.
The computed spectral vectors (rows of V) are simply the connected component spectral vectors (rows of
W) after jointly undergoing a rigid rotation in Rk. We desire an algorithm that is insensitive to the choice of
rotation, which is arbitrary, and sensitive to the relationships between spectral vectors, which are stable.

If two vertices are in the same connected component of G, their rows in W are identical. Otherwise, their
rows of W are mutually orthogonal, because each row of W has just one nonzero component. Therefore, V
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has the same properties: two vertices have the same spectral vector if they are in the same connected com-
ponent, and orthogonal spectral vectors otherwise. (Vertices in the same component would have different
spectral vectors if we computed more than k eigenvectors.)

The foregoing discussion holds only if G has k connected components. But imagine modifying G by
adding new edges with tiny positive weights that render G connected. Because the new edge weights are
tiny, the eigenvectors are perturbed only a little. Typically, no two vertices have the same spectral vector
anymore; however, the spectral vectors are clustered around the pre-perturbation vectors.

This thought experiment suggests that we should cluster the spectral vectors according to their simi-
larity. Shi and Malik cluster the vectors with any standard geometric clustering method, such as Lloyd’s
algorithm for k-means clustering [49]. Ng et al. cluster the vectors according to their directions: vectors that
are roughly parallel belong in the same cluster, and vectors that are roughly orthogonal belong in different
clusters. They achieve this by normalizing the rows of V to have unit length—in other words, they project
each row onto the unit sphere. Then they cluster the points on the sphere with any standard geometric clus-
tering method. They discuss how to initialize the k-means clustering algorithm by exploiting the knowledge
that different clusters are expected to have roughly orthogonal spectral vectors.

Whereas Shi and Malik use the eigenvectors of the generalized eigensystem, Ng et al. use the unit eigen-
vectors of the normalized Laplacian M−1/2LM−1/2, which has the effect of premultiplying the generalized
eigenvectors by M1/2, or multiplying row i of V by the mass Mii of vertex i. Therefore, two vertices that have
the same spectral vector in the generalized eigensystem will, if their masses differ, have spectral vectors of
different lengths in the eigensystem of the normalized Laplacian. Ng’s variant of the clustering algorithm
subsequently normalizes the rows of V to have unit length, so the two vertices again come into harmony, but
the information encoded in the spectral vector lengths is discarded. This raises the question of whether Shi
and Malik’s variant benefits from retaining that information, or whether the directions of the spectral vectors
are more robust cues for geometric clustering.

Note that the clustering algorithm does not compute W or R. By contrast, Section E.5 presents a method
that refines the clusters by attempting to find a suitable choice of R.

E.3 Constraining the Indicator Matrix by Projection

Rendl and Wolkowicz [60] describe a spectral multipartitioning algorithm that uses the eigenvectors v2, . . . ,

vk to partition a graph into k subgraphs of prescribed masses that approximately minimize the objective
function (38). They constrain each vertex to be in exactly one subgraph by projecting the indicator matrix
onto a subspace where the constraint always holds. They formulate their algorithm in terms of a graph
adjacency matrix; the presentation here follows Pothen [57], who recasts their algorithm in terms of the
Laplacian matrix.

In their algorithm, X is a 0-1 indicator matrix (that is, cyes = 1). Not every 0-1 matrix represents an
acceptable partition, so they impose two linear constraints: a row-sum constraint and a balance constraint,
which one could also call the column-sum constraint. The row-sum constraint dictates that the indicator
matrix assigns each vertex to one and only one subgraph. It is written

X1k = 1n,

where 1k denotes the vector of k 1’s.

The balance constraint is a k-subgraph analog of the constraint (22); it dictates that each subgraph has
the correct mass. Let µ1 ≥ µ2 ≥ . . . ≥ µk be the desired masses of the subgraphs, with

∑k
i=1 µi = Mass(G).
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Define a diagonal k × k subgraph mass matrix� whose diagonal entries are�ii = µi = Mass(Gi), arranged
in decreasing order. The balance constraint is a constraint on the column sums of MX, written

1T
n MX = 1T

k�.

Graph partitioning is thus equivalent to the discrete optimization problem of choosing X to

minimize trace
(
XTLX

)
(41)

subject to ∀i, j, X ji = 0 or X ji = 1

and 1T
n MX = 1T

k�

and X1k = 1n.

Relax the problem by replacing the discrete constraint with the quadratic constraint

XTMX =�.

This identity encodes one constraint for each entry of �. For each diagonal entry �ii = µi, the relaxed
problem constrains the corresponding column vector X∗i to lie on an ellipsoid that is centered at the origin
and passes through every 0-1 point signifying a total mass of µi. (If every vertex has mass 1, the ellipsoid is
a sphere of radius

√
µi.) In the absence of the discrete 0-1 constraint, these ellipsoidal constraints help by

preventing X from having very large components.

For each off-diagonal entry�i j = 0, the relaxed problem constrains the column vectors X∗i and X∗ j to
be M-orthogonal to each other; observe that a 0-1 indicator matrix that satisfies the row-sum constraint will
always have M-orthogonal columns. We are relaxing the 0-1 constraint, but the M-orthogonality constraint
and the row-sum constraint together help to nudge the continuous optimum a little closer to a 0-1 matrix.
The most important observation is that every 0-1 matrix that satisfies the row-sum and balance constraints
also satisfies the quadratic constraint; our introducing the quadratic constraint does not rule out the solution
of the discrete problem (41) nor any approximate solutions.

It is instructive to consider the relaxed optimization problem if we drop the linear constraints. Then the
simplified problem is to

minimize trace
(
XTLX

)
(42)

subject to XTMX =�.

Observe the similarity to the relaxed optimization problem (13) for two-way partitioning. It should come as
no surprise that the optimal X has as its column vectors the first k eigenvectors, scaled appropriately. This
solution is not very useful for partitioning, not least because the components of the eigenvectors (except v1)
are as likely to be negative as positive, so X is not close to any 0-1 indicator matrix. But this solution will
give us a simple lower bound on the size of the optimal cut, along with some observations that will help
us solve the optimization problem when we reintroduce the linear constraints. Moreover, we will use the
solution in a slightly different way in Section E.4.

Let λ1 = 0 ≤ λ2 ≤ . . . ≤ λk be the k least eigenvalues of the generalized eigensystem Lv = λMv
(including multiplicities), and let v1 ∝ 1, v2, . . . , vk be the corresponding eigenvectors. Scale the eigenvectors
so that vT

i Mvi = 1 and collect them in an n × k matrix V = [v1, . . . , vk]. The generalized eigenvectors are
mutually M-orthogonal, so VTMV = I. Let Λ be the diagonal k × k matrix whose diagonal entries are the
eigenvalues in increasing order. As Lvi = λiMvi, LV = MVΛ.
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A solution to the relaxed optimization problem (42) is

X = V�1/2,

for which the objective value is

trace
(
�

1/2VTLV�1/2
)

= trace
(
VTMVΛ�

)
= trace(Λ�)

=

k∑
i=1

λiµi.

We can drop the first term of the summation, as λ1 = 0. Note that it is important that the masses are in
decreasing order, whereas the eigenvalues are in increasing order, and�, Λ, and V are ordered accordingly.
Intuitively, the solution is trying to match the sparsest cuts of G with the largest subgraph masses.

The original discrete optimization problem (41) cannot have a minimum objective value less than the
minimum for the less-constrained problem (42). It follows from Equation (38) that for every k-subgraph
partition satisfying the balance constraint,

Cut(G1,G2, . . . ,Gk) ≥
1
2

k∑
i=2

λiµi. (43)

Donath and Hoffman [18] proved this inequality in 1973 for the special case where every edge weight and
vertex mass is 1, using different methods. The derivation given here, with its extension to weighted graphs,
comes from Rendl and Wolkowicz [60].

To obtain a practical partitioning algorithm and a stronger lower bound, let us reintroduce the two linear
constraints of (41). Rendl and Wolkowicz explicitly enforce the row-sum constraint by projecting X linearly
into the affine subspace of 0-1 matrices whose rows satisfy the constraint. You might imagine simply
eliminating the variables in one column of X, as they are determined by the other columns and the row-sum
constraint. However, Rendl and Wolkowicz suggest a more clever projection that will help us to enforce the
balance constraint easily.

Let R be a k × k matrix whose first column is proportional to 1k and whose columns are mutually �-
orthogonal and scaled so that RT�R = I. We write

R =
[ 1√

Mass(G)
1k Q

]
,

where the columns of Q ∈ Rk×(k−1) are a basis for the subspace �-orthogonal to 1k. Any mutually �-
orthogonal basis for that subspace will do; one way to compute a suitable Q is by Gram–Schmidt conjugation
[27, Section 5.2.8] applied to 1k and the Cartesian axes for Rk. Observe that QT�Q = I and 1T

k�Q = 0.

If a matrix X satisfies the row-sum constraint X1k = 1n, then

XR =
[ 1√

Mass(G)
1n XQ

]
≡

[ 1√
Mass(G)

1n Y
]
,

where Y = XQ ∈ Rn×(k−1) is a projection of X onto a smaller subspace. The idea is that permitting X to vary
over matrices that satisfy the row-sum constraint is equivalent to permitting Y to vary over all n × (k − 1)
matrices, with no constraint.
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If we can find a suitable Y , we can reconstruct a corresponding X that is guaranteed to satisfy the row-
sum constraint by taking advantage of the�-orthogonality of R.

X = XRR−1 = (XR)RT
� =

1
Mass(G)

1n1T
k� + YQT

�. (44)

The first term on the right-hand side is a matrix that satisfies both the row-sum constraint and the balance
constraint. The second term enables X to take on any value within the subspace of matrices that satisfy the
row-sum constraint. Moreover, if the columns of Y happen to be M-orthogonal to 1, then X will satisfy
the balance constraint. The entries of Y are degrees of freedom that specify linear combinations of rows of
QT� that are added to rows of X.

Let us rewrite the continuous optimization problem in terms of Y . We can drop the row-sum constraint,
because the right-hand side of (44) satisfies it for every Y . The balance constraint, 1T

n MX = 1T
k�, implies

that 1T
n MY = 1T

n MXQ = 1T
k�Q = 0. The quadratic constraint, XTMX = �, implies that YTMY =

QTXTMXQ = QT�Q = I. From (44), one can show that the converse implications also hold. Recall that
L1n = 0; it follows from (44) that LX = LYQT� and the projected problem is to choose Y to

minimize trace
(
XTLX

)
= trace

(
�QYTLYQT

�
)

= trace
(
QT
�

2QYTLY
)

(45)

subject to YTMY = I

and 1T
n MY = 0T.

The balance constraint dictates that every column of Y be M-orthogonal to 1. Observe that this constraint
(unlike the balance constraint on X) has the same form as our usual balance constraint (12). We will see that
the optimal solution expresses the columns of Y as linear combinations of the eigenvectors v2, . . . , vk; the
balance constraint will be enforced for free because these eigenvectors are M-orthogonal to v1 ∝ 1n.

Let V̇ = [v2, . . . , vk] be the n × (k − 1) matrix obtained by deleting v1 from V , and let Λ̇ be the diagonal
(k − 1) × (k − 1) matrix obtained by deleting λ1 and its row and column from Λ. We still have LV̇ = MV̇Λ̇

and V̇TMV̇ = I.

Let µ̂1 ≥ µ̂2 ≥ . . . µ̂k−1 be the eigenvalues of the matrix QT�2Q; note that they are indexed in descending
order. Let Λ̂ be the diagonal (k − 1) × (k − 1) matrix listing these eigenvalues in descending order. Let V̂ be
the (k − 1) × (k − 1) matrix whose columns are the corresponding unit eigenvectors, ordered by decreasing
eigenvalue. Thus QT�2QV̂ = V̂Λ̂ and V̂TV̂ = I. Note that it is important that the columns of V̇ are ordered
by increasing eigenvalue, whereas the columns of V̂ and Λ̂ are ordered by decreasing eigenvalue.

A solution to the optimization problem (45) is

Y = V̇V̂T,

for which the objective function is

trace
(
QT
�

2QYTLY
)

= trace
(
QT
�

2QV̂V̇TLV̇V̂T
)

= trace
(
V̂Λ̂V̇TMV̇Λ̇V̂T

)
= trace

(
Λ̇V̂TV̂Λ̂

)
= trace(Λ̇Λ̂)

=

k−1∑
i=1

λi+1µ̂i.
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This solution gives us a lower bound, similar to (43) but stronger, on the weight of every k-subgraph partition
satisfying the balance constraint,

Cut(G1,G2, . . . ,Gk) ≥
1
2

k−1∑
i=1

λi+1µ̂i.

This bound rederives the left-hand side of Inequality (20) for k = 2 (for which µ̂1 = 2µ1µ2/(µ1 + µ2)). For
k = 3, let µ = Mass(G) = µ1 + µ2 + µ3. The values of µ̂1 and µ̂2 are

µ1µ2 + µ1µ3 + µ2µ3 ±

√
µ2

1µ
2
2 + µ2

1µ
2
3 + µ2

2µ
2
3 − µ1µ2µ3µ

µ
,

with addition yielding µ̂1 and subtraction yielding µ̂2. Therefore, every three-way cut with subgraph masses
µ1, µ2, and µ3 satisfies

Cut(G1,G2,G3) ≥
(λ2 + λ3)(µ1µ2 + µ1µ3 + µ2µ3) − (λ3 − λ2)

√
µ2

1µ
2
2 + µ2

1µ
2
3 + µ2

2µ
2
3 − µ1µ2µ3µ

2µ
.

Let us review the multipartitioning algorithm so far. Begin by computing the eigenvectors v2, . . . , vk of
the generalized eigensystem Lv = λMv, scale them so that vT

i Mvi = I, and collect them in V̇ , ordered by
increasing eigenvalues. Compute a projection matrix Q, probably by Gram–Schmidt conjugation. Compute
all k − 1 unit eigenvectors of the matrix QT�2Q and collect them in V̂ , ordered by decreasing eigenvalues.
Compute X = (1/Mass(G))1n1T

k� + V̇V̂TQT�.

It remains only to round the continuous solution X to a 0-1 indicator matrix. Unfortunately, Rendl and
Wolkowicz do not specify a rounding method except for k = 2, in which case they simply cut the Fiedler
vector at the spot that gives the correct subgraph masses. For k ≥ 3, rounding an indicator matrix is more
complicated than rounding an indicator vector.

Fortunately, Hendrickson and Leland [33] have a suggestion. They cast the problem of rounding X as a
minimum cost assignment problem, which uses the following model. For each pair (i, j), where i ∈ [1, n] is a
vertex number and j ∈ [1, k] is a subgraph number, assign some real-valued cost ω(i, j) to the act of placing
vertex i in subgraph G j. The problem is to place µ j vertices in each subgraph G j while minimizing the total
cost of doing so. Hendrickson and Leland solve this problem with an expected O(kn + k2.5n0.5 log1.5 n)-time
algorithm of Tokuyama and Nakano [67]. Note that this running time is linear in the number n of vertices,
and therefore fast if the number k of subgraphs is small.

The choice of costs is heuristic. A straightforward choice is to set ω(i, j) to be the amount by which
trace(XTLX) would increase if row i of X were changed to zeros with one 1 in column j. Of course, this cost
model is imperfect because it does not model interactions between changes in different rows of X—but that
is as we should expect, as we are trying to solve an NP-hard problem. The model is reasonably accurate if
the changes are small.

E.4 Hypercube Partitions and Eigenvector Rotation

Hendrickson and Leland [33] exploit the orthogonality of the Laplacian’s eigenvectors so that k eigenvectors
induce 2k subgraphs of equal size (where size is measured in vertices; their algorithm does not seem to extend
easily to vertex masses). Their algorithm works best for quadrisection (k = 2) or octasection (k = 3), either
of which can be applied recursively.
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The algorithm employs a signed indicator matrix X (instead of a 0-1 indicator matrix); each component
is 1 or −1. Unlike in the formulation of Rendl and Wolkowicz, X does not have one column for each
subgraph; instead, its k columns distinguish among 2k subgraphs, each column supplying a one-bit label
to each vertex. Think of row i of X as a base-2 number that specifies which subgraph vertex i belongs to.
For lack of another name, I call the output a hypercube partition—primarily because a hypercube has edges
in k orthogonal directions meeting at 2k vertices, but also because Hendrickson and Leland advocate their
approach for mapping parallel computations to hypercube communication architectures.

Consider the discrete optimization problem of choosing X to

minimize
k∑

i=1

XT
∗iLX∗i (46)

subject to ∀i,∀ j, X ji = 1 or X ji = −1

and ∀i, 1TX∗i = 0

and ∀i , j, XT
∗iX∗ j = 0.

The middle constraint requires that each indicator vector have equally many 1’s as −1’s. The final constraint
requires that each pair of indicator vectors agree and disagree on equally many vertices. For k = 2, the last
two constraints ensure that all four subgraphs have equally many vertices. For k = 3, the constraints do
not quite suffice to balance all eight subgraphs; an added constraint

∑
i Xi1Xi2Xi3 = 0 (on the third moment

of the distribution) would suffice. For k > 3, the number of constraints (on higher moments) increases
exponentially as k increases.

The objective function (46) looks like the function (38), but its interpretation is different; because of the
base-2 subgraph encoding, it counts some edges multiple times. If the two vertices incident on an edge lie in
different subgraphs, the edge’s weight is counted once for each bit in which the subgraph encodings differ.
Hendrickson and Leland argue that this is appropriate for computations on a hypercube communication
architecture where the communication cost is proportional to the number of links traversed. (For most other
applications, the extra counting probably does little harm.)

Relax the discrete optimization problem to a continuous optimization problem by relaxing the first con-
straint to XT

∗iX∗i = n. The relaxed optimization problem is to choose X to

minimize trace
(
XTLX

)
subject to XTX = nI

and 1TX = 0.

Here, the constraint XTX = nI expresses simultaneously the constraints XT
∗iX∗i = n and XT

∗iX∗ j = 0.

A solution of the relaxed optimization problem is V = [v2, . . . , vk+1], where v2, . . . , vk+1 are the eigenvec-
tors of the Laplacian matrix L, each scaled to have length

√
n. The minimum objective value is trace(VTLV) =∑k+1

i=2 vT
i Lvi = n

∑k+1
i=2 λi.

But V is not the only solution. For any solution V and any orthonormal matrix R ∈ Rk×k, VR is also a
solution. Recall that a square matrix R is orthonormal if RTR = I = RRT; an orthonormal R has the effect of
rotating (or reflecting) the rows of V (the binary labels identifying the subgraphs) together around the origin
in k-dimensional space. Hendrickson and Leland exploit this observation by finding a rotation matrix R that
produces an indicator matrix VR closer to the ideal where every component is ±1.

Let us verify the claim that if V is a solution to the relaxed optimization problem, then so is VR. First,
observe from (39) that the objective function is trace(RTVTLVR) = trace(VTLVRRT) = trace(VTLV), so
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its value is unchanged by the rotation. Second, observe that the constraints RTVTVR = RTnIR = nI and
1TVR = 0 are still satisfied. Intuitively, rotating the rows of the indicator matrix in Rk changes nothing
essential about a solution to the relaxed optimization problem.

See the article by Hendrickson and Leland [33] for their method for choosing R to yield an indicator
matrix X = VR whose components are closer to ±1. For k > 2 they also try to satisfy moment constraints
like

∑
i Xi1Xi2Xi3 = 0 to improve balance (but if k > 3, not all the moment constraints can be satisfied). This

rotation of the indicator vectors is the main reason the method can produce better partitions than recursive
spectral bisection. (See Section E.5 for an alternative eigenvector rotation algorithm, designed for clustering
rather than balanced subgraphs.)

Although the balance constraints help to produce subgraphs of equal size, this goal is really achieved
by the rounding method. Hendrickson and Leland round the indicator matrix to have discrete ±1 values
as described in Section E.3: they model the rounding as a minimum cost assignment problem [67] that
assigns n/2k of the vertices to each of the discrete points (±1, . . . ,±1). They use a simpler (and probably
less effective) cost model than the one suggested in Section E.3: the cost of assigning a vertex to a discrete
point is simply the Euclidean distance from the spectral vector to the discrete point.

Hypercube partitioning is less flexible than vector partitioning, which can produce an arbitrary number of
subgraphs, arbitrarily balanced, taking into account differing vertex masses. But it is specialized for perfectly
balanced partitions, and it saves computation time by producing more subgraphs from fewer eigenvectors.

E.5 Spectral Clustering by Spectral Vector Rotation (and the Normalized Multicut)

Yu and Shi [70] propose an elegant multipartitioning algorithm that uses the first k eigenvectors of the
generalized eigensystem (including v1 ∝ 1) to partition a graph into k subgraphs. It was designed for graph
clustering, but it adapts easily if the sizes of the subgraphs are specified in advance. Yu and Shi try to
minimize the sum of the subgraphs’ isoperimetric ratios (in contrast to Rendl and Wolkowicz [60], who try
to minimize the total cut weight). They assign masses to vertices as described in Section A, and call the
optima “multiclass normalized cuts”; but their method generalizes to arbitrary positive vertex masses. Like
Hendrickson and Leland [33], Yu and Shi round a continuous solution matrix by rotating its rows to bring
it closer to a discrete indicator matrix; but their objective function and their interpretation of the indicator
matrix are different. A notable feature of their algorithm is how it chooses a rotation that minimizes the
distance of the solution matrix from some indicator matrix.

Let Z be an n × k indicator matrix such that Z ji is a specified value ci , 0 if vertex j is in subgraph Gi,
and zero otherwise. The goal is to minimize the objective function

k∑
i=1

Cut(Gi,G\Gi)
Mass(Gi)

=

k∑
i=1

ZT
∗iLZ∗i

ZT
∗iMZ∗i

, (47)

which is the sum of the subgraphs’ isoperimetric ratios, and also is a sum of generalized Rayleigh quotients.
The identity (47) holds regardless of the choice of ci, and each subgraph Gi can employ a different ci.
Although Yu and Shi’s algorithm actually computes a 0-1 indicator matrix X, it is easiest to formulate the
optimization problem in terms of an indicator matrix Z that uses different values. Recall from Section 2.6
the trick of choosing an indicator value that depends on the mass of the subgraph. Let

ci =
1

√
Mass(Gi)

.
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As before, this trick does not require us to know in advance what the mass of Gi will be. With this choice,

ZT
∗iMZ∗i = 1, (48)

which simplifies Expression (47) by eliminating the denominators. In other words, ci is chosen so that
ZT
∗iLZ∗i is the isoperimetric ratio of Gi (rather than the cut weight, as it would be if Z were a 0-1 indicator

matrix.) Imposing the constraint (48) simplifies optimizing the objective function (47).

To ensure that no vertex is assigned to more than one subgraph, constrain the subgraphs’ indicator
vectors to be mutually M-orthogonal. (Ordinary orthogonality would work too, but the eigenvectors will
give us M-orthogonality for free.) Therefore, the discrete optimization problem is to

minimize
k∑

i=1

ZT
∗iLZ∗i

subject to ∀i,∀ j,Z ji = 0 or Z ji =
1

√
Mass(Gi)

and ∀i,ZT
∗iMZ∗i = 1

and ∀i , j,ZT
∗iMZ∗ j = 0.

Discard the first constraint, producing a continuous, relaxed optimization problem that can be written in
the abbreviated form

minimize trace
(
ZTLZ

)
subject to ZTMZ = I,

which, as promised, does not require us to know Mass(Gi).

One solution of the relaxed problem9 is to set Z’s columns to be the first k eigenvectors of the generalized
eigensystem Lv = λMv—that is, choose Z to be V = [v1, . . . , vk] ∈ Rn×k—where each eigenvector is scaled
so that vT

i Mvi = 1. Unfortunately, this solution makes a lousy indicator matrix, because v1 ∝ 1 and the other
eigenvectors have as many negative components as positive ones.

Like Hendrickson and Leland [33], Yu and Shi obtain solutions more amenable to rounding by rotating
the rows of V . Let R ∈ Rk×k be an orthonormal matrix (i.e. a rotation or reflection), so RTR = I = RRT.
Then VR is also a solution of the relaxed problem. Let’s see why.

As argued in Section E.4, trace(RTVTLVR) = trace(VTLV), so the objective function is invariant under
rotation of the rows of V , and therefore it is minimized by VR for any orthonormal R. The constraint also
holds for VR: given that VTMV = I, we have RTVTMVR = RTR = I. (In other words, after a rotation of the
rows of V , the columns are still mutually M-orthogonal and of the correct lengths.) It follows that, subject
to the constraint ZTMZ = I, the objective function (47) is also invariant under row rotation.

The goal is to find an orthonormal R such that VR is as close as possible to some valid indicator matrix.
Yu and Shi’s algorithm for choosing R uses a 0-1 indicator matrix X, constrained so that every row has
exactly one nonzero entry (always 1). The matrices X and Z have the same meaning—they both have the
same zero components—but only the nonzero components of Z depend on the subgraph masses.

9The solution Z = V follows from the continuous optimization problem by writing ∇
(∑k

i=1 ZT
∗iLZ∗i

)
=

∑k
i=1 λi∇

(
ZT
∗i MZ∗i

)
, where

each λi is a Lagrange multiplier. As vT
i Lvi = λi, the objective value for this (and every optimal) solution is trace(VTLV) =

∑k
i=1 λi.
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Define the diagonal k × k subgraph mass matrix

� = XTMX

whose diagonal entries are�ii = Mass(Gi). Then the two indicator matrices are related by

X = Z�1/2.

Observe that for any continuous Z that minimizes (47) and any diagonal �, Z�1/2 also minimizes (47).
Therefore, VR�1/2 minimizes (47) for any orthonormal R.

Now the goal is to find a rotation R such that VR�1/2 is as close as possible to some 0-1 indicator
matrix. With V fixed, consider the problem of finding a 0-1 indicator matrix X and an orthonormal rotation
R that minimizes the mass-weighted sum-of-squares rounding error

k∑
i=1

n∑
j=1

m j(X − VR�1/2)2
ji. (49)

Yu and Shi iteratively find a local optimum10 by alternately solving for R (with X fixed) and solving for
X (with R fixed) until the objective function (49) stops decreasing—or perhaps more importantly, until the
objective function (47) stops decreasing. To start the iterations, Yu and Shi recommend generating an initial
0-1 indicator matrix X with the algorithm of Ng, Jordan, and Weiss [54] described in Section E.2, although
they note that the iteration is robust to an arbitrary starting X or R.

For a fixed R (and�), an optimal 0-1 matrix X is easily found by rounding. For each row j of VR�1/2,
simply find the column i with the greatest component, and assign vertex j to subgraph Gi. Once X is
determined, update� = XTMX.

For a fixed X, finding an optimal rotation R takes more effort. Observe that Expression (49) is equal to

trace
(
(X − VR�1/2)TM(X − VR�1/2)

)
= trace(XTMX) + trace(�1/2RTVTMVR�1/2) − 2 trace(XTMVR�1/2)

= 2 Mass(G) − 2 trace(�1/2XTMVR).

Thus minimizing the rounding error (49) is equivalent to maximizing the trace of�1/2XTMVR. To find
the rotation R that does so, compute the singular value decomposition

UΣWT =�1/2XTMV,

where U,W ∈ Rk×k are orthonormal matrices, and Σ ∈ Rk×k is a diagonal matrix of nonnegative singular
values. Then the optimal rotation is

R = WUT,

10I have taken the liberty of presenting an objective function (49) that differs in two ways from the one suggested by Yu and Shi.
First, Yu and Shi do not use vertex masses to weight the errors in Expression (49). I include the term m j to ensure that a vertex of
mass 2 is treated similarly to two vertices of mass 1 that have the same neighbors. Second, Yu and Shi do not compute�; instead,
they scale the rows of V to have unit length. If every row of VR happens to have exactly one nonzero component, this scaling
yields a 0-1 indicator matrix, and therefore achieves the same result as scaling the columns of VR by�1/2. Otherwise, this scaling
sacrifices the property of minimizing (47) even before rounding, so I present here a slightly different procedure that sidesteps this
unnecessary loss of optimality. To obtain Yu and Shi’s original algorithm, cross out M and� from the rest of the presentation, and
normalize the rows of V to unit length to approximate the effect of�1/2.
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for which the objective value is trace(�1/2XTMVR) = trace(UΣWTWUT) = trace(Σ), which is the sum of
the singular values.

To summarize the algorithm: compute the first k eigenvectors of the generalized eigensystem Lv = λMv
and collect them as the columns of a matrix V , scaled so that VTMV = I. Guess an initial 0-1 indicator
matrix X, perhaps with the algorithm of Ng et al. (Section E.2). Iterate the following steps: compute the
subgraph mass matrix � = XTMX; compute the singular value decomposition UΣWT = �1/2XTMV;
compute R = WUT; and compute a new X by rounding VR�1/2 to a 0-1 indicator matrix (by selecting the
greatest component in each row). Repeat until the objective function (47) or (49) stops decreasing.

Yu and Shi present their algorithm as a graph clustering algorithm—the subgraph masses are not pre-
scribed in advance. However, if the user wishes to prescribe the subgraph masses, two changes seem suffi-
cient. First, the subgraph mass matrix� should be fixed to reflect the desired subgraph masses; it should
not change with X. Second, round VR�1/2 to a 0-1 indicator matrix by casting the rounding problem as a
minimum cost assignment problem, as described at the end of Section E.3.

E.6 Bounds for k-Subgraph Partitions

Recall that a graph has k connected components if and only if the first k eigenvalues of the Laplacian matrix
are all zero. The eigenvalues vary continuously as the weight of an edge changes, so it seems intuitively
reasonable that if λ2, . . . , λk are nonzero but very small, then the graph probably has a small cut that partitions
it into k subgraphs. This intuition seems to be confirmed by researchers in graph clustering, who sometimes
employ an “eigengap heuristic” that cuts a graph into k pieces if λk+1 is notably larger than λk.

Lee, Oveis Gharan, and Trevisan [46] provide theoretical support for this observation by showing that a
graph can be cut into k ≥ 2 subgraphs such that each subgraph has an isoperimetric ratio in O(k2 √λk). Here,
the isoperimetric ratio of a single subgraph is the total weight of the cut edges incident on that subgraph
divided by the total mass of that subgraph. Moreover, they show that O(

√
λ2k log k) is an alternative upper

bound—or better yet, O(
√
λ2k) if the graph is planar. The authors call these bounds “multi-way Cheeger

inequalities”; their proofs share features of the proof in Section B.3. They give a partitioning algorithm that
obtains these bounds; it is omitted here.

These results apply to problems in graph clustering, but they do not apply if the subgraph masses are
specified in advance; a graph might have a good cut into k subgraphs of the wrong sizes. However, recall
from Section E.3 that there is a lower bound on the cut weight for prescribed subgraph masses. If G is
partitioned into k subgraphs having µ1 ≥ µ2 ≥ . . . ≥ µk vertices, then the cut weight is at least

∑k
i=2 λiµi/2.

Moreover, the cut weight is at least
∑k

i=2 λiµ̂i/2, where µ̂i is defined in Section E.3.
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F Fixed Vertex Values, Iterative Improvement, and Explicit Balancing

Some applications fix some of the vertices to lie in a particular subgraph, thereby biasing the assignments
of the unconstrained vertices. Hendrickson, Leland, and Van Driessche [34] describe several uses of this
idea, including circuit partitioning where some circuit elements must connect to fixed terminals (such as
microchip pins) and biasing recursive bisection so that subgraphs that are connected by many edges are more
likely to be assigned to closely connected processors. Fixed vertices are also used by branch-and-bound
search algorithms for graph partitioning, which can fix some vertex values and use spectral or isoperimetric
partitioning to find a good assignment for the remaining vertices.

If there is time enough to run a partitioner several times, there are several ways to adjust the partitioner
on subsequent runs in hopes of finding a better cut. One way is to suppose that a vertex assigned an extreme
value is probably labeled well, whereas a vertex near the median deserves further investigation. We can
exploit this by assigning some of the more polarized vertices to subgraphs and running the partitioner a
second time to label the ambiguous vertices. Because some of the vertices are fixed at their final discrete
values, the other vertices have a more accurate model of their effects on the cut weight. This procedure can
be iterated several times, each time fixing more of the vertices.

Fixing vertex values fits naturally into isoperimetric partitioning, which always fixes at least one vertex’s
value. It is trickier to incorporate fixed vertices into spectral partitioning, because they require the solution
of an extended eigenvalue problem of the form Lx = λMx + b + λb′.

Another iterative improvement method for spectral partitioning begins with the observation that you
can change the diagonal of the Laplacian matrix L arbitrarily without changing the discrete minimum of
the objective function xTLx. A suitable choice of diagonal can force any signed indicator vector to be an
eigenvector of the updated system. If the associated eigenvalue is the smallest eigenvalue of the new system,
the vector represents a minimum cut. If it is not, we may have an opportunity to find a better cut.

Fixing vertices and changing the diagonal share a pitfall: usually 1 is no longer an eigenvector of the
updated system, so the balance constraint must be enforced explicitly. Sections F.1 and F.2 include a method
for explicitly enforcing the balance constraint, which is also needed in Section G.

F.1 Fixing Vertices in Isoperimetric Partitioning

Consider isoperimetric partitioning when the values of vertices j + 1 through n are fixed constants, specified
in a vector c of length n − j. (Typically the components of c are zeros and ones, but they don’t have to
be.) The partitioner minimizes xTLx subject to the balance constraint 1TMx = µ and one constraint for each
fixed vertex. Let ei be the unit vector on the xi-axis. (Component i of ei is 1; the other components are 0.)
A necessary condition for x to be a solution to the constrained optimization problem is

∇(xTLx) = β∇(1TMx) +

n∑
i= j+1

γi∇xi, and therefore

2Lx = βM1 +

n∑
i= j+1

γiei, (50)

where β and each γi are Lagrange multipliers. The multipliers γi imply that we need to satisfy only the first
j rows of the linear system 2Lx = βM1.
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In Section 3.3, we saw a method for solving this system that works only if every component of c is
zero. Nonzero components make the system harder to solve, because it is no longer easy to factor out β. To
eliminate β from the system, use the balance constraint to eliminate x j. Write the linear system (50) as

2


Lxx Lx j Lxc

LT
x j L j j L jc

LT
xc LT

jc Lcc


 x̃

x j

c

 = β

 Mxx 0 0
0 M j j 0
0 0 Mcc

 1 +

n∑
i= j+1

γiei (51)

where x j is the jth component of x, and x̃ is a vector of the first j − 1 components.

Write the balance constraint 1TMx = µ as

x j =
µ − 1TMccc − 1TMxx x̃

M j j
. (52)

Substituting this expression into the jth row of the system (51) gives

β = 2
LT

x j x̃ + L jcc

M j j
+ 2L j j

µ − 1TMccc − 1TMxx x̃
M2

j j

. (53)

Substituting this expression into the top rows of the system (51) gives the linear system

Lx̃ = b (54)

where

L = Lxx −
1

M j j

(
Lx j1TMxx + Mxx1LT

x j

)
+

L j j

M2
j j

Mxx11TMxx (55)

and

b =

L jcc
M j j

+ L j j
µ − 1TMccc

M2
j j

 Mxx1 −
µ − 1TMccc

M j j
Lx j − Lxcc. (56)

Solve this system for x̃, then recover x j from the balance constraint (52).

Observe that L is dense. If the Laplacian L is sparse, there is no need to explicitly form L. Rather,
matrix-vector products of the form Lz can be computed quickly with vector operations, and used in the
conjugate gradient method [35] to solve (54).

Incidentially, L has an intuitive interpretation. The quadratic function x̃TLx̃ is essentially equal to our
objective function xTLx, but the domain of x̃TLx̃ is restricted to the intersection of the linear constraints
(including the balance constraint). For example, Figure 3 is an illustration of the isocontours of x̃TLx̃.

F.2 Fixing Vertices in Spectral Partitioning

Consider spectral partitioning when the values of vertices j + 1 through n are fixed constants, specified
in a vector c. (Typically the components of c are ±1, but they don’t have to be.) Unconstrained spectral
partitioning has the property that the eigenvectors enforce the balance condition implicitly, but when vertices
are fixed, this property must be enforced explicitly as in Section F.1.
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Spectral partitioning with fixed vertices has all the constraints of isoperimetric partitioning, plus an
additional quadratic constraint xTMx = Mass(G). Solutions to the constrained optimization problem satisfy

∇(xTLx) = λ∇(xTMx) + β∇(1TMx) +

n∑
i= j+1

γi∇xi, and therefore

2Lx = 2λMx + βM1 +

n∑
i= j+1

γiei.

Observe that this is the same condition as Equation (50) with L replaced by L−λM. Making this substitution
in the linear system (54) yields

Lx̃ = λMx̃ + b + λb′ (57)

where L and b are defined in Section F.1 (with µ = 0),

M = Mxx +
1

M j j
Mxx11TMxx, (58)

and

b′ =
1TMccc

M j j
Mxx1.

Note that M is not a diagonal matrix; M is dense.

Equation (57) is an example of an extended eigenvalue problem. Because the balance constraint is ex-
plicitly enforced by substitution, we seek the extended eigenvector with the smallest (not second-smallest)
eigenvalue λ1. The extended eigenproblem can be solved by a variant of the Lanczos algorithm [28], al-
though the variation adds more complexity to an already difficult algorithm. Let x̃ be the eigenvector asso-
ciated with λ1 in the extended eigensystem (57), then recover x j from the balance constraint (52).

The method of explicitly enforcing the balance condition shown above is useful in another circumstance:
when the diagonal of the Laplacian is changed, as described in Sections F.3 and G.1. Fortunately, if no vertex
value is fixed, then b = b′ = 0 and the problem simplifies to the generalized eigensystem

Lx̃ = λMx̃. (59)

F.3 Changing the Diagonal in Spectral Partitioning

In Section 2.6, we saw that a relaxed problem can be a relaxation of more than one discrete problem. Here
we will see that there is more than one way to relax a discrete problem, and different ways yield different
continuous solutions.

Consider a discrete optimization problem with a signed indicator vector x (i.e. each component of x is
±1). For any diagonal matrix D,

xTDx =

n∑
i=1

Dii

is constant with respect to changes in x. Therefore, the objective function

xT(L + D)x
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has the same discrete minimum as xTLx. We can choose D at our convenience and replace xTLx with
xT(L + D)x in the discrete optimization problem, then relax the problem. (See Section G.2 for the analogous
transformation for 0-1 indicator vectors and for isoperimetric partitioning.)

In the relaxed optimization problem, however, xTDx is not constant. Its inclusion in the objective func-
tion tends to move vertices for which Dii/Mii is great closer to zero, thereby pushing vertices for which
Dii/Mii is lesser away from zero. We could choose D for several purposes: to better treat edges with nega-
tive edge weights (see Section G.1); to break symmetries in the graph that might have λ2 ≈ λ3; or to nudge
the components of the relaxed solution closer to ±1 (see Section F.4).

Unless D is some scalar times M, 1 is not an eigenvector of the new eigensystem (L + D)v = λMv.
Therefore, the eigenvectors no longer satisfy the balance constraint. We must enforce it explicitly. Fortu-
nately, Section F.2 shows us how to do so. Simply replace L with L + D in Expression (55) to determine L,
compute M from Expression (58), let x̃ be the eigenvector of the system Lṽ = λMṽ with smallest eigenvalue
(computed as discussed in Section H), and recover x j from the balance constraint (52).

F.4 Verifying the Optimality of a Rounded Solution

One application of changing the diagonal of the Laplacian is to attempt to verify that a rounded solution is
optimal, and perhaps improve it if it isn’t.

Let x be a signed (discrete) indicator vector. If x represents an unbalanced cut, use the indicator val-
ues (16) discussed in Section 2.6, so both the balance constraint and the quadratic constraint are satisfied.
Here, no vertex value is fixed, so we eliminate vertex j = n to enforce the balance constraint, and x̃ is a
vector comprising the first n − 1 components of x. Let Expressions (55) and (58) define L and M.

It is easy to modify L so that x̃ is an eigenvector of the generalized eigensystem Lṽ = λMṽ with
eigenvalue zero. (The choice of eigenvalue is irrelevant; a different choice would merely shift the spectrum
of eigenvalues accordingly.) Compute the unique diagonal matrix D that satisfies

(L + D)x̃ = 0,

so that x̃ is an eigenvector of L + D with eigenvalue zero. (Adding D to L is equivalent to adding to L a
diagonal matrix D whose first n − 1 diagonal entries are those of D, with Dnn = 0.)

Next, compute the smallest eigenvalue λ1 of the updated eigensystem (L + D)ṽ = λMṽ. If λ1 = 0, then
x̃ is an optimal continuous solution, and therefore an optimal discrete solution!11

However, if λ1 < 0, there is a better continuous solution, namely the corresponding eigenvector ṽ1.
Rounding that solution might or might not yield a better discrete solution. Augment ṽ1 to an n-component
vector v1 by recovering the nth component with the balance constraint (52). Round the solution v1, and
check whether it is a better solution than x. If so, replace x with the new rounded solution, and iterate again.

As graph partitioning is NP-hard, this procedure will not always find a demonstrably optimal partition.
If λ1 < 0 but the rounded eigenvector does not represent a better cut than x, then there might or might not
be a better discrete solution than x.

11Because of floating-point roundoff, it does not actually suffice to test whether λ1 = 0. If λ1 is nonnegative, or if it is negative
but very small, then x̃ is optimal or so close to optimal that floating-point arithmetic cannot tell the difference.
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G Graphs with Negative Edge Weights

Most graphs that people want to partition have no negative edge weights, but there are exceptions in such
pursuits as image segmentation and surface reconstruction. An edge with negative weight indicates a degree
of confidence that its two endpoints should probably be in different subgraphs. For instance, if two pixels in
a photograph have sharply different colors, they are likely to be in different objects.

The Laplacian L of a graph with negative edges weights might be indefinite, having negative eigenvalues.
This does not entirely invalidate the standard spectral partitioning algorithm, but the eigenvector 1 no longer
has the smallest eigenvalue; we use v1 to partition instead of v2. However, an indefinite Laplacian can cause
isoperimetric partitioning to fail, because the continuous optimization problem has no minimum.

The indefinite Laplacian is a symptom of a subtle but serious concern. The continuous optimization
problem does not treat positive and negative edge weights symmetrically. The objective function xTLx cor-
rectly reflects the weight of a discrete cut, but it behaves badly for continuous optimization. By Equation (2),
the contribution of edge (i, j) to the objective function is wi j(xi − x j)2. A positive edge’s contribution im-
proves as its endpoints move toward the same value, but progress brings diminishing rewards. A negative
edge earns increasing rewards without limit as its endpoints move further and further apart (which is why
the Laplacian is indefinite). The following two sections correct this perverse incentive.

G.1 Negative Edge Weights and Spectral Partitioning

Experience shows that spectral partitioning (with a signed indicator vector) often works better when the
contribution of a negative edge weight wi j to the objective function is −wi j(xi + x j)2. Thus, a negative edge
acts like a positive edge with one of its endpoints negated. This expression rewards endpoints with opposite
values, but it cannot drop below zero. Consider minimizing the nonnegative objective function∑

wi j>0

wi j(xi − x j)2 −
∑

wi j<0

wi j(xi + x j)2 = xT(L + D)x,

where D is the diagonal matrix with components

Dii = 2
∑

wi j<0

|wi j|, (60)

thus

(L + D)i j =

{
−wi j i , j,∑

k,i |wik| i = j.

As we saw in Section F.3, changing the diagonal of the Laplacian does not change the minimum of the
discrete optimization problem, though it usually changes the minimum of the relaxed optimization problem.
If x is a signed indicator vector (with components ±1), the objective function is

xT(L + D)x = 4 Cut(G1,G2) + 4
∑

wi j<0

|wi j|.

The summation is a constant, so the modified discrete optimization problem still minimizes the cut weight,
but the relaxed optimization problem is better behaved than the original one.

A welcome property of the modified Laplacian L + D is that it is positive semidefinite. A minor disad-
vantage is that if G has at least one negative edge, 1 is not an eigenvector of L+ D, and the balance condition
must be enforced explicitly as described in Sections F.2 and F.3.
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Several applications have treated negative edge weights by modifying the diagonal of L. For image seg-
mentation, Yu and Shi [69] use the modified Laplacian L + (1/2)D, which can be indefinite. (Each negative
edge contributes −2wi jxix j to the objective function.) For surface reconstruction, Kolluri, Shewchuk, and
O’Brien [41] use L + D, and find that it offers better partitions and faster eigenvector computation than the
standard Laplacian L. Following the example of normalized cuts, both papers choose the vertex masses to
be mi =

∑
k,i |wik|, so the mass matrix M has the same diagonal as L + D.

G.2 Negative Edge Weights and Isoperimetric Partitioning

Negative edge weights can cause the Laplacian matrix to have negative eigenvalues. If that happens, the
ellipses in Figure 11 become hyperbolae, and the relaxed optimization problem (24) has no minimum: xTLx
approaches −∞ as x approaches ∞v1, where v1 is the eigenvector associated with the most negative eigen-
value. Unlike in spectral partitioning, no constraint prevents the components of x from growing arbitrarily
large. This is a reminder that relaxing a discrete optimization problem can bring unintended consequences.

We can solve this problem by changing the diagonal of the Laplacian matrix as described in Section G.1.
The procedure is slightly more complicated for a 0-1 indicator vector than a signed indicator vector. Observe
that in a discrete problem where each xi is zero or one, for any diagonal matrix D,

xTDx = 1TDx.

Therefore, minimizing xTLx is equivalent to minimizing

xT(L + D)x − 1TDx, (61)

where we can choose D at our convenience.

The new objective function (61) does not change the minimum of the discrete optimization problem (23),
but it can change the minimum of the relaxed problem—or cause it to have a minimum, where before it did
not. If D is chosen by Equation (60), then L + D is positive semidefinite, so a minimum exists.

Let’s reprise the derivation in Section F.1. For x to minimize the objective function (61) subject to the
balance constraint 1TMx = µ and one constraint for each fixed vertex, a necessary condition is

2(L + D)x = D1 + βM1 +

n∑
i= j+1

γiei, (62)

where β and each γi are Lagrange multipliers. Observe the similarity to the condition (50). Working the
extra term D1 through the derivation, we find that we can solve Equation (62) by solving the linear system

Lx̃ = b −
D j j

2M j j
Mxx1 +

1
2

Dxx1

for x̃, where L and b are defined by replacing L with L + D in Expressions (55) and (56), M j j and Mxx are
as in (51), and D j j and Dxx are defined analogously. Then recover x j from the balance constraint (52).

One nice advantage of negative edge weights is that, as the matrix L + D is positive definite, there is no
need to fix a vertex value as the standard isoperimetric partitioning algorithm does.
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H Computing Eigenvectors

Computing the Fiedler vector v2 (and perhaps additional eigenvectors, for purposes described in Sections D
and E) is complicated. Unless you are an expert, you are advised not to try to implement it yourself,
especially if the Laplacian matrix is sparse and large.

The usual first step is to compute (part or all of) a tridiagonal matrix T = QTLQ, where Q is orthonormal.
For dense or small matrices, this step is done by Householder transformations [27, Sections 5.1 and 8.2.1];
for large sparse matrices, by Lanczos iterations [43]. The matrix T has the same eigenvalues as L, and
its eigenvectors are QTvi. Next, find the eigenvalue λ2, typically by bisection on T [27, Section 8.4.1].
Finally, find the eigenvector v2 by inverse iteration on L [27, Section 7.7.8] or its more quickly convergent
cousin, Rayleigh quotient iteration [27, Section 8.4.2] (both of which entail solving a symmetric, but perhaps
not positive definite, linear system). If λ2 is computed with enough accuracy, a few iterations suffice to
compute v2. If a rough approximation of v2 is available, one iteration often suffices to refine it with good
accuracy. One way to obtain a rough approximation is to first compute the eigenvector of T associated with
λ2, then premultiply it by Q. Fast implementations of these operations (with Householder transformations,
not Lanczos iterations) are available in LAPACK [4].

Lanczos iterations have a performance advantage for large, sparse matrices because it is not necessary
to compute all of T ; the first Θ(

√
n) rows and columns of T comprise a submatrix whose least and greatest

eigenvalues are likely to be good estimates of L’s least and greatest eigenvalues. Moreover, even an incom-
plete T can provide a rough estimate of v2: the extreme eigenvectors of the incomplete T , premultiplied by
the incomplete Q, yield estimates of the extreme eigenvectors of L.

The Lanczos algorithm presents two major difficulties. The first is devising a reliable stopping condition
for the Lanczos iterations. A vexing problem is misconvergence, wherein the least eigenvalue of the grow-
ing portion of T computed so far appears to have converged, but is actually lingering temporarily near an
eigenvalue of L that is not quite the least. Parlett, Simon, and Stringer [56] provide an invaluable guide to
implementing the Lanczos algorithm, including an investigation of stopping conditions and a faster method
for computing λ2 that takes advantage of properties of the Lanczos algorithm.

The second difficulty is the tendency of floating-point roundoff to cause the columns of Q to lose orthog-
onality. Parlett and Scott [55] discuss a selective orthogonalization algorithm that overcomes this problem,
and Hendrickson and Leland [32] discuss how to tailor the algorithm for spectral partitioning.

For very large, sparse matrices, there may not be enough memory to store the Θ(
√

n) columns of Q
necessary for orthogonalization. Barnard and Simon [6] suggest an alternative algorithm that also uses
Rayleigh quotient iteration, but instead of the Lanczos process or a tridiagonalization, they use a multilevel
method to obtain initial estimates of λ2 and v2: they coarsen the graph G with edge contractions, find the
Fiedler vector for the contracted graph recursively, and interpolate it onto G. At the coarsest level of the
recursion, they use the Lanczos algorithm.

To make it easier for these algorithms to isolate λ2, replace L with L′ = L + 3
n (maxi Lii)11T, thereby

shifting the eigenvalue of v1 = 1 from zero to something greater than λn while leaving the other eigenvalues
and all the eigenvectors unchanged. By this means, λ2 is the smallest eigenvalue of L′, making it easier
to isolate λ2 with the Lanczos algorithm and inverse iteration. If L is sparse, it is foolish to form the
dense matrix L′ explicitly, but it is easy to compute a matrix-vector product L′z without ever forming L′, so
Lanczos iterations, inverse iterations, and Rayleigh quotient iterations remain efficient.

Both the Lanczos algorithm and the multilevel Rayleigh quotient iteration algorithm are implemented
in the partitioner Chaco, whose User’s Guide [32] has an excellent discussion of the fine points of both
algorithms (and other partitioning algorithms too).
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I Faster Bipartite Graph Partitioning via Singular Value Decompositions

Spectral partitioning can work on bipartite graphs just like any other graph. However, Dhillon [12] points
out that it is sometimes more efficient to compute a singular value decomposition instead of a standard
eigendecomposition, thereby taking advantage of the graph’s being bipartite.

Suppose you have a collection W` of written works, a set Wr of words that appear in those works, and a
bipartite graph G = (W`,Wr,E) whose edges E connect a word to a work if the former appears in the latter.
You would like to cluster together works that contain similar words, and simultaneously cluster together
words that frequently appear in the same works.

Let A be a |W`| × |Wr | matrix that expresses the weights of the edges in E. In document clustering, the
edge weights typically depend on word frequency. A common choice is Ai j = oi j log(|W`|/|W` j|), where oi j

is the number of occurrences of word j in work i and W` j is the set of works that contain word j.

The Laplacian and mass matrices are

L =

[
D` −A
−AT Dr

]
, M =

[
M` 0
0 Mr

]
.

D` and Dr are diagonal matrices whose diagonal components, as usual, are chosen so that the components
in each row or column of L sum to zero.

We could compute the eigenvectors of the generalized eigensystem Lv = λMv by the methods described
in Section H, but that is unnecessarily slow, because L is much larger than A. Dhillon observes that in the
special case where M` = D` and Mr = Dr (yielding the normalized cut, described in Section A), it is faster
to derive the eigenvectors from the singular vectors of the normalized adjacency matrix D−1/2

`
AD−1/2

r .

To extend Dhillon’s observation to general positive vertex masses, recall from Section F.3 that changing
the diagonal of the Laplacian matrix does not change the solution of the discrete optimization problem. We
take advantage of this by choosing D` = M` and Dr = Mr. Expanding the system Lv = λMv gives

M`v` − Avr = λM`v`,

Mrvr − ATv` = λMrvr.

Premultiplying these equations by M−1/2
`

or M−1/2
r and substituting v` = M−1/2

`
u` and vr = M−1/2

r ur gives

M−1/2
`

AM−1/2
r ur = (1 − λ)u`,

M−1/2
r ATM−1/2

`
u` = (1 − λ)ur.

These identities show that u` and ur are, by definition, left and right singular vectors of M−1/2
`

AM−1/2
r , with

the singular value 1 − λ.

To find the eigenvector vi associated with the ith smallest eigenvalue, compute the left and right singular
vectors u` and ur associated with the ith largest singular value of M−1/2

`
AM−1/2

r (with LAPACK [4] or the
sparse singular value decomposition packages PROPACK [44] or SVDPACK [7]). Then set

vi =

[
M−1/2
`

u`
M−1/2

r ur

]
.

Any of the methods for partitioning and clustering described in this report then apply.
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[39] Dénes Kőnig. Gráfok és Mátrixok. Matematikai és Fizikai Lapok 38:116–119, 1931.

[40] Subhash Khot. Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite Clique.
SIAM Journal on Computing 36(4):1025–1071, 2006.

[41] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O’Brien. Spectral Surface Recon-
struction from Noisy Point Clouds. Symposium on Geometry Processing 2004 (Nice, France), pages
11–21. Eurographics Association, July 2004.

[42] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan. Improved
Cheeger’s Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral
Gap. Proceedings of the Forty-Fifth Annual Symposium on Theory of Computing (Palo Alto, Califor-
nia), pages 11–20, June 2013.

[43] Cornelius Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differ-
ential and Integral Operators. Journal of Research of the National Bureau of Standards 45:255–282,
1950.

[44] Rasmus Munk Larsen. Lanczos Bidiagonalization with Partial Reorthogonalization. Technical Report
DAIMI PB-357, Department of Computer Science, University of Århus, Århus, Denmark, October
1998.

[45] Gregory F. Lawler and Alan D. Sokal. Bounds on the L2 Spectrum for Markov Chains and Markov
Processes: A Generalization of Cheeger’s Inequality. Transactions of the American Mathematical
Society 309(2):557–580, October 1988.

[46] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-Way Spectral Partitioning and Higher-
Order Cheeger Inequalities. Proceedings of the Forty-Fourth Annual Symposium on Theory of Com-
puting (New York, New York), pages 1117–1130, May 2012.

[47] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized Nested Dissection. SIAM
Journal on Numerical Analysis 16(2):346–358, April 1979.



64 Jonathan Richard Shewchuk

[48] Richard J. Lipton and Robert Endre Tarjan. A Separator Theorem for Planar Graphs. SIAM Journal
on Applied Mathematics 36(2):177–189, 1979.

[49] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory
28(2):129–137, March 1982.

[50] David W. Matula and Farhad Shahrokhi. Sparsest Cuts and Bottlenecks in Graphs. Discrete Applied
Mathematics 27(1–2):113–123, May 1990.

[51] Gary L. Miller, Shang-Hua Teng, William Thurston, and Steven A. Vavasis. Automatic Mesh Parti-
tioning. Graph Theory and Sparse Matrix Computation (Alan George, John R. Gilbert, and Joseph
W. H. Liu, editors), pages 57–84. Springer-Verlag, New York, 1993.

[52] Bojan Mohar. Isoperimetric Numbers of Graphs. Journal of Combinatorial Theory, Series B
47(3):274–291, December 1989.

[53] Bojan Mohar and Svatopluk Poljak. Eigenvalues and the Max-Cut Problem. Czechoslovak Mathemat-
ical Journal 40(2):343–352, 1990.

[54] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an Algorithm.
Advances in Neural Information Processing Systems 14 (Thomas G. Dietterich, Suzanna Becker, and
Zoubin Ghahramani, editors), pages 849–856. The MIT Press, September 2002.

[55] Beresford N. Parlett and David Scott. The Lanczos Algorithm with Selective Orthogonalization. Math-
ematics of Computation 33:217–238, 1979.

[56] Beresford N. Parlett, Horst D. Simon, and L. M. Stringer. On Estimating the Largest Eigenvalue With
the Lanczos Algorithm. Mathematics of Computation 38(157):153–165, January 1982.

[57] Alex Pothen. An Analysis of Spectral Graph Partitioning via Quadratic Assignment Problems. Do-
main Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh
International Conference on Domain Decomposition (David E. Keyes and Jinchao Xu, editors), Con-
temporary Mathematics, volume 180, pages 105–110. American Mathematical Society, Providence,
Rhode Island, October 1993.

[58] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning Sparse Matrices with Eigenvectors of
Graphs. SIAM Journal on Matrix Analysis and Applications 11(3):430–452, July 1990.

[59] Omer Reingold. Undirected Connectivity in Log-Space. Journal of the ACM 55(4):17, September
2008.

[60] Franz Rendl and Henry Wolkowicz. A Projection Technique for Partitioning the Nodes of a Graph.
Annals of Operations Research 58(3):155–179, May 1995.

[61] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8):888–905, 2000.

[62] Horst D. Simon. Partitioning of Unstructured Problems for Parallel Processing. Computing Systems
in Engineering 2(2/3):135–148, 1991.

[63] Alistair Sinclair and Mark Jerrum. Approximate Counting, Uniform Generation and Rapidly Mixing
Markov Chains. Information and Computation 82(1):93–133, July 1989.



REFERENCES 65

[64] Daniel A. Spielman and Shang-Hua Teng. Spectral Partitioning Works: Planar Graphs and Finite El-
ement Meshes. 37th Annual Symposium on Foundations of Computer Science (Burlington, Vermont),
pages 96–105. IEEE Computer Society Press, October 1996.

[65] . Spectral Partitioning Works: Planar Graphs and Finite Element Meshes. Technical Report
CSD-96-898, Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, Berkeley, California, November 1996.

[66] Mechthild Stoer and Frank Wagner. A Simple Min-Cut Algorithm. Journal of the ACM 44(4):585–591,
July 1997.

[67] Takeshi Tokuyama and Jun Nakano. Geometric Algorithms for the Minimum Cost Assignment Prob-
lem. Random Structures and Algorithms 6(4):393–406, July 1995.

[68] Rafael Van Driessche and Dirk Roose. An Improved Spectral Bisection Algorithm and its Application
to Dynamic Load Balancing. Parallel Computing 21(1):29–48, January 1995.

[69] Stella X. Yu and Jianbo Shi. Understanding Popout through Repulsion. IEEE Conference on Computer
Vision and Pattern Recognition (Kauai, Hawaii), volume 2, pages 752–757, December 2001.

[70] . Multiclass Spectral Clustering. Ninth IEEE International Conference on Computer Vision
(Nice, France), volume 2, pages 313–319, October 2003.


