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This paper describes a Lagrangian finite element method that simulates the
behavior of liquids and solids in a unified framework. Local mesh improve-
ment operations maintain a high-quality tetrahedral discretization even as
the mesh is advected by fluid flow. We conserve volume and momentum,
locally and globally, by assigning each element an independent rest volume
and adjusting it to correct for deviations during remeshing and collisions.
Incompressibility is enforced with per-node pressure values, and extra de-
grees of freedom are selectively inserted to prevent pressure locking. Topo-
logical changes in the domain are explicitly treated with local mesh splitting
and merging. Our method models surface tension with an implicit formu-
lation based on surface energies computed on the boundary of the volume
mesh.

With this method we can model elastic, plastic, and liquid materials in a
single mesh, with no need for explicit coupling. We also model heat diffu-
sion and thermoelastic effects, which allow us to simulate phase changes.
We demonstrate these capabilities in several fluid simulations at scales from
millimeters to meters, including simulations of melting caused by external
or thermoelastic heating.
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Fig. 1: A simulation of liquid dripping onto a hydrophobic surface. The
top row shows rendered images; the bottom row visualizes the dynamic
tetrahedral simulation mesh.
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1. INTRODUCTION

Most methods for simulating physical phenomena can be classi-
fied as either Lagrangian, where the discretization moves with the
simulated material, or Eulerian, where the material moves through
a stationary discretization. With few exceptions, Lagrangian meth-
ods are used to simulate elastic and plastic solids, while Eulerian
methods are used to simulate fluids.

This paper presents a fully Lagrangian fluid simulator that em-
ploys a dynamically changing tetrahedral mesh to discretize a simu-
lated material. Our method handles materials ranging from inviscid
or viscous fluids to plastic or stiff elastic solids, smooth interfaces
between them, and phase transitions such as melting or freezing.

Mesh-based Lagrangian methods have limitations that have so
far prevented their widespread adoption for fluids. If a material
undergoes large deformations or flow, the simulation mesh has to
be restructured to accommodate the new configuration. Until re-
cently, local three-dimensional remeshing was too difficult, and
global remeshing introduced too much resampling error (often in
the form of numerical viscosity) to support fluids. To simulate in-
viscid, turbulent, free-surface flows in a Lagrangian framework, we
have designed algorithms to locally repair, and to robustly split and
merge, tetrahedral meshes.

Because our dynamic local remesher maintains high element
quality while changing as few elements as possible, our Lagrangian
meshes achieve extremely low numerical viscosity even in simula-
tions with moderately coarse resolutions and large time steps. We
can also model surface tension accurately and reproduce emergent
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effects such as the period of an oscillating water drop or the con-
tact angles between liquids and hydrophilic or hydrophobic sur-
faces without explicitly enforcing such phenomena.

A distinguishing virtue of our simulation method is its ability
to locally preserve a fluid’s volume and momentum over long pe-
riods, irrespective of the shape of the fluid domain. In particular,
thin sheets and streams can be resolved with great precision, and
without the intrinsic volume loss that plagues Eulerian methods.

Because the tetrahedral mesh provides an explicit boundary sur-
face, there is no need for a separate algorithm for surface track-
ing or extraction (such as level-set methods, particles, or semi-
Lagrangian advection). The explicit boundary allows surface ef-
fects such as surface tension to be modeled with a physical accu-
racy that would otherwise be difficult to achieve.

2. OVERVIEW OF OUR METHOD

Our discretization uses piecewise linear basis functions defined
on meshes of tetrahedral elements. Elasticity is modeled in a La-
grangian fashion with Cauchy’s linearized strain. Large deforma-
tions are correctly treated with corotation [Müller and Gross 2004].
Plasticity is implemented as described by Wicke et al. [2010]. We
use a P1–P1 formulation, where both velocities and pressures are
stored at nodes and interpolated with linear basis functions over
the elements. Heat diffusion is discretized on the same mesh and
temperatures are also stored at the nodes.

We model liquids as perfectly plastic, incompressible materials
in which the elastic shear stresses are always zero so that the mate-
rial flows freely with a specified viscosity. We enforce incompress-
ibility by discretizing the pressure field and solving for pressures
and velocities simultaneously, enforcing constraints so that the ve-
locity field has zero divergence. The zero-divergence constraint on
velocity is discretized by enforcing it for the one-ring of each mesh
node [Irving et al. 2007]. Unfortunately, these constraints can cause
pressure locking at boundaries, because the velocities can be locally
overconstrained. We remedy the problem by locally inserting nodes
if a critical mesh configuration is detected; see Sec. 4.2.

Flow distorts the mesh causing the element quality to degrade
until remeshing is required. Remeshing in turn requires resampling
field variables, which introduces interpolation errors. We therefore
prefer to remesh as little as possible, changing the mesh only lo-
cally to maintain a minimum quality, and remeshing with the least
invasive operations available. We use the Pulsar mesh repair algo-
rithm [Klingner and Shewchuk 2007; Wicke et al. 2010] and en-
hance it with new remeshing operations and a more sophisticated
treatment of the mesh surface; see Sec. 6.

We also simulate splitting events caused by excessive stresses
and thinning, and merging events when fluids or sticky materials
collide. We implement splitting with operations that allow cracks to
propagate through element interiors, as opposed to the more com-
mon methods in which cracks always follow existing element faces.
We implement merging by subdividing overlapping elements so
that they conform to each other, then deleting duplicate elements.

The following list summarizes the actions taken during each time
step. They are described in detail in later sections.

1 Plasticity – Account for plastic flow by updating the reference
embedding of the mesh and the plastic offsets of its elements.

2 Merging – Detect collisions and self-collisions. Modify the
mesh to reflect topological merging events.

3 Fracture – Detect thinning and fracture. Split the mesh ac-
cordingly.

4 Remeshing – Locally improve the mesh to maintain a mini-
mum threshold on tetrahedron quality.

5 Surface mesh subdivision – Subdivide parts of the mesh that
might otherwise experience locking.

6 Matrix assembly and solution – Perform adaptive, implicit
time integration to determine the velocities and pressures for
the next time step. Optionally, compute heat diffusion.

7 Revert surface mesh subdivision – Reverse the mesh subdi-
vision operations previously performed to avoid locking.

8 Update the node positions.
9 Remeshing (again).

3. RELATED WORK

Regular Eulerian grids are a common choice for fluid simula-
tions in computer animation [Harlow and Welch 1965; Foster and
Metaxas 1996; Stam 1999]. Grid-based Eulerian fluid simulators
have been enhanced to support multi-phase flows [Hong and Kim
2003; Hong and Kim 2005; Losasso et al. 2006] including phase
transitions [Carlson et al. 2002], viscoelastic [Goktekin et al. 2004]
and hyperelastic behavior [Kamrin and Nave 2009], and even im-
mersed rigid body simulation [Carlson et al. 2004]. Simulating ac-
curate contact [Wang et al. 2005] and surface tension [Brackbill
et al. 1992] requires special treatment.

Tetrahedral meshes [Feldman et al. 2005], octrees [Losasso et al.
2004], and hybrid meshes [Feldman et al. 2005] have been used
to support varying resolution and accurate treatment of boundary
conditions. In Arbitrary Lagrangian Eulerian (ALE) methods, the
Eulerian discretization can change arbitrarily between time steps.
This flexibility makes it possible to implement adaptivity [Losasso
et al. 2004], accommodate arbitrarily oriented moving bound-
aries [Klingner et al. 2006], and accurately follow interfaces [Dai
and Smith 2005; Chentanez et al. 2007].

Modeling free surfaces entails some method for tracking the
motion of the surface boundary. Level-set methods store the sur-
face as an implicit function which is advected with the velocity
field [Osher and Fedkiw 2003]. These methods may cause exces-
sive surface smoothing and are often augmented with tracker parti-
cles to help maintain surface detail [Foster and Fedkiw 2001; En-
right et al. 2002; Enright et al. 2002; Losasso et al. 2008]. Volume-
of-fluid methods are used for computational fluid dynamics prob-
lems [Kucharik et al. 2010], but they are rarely used in graphics as
their focus is not on visual quality.

Other tracking approaches produce an explicit surface. For ex-
ample, semi-Lagrangian advection produces a polygonal surface
mesh each time step from an advected distance function of the
previous surface mesh [Bargteil et al. 2006]. Some more recent
methods directly advect the surface mesh, remeshing when nec-
essary [Brochu and Bridson 2009; Brochu et al. 2010; Wojtan et al.
2010; Thürey et al. 2010].

Real-time animations of water drops have been performed with
a deformable surface model. Each time step, the model uses an im-
plicit mean curvature flow operator to produce surface tension ef-
fects, a contact angle operator to change droplet shapes on solid
surfaces, and a set of mesh connectivity updates to handle topolog-
ical changes and improve mesh quality [Zhang et al. 2012].

Lagrangian fluid simulations typically use meshless par-
ticle methods, such as Smoothed Particle Hydrodynamics
(SPH) [Adams and Wicke 2009; Sin et al. 2009]. Meshless meth-
ods have also been used for the simulation of solids [Belytschko
et al. 1996; Müller et al. 2004; Pauly et al. 2005; Gerszewski et al.
2009]. Such particle simulations can accommodate solids and liq-
uids in the same framework, including phase transitions [Miller and
Pearce 1989; Keiser et al. 2005; Becker et al. 2009].
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Fig. 2: Surface tension and contact angle. (a) The surface energy at an
interface depends on the materials in contact and determines the contact
angle. The images show drops resting on (b) a hydrophilic surface and (c) a
hydrophobic surface.

Our work is similar to that of Misztal et al. on Lagrangian mesh-
based simulations of liquids with a deformable simplicial com-
plex [Misztal et al. 2012; Misztal et al. 2010; Erleben et al. 2011].
Like us, they also solve the weak form of the momentum equation
with the standard P1–P1 finite element method (piecewise linear
basis functions for both the velocity and pressure) in a single linear
system. However, our work differs in several respects. Misztal et
al. discretize the entire ambient space with an unstructured tetrahe-
dral mesh, whereas we discretize only the material. The mesh of the
surrounding air or vacuum allows Misztal et al. to treat collisions
and topological changes as part of mesh maintenance, whereas we
must explicitly detect collisions and merging events. Conversely,
we avoid the cost of maintaining a mesh for the surrounding space.

Although elastic solids can be modeled with an Eulerian formu-
lation [Goktekin et al. 2004; Levin et al. 2011], typically they are
modeled with Lagrangian formulations [Gourret et al. 1989; Chen
and Zeltzer 1992; Bro-Nielsen and Cotin 1996; Zhu et al. 1998;
O’Brien and Hodgins 1999]. Linear corotated tetrahedral finite ele-
ments [Belytschko and Glaum 1979; Nour-Omid and Rankin 1991;
Müller et al. 2002; Etzmuss et al. 2003; Müller and Gross 2004; Irv-
ing et al. 2004; Parker and O’Brien 2009] have been used widely in
computer graphics, and we use them in this work with extensions
to enforce incompressibility where needed [Irving et al. 2007].

There is a huge body of literature on adaptive methods, which
improve efficiency by locally tailoring element sizes according to
the physics. Budd, Huang, and Russell [2009] give a survey of
r-adaptive methods, which move nodes to concentrate degrees of
freedom where appropriate. For overviews of h-adaptive meth-
ods, which subdivide elements into smaller ones, see Oden and
Demkowicz [1989] and Jones and Plassmann [1997]. In computer
graphics, mesh refinement [Debunne et al. 2001; Capell et al. 2002;
Otaduy et al. 2007; Sifakis et al. 2007; Martin et al. 2008; Wicke
et al. 2010; Narain et al. 2012] and basis function refinement [Grin-
spun et al. 2002; Kaufmann et al. 2009] have been used to speed up
simulations. Some methods simulate complex geometry by embed-
ding it in coarse simulation meshes [Nesme et al. 2009; Kharevych
et al. 2009].

Our present work takes advantage of prior work on methods for
simulating large plastic flows in elastic materials [Bargteil et al.
2007; Wojtan and Turk 2008; Wojtan et al. 2009]. To maintain a
viable simulation mesh as a solid reshapes itself, these methods pe-
riodically remesh the entire domain. Wicke et al. [2010] observe
that better accuracy can be obtained by remeshing locally instead
of globally. We build on their framework that simultaneously main-
tains a world-space mesh, a material-space embedding that mini-
mizes the global internal elastic energy, and an individual rest space
for each element to account for plastic flow. The mappings from
the element rest spaces to the material-space embedding are called
plastic offsets; these make it possible to represent materials that,
because of plastic flow, do not have an embedding in space that is
free of internal strains.

Fluids and solids are usually simulated by distinctly different
methods that require significant effort to couple effectively [Guen-
delman et al. 2005; Chentanez et al. 2006]. To simulate phase tran-
sitions, the coupling method must support the transfer of material
from one representation to the other [Losasso et al. 2006]. In con-
trast, we use the same mesh representation for both fluids and solids
and can therefore accommodate their interactions without explicit
coupling terms.

4. GOVERNING EQUATIONS

We use a unified physical framework to represent the movement of
both solids and fluids. The time-dependent equations of motion are

ρ
∂2x

∂t2
= −∇ · σ + fS + fV , (1)

where x is the world position of a point on the simulated object,
t time, ρ density, σ = σe + σv + σP + σT the sum of elastic,
viscous, pressure, and thermal stresses, fS the sum of external sur-
face forces (surface tension and collision forces), and fV the sum
of external body forces (gravity and other force fields).

4.1 Elastic and Viscous Stresses

For isotropic materials Hooke’s law governs the linear relationship
between the stress tensor σe and the strain tensor εe,

σe = λe tr(εe)I + 2µeεe, (2)

where the bulk modulus λe and shear modulus µe are the Lamé
constants. We use Cauchy’s linear strain

εe =
(
∇x +∇xT

)
/2 . (3)

We model plasticity with the method described by Wicke et al.
[2010] wherein changes to the rest shape are represented by evolv-
ing the material-space positions u over time. We note that Eq. 3 is
valid for infinitesimal displacements only, so we use a corotational
finite element method [Müller and Gross 2004].

The viscous stress tensor σv is

σv = λv tr(εv)I + 2µvεv, (4)

where λv and µv are the bulk and shear viscosity, εv is the strain
rate tensor

εv =
(
∇v +∇vT

)
/2, (5)

and v is velocity. These viscous terms are equivalent to the viscous
terms in the Navier–Stokes equations. In the context of elasticity,
µv is often called the damping coefficient.

4.2 Incompressibility and Pressure Stress

Ideal fluids do not resist shear, but many do resist compression quite
strongly. One could model a fluid as an elastic object with µe = 0
and λe set very high. However, enforcing incompressibility with
large λe tends to cause stiffness and instability. Instead we enforce
incompressibility through constraints on the velocity field, forcing
it to be divergence-free.

∇ · v = 0. (6)

The force necessary to enforce this continuity equation is given by
the divergence of the pressure stress −∇ ·σP = −∇P , so that the
pressure P functions as the constraint’s Lagrange multipliers. This
approach works well for both incompressible fluids and volume-
preserving elastic solids [Irving et al. 2007].
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4.3 Surface Tension

Both fluids and solids can experience surface tension forces, which
can be defined by the mechanical work dW = γ dA required to
increase the surface area by dA, where γ is the surface tension
energy per unit surface area. The surface force at a point on the
surface is then

fS = −γ lim
A→0

1

A

∂A

∂x
, (7)

where A is the area of a small surface patch around a point x on
the surface and the derivative is taken with respect to movement of
the surface point x in three dimensions.

Through the Laplace–Beltrami operator, Eq. (7) can be written
fS = 2κHn, where κH and n are the mean curvature and the
surface normal at point x, respectively [Gray 1998; Dierkes et al.
1992; Thürey et al. 2010]. Although the two expressions are in prin-
ciple equivalent, it is in practice difficult to stably compute κH on a
triangulated surface and numerical approximations to the Laplace–
Beltrami operator can cause spurious damping. (For a comparison,
see Brackbill et al. [1992] and Scardovelli and Zaleski [1999].)
Therefore we prefer the expression based directly on the change
in surface area. When applied to our tetrahedral discretization with
linear basis functions (see Sec. 5) the nodal force from Eq. (7) on
node i due to surface face j is given by

fi = −γ ∂

∂xi

Aj , (8)

where fi, xi, and Aj are respectively the nodal force on node i, its
position, and the area of surface face j.

The surface energy parameter γ depends on the materials on both
sides of the interface. As shown in Fig. 2, there are different in-
terface energies γls, γsg , and γlg for liquid-solid, solid-gas, and
liquid-gas interfaces. We do not add any constraint to the linear sys-
tem to enforce expected contact angles (as e. g. Wang et al. [2005]
do). Instead, these angles arise naturally as a result of the balance
between surface tension forces and other forces such as gravity.
In particular, the ratio between the surface energies determines the
contact angle θ at rest: cos θ = (γls + γsg)/γlg .

Generally γsg is very small; we approximate it as zero without
significant loss in accuracy. For each surface triangle, we determine
which types of materials it is in contact with and choose the appro-
priate surface energy coefficient. To decide whether or not a node
collides with the solid, we use a distance threshold set to 1% of the
mesh’s mean segment length.

4.4 Heat Flow

The behavior of the temperature T is modeled by the heat equation,

∂T

∂t
+∇ · (αD∇T ) = QS +QV , (9)

where αD = κT /(ρξ) is the thermal diffusivity, κT is the ther-
mal conductivity, ρ is the density, ξ is the specific heat capacity,
and QS and QV are surface and volume heat sources, respectively.
This equation specifies that any change in temperature is the con-
sequence of external heat sources and the divergence (flux) of the
temperature gradient.

Variations of temperature within a material induce stresses, caus-
ing it to deform. If sufficiently high, these stresses can cause struc-
tural failure, especially for incompliant brittle materials with low
thermal diffusivity such as glass. In linear thermoelasticity, the
stress-strain relationship includes the thermal contribution εT =

αT (T − T0)I to the total strain and σT = βT (T − T0)I to
the total stress σ, where αT is the thermal expansion coefficient,
βT = −αT (3λe + 2µe) is the thermal coupling constant, and T0

is the reference temperature at zero thermal stress [Landau and Lif-
shitz 1970].

Temperature variations and stresses both influence each other.
First, temperature variations cause the material to deform by con-
tributing to σ in Eq. 1. Second, viscous stresses cause thermoelastic
heating, increasing the heat energy by tr(σεv). The heat flux, after
we discard nonlinear terms, is

QV =
βTT

ρξ
tr (εv) . (10)

A sufficiently high strain rate can make a material with high ther-
mal expansion melt. Because Eq. 10 considers only the trace of the
viscous strain, it does not model heating due to shear deformations.

Heating of a material by a hot plate and cooling by the ambient
air are modeled by the surface source term

QS =
hair

ρξ
(Tair − T ), (11)

where hair is the heat transfer coefficient between the air and the
material, and Tair is the temperature of the air.

5. DISCRETIZATION

We discretize the equations of motion and heat (Eqs. 1 and 9) with
an implicit Euler time integration scheme and piecewise linear ba-
sis functions over a tetrahedral finite element mesh [Cook et al.
2001]. We combine both the equations of motion and the continu-
ity equation in a single linear system where the unknowns are the
node velocities vn+1 and pressures pn+1 at time tn+1 = tn + ∆t:

(
1

∆t
M + ∆tK + D 1

∆t
BT

1
∆t

B 0

)(
vn+1

∆tpn+1

)
=(

−∆tKvn − f
0

) (12)

where M is the (lumped) mass matrix, K is the stiffness matrix, D
is the damping matrix (containing viscous terms), B and BT are the
discretized divergence and gradient operators, and f is the external
forces. The vectors with superscripts denote system-sized state vec-
tors containing the values for all nodes in the system at the indicated
time. The pressure vector pn+1 functions as Lagrange multipliers
for the incompressibility constraints. We scale the constraints by
1/∆t to make the linear system’s conditioning less dependent on
the time step. After vn+1 is computed, the node positions in world
space are updated as xn+1 = xn + ∆tvn+1.

The heat equation is modeled by a separate linear system whose
solution is the new vector of nodal temperatures tn+1.(

1

∆t
I + L

)
tn+1 =

1

∆t
tn + q, (13)

where I is the identity matrix, L is the discretized Laplacian matrix
including the thermal diffusivity, and q contains heat source terms.

If the material is plastic, or partially liquid, we assign new mate-
rial space coordinates to the nodes by computing the configuration
of the mesh that minimizes the total internal strain energy, as de-
scribed by Wicke et al. [2010]. If the material is fully liquid, there is
no internal strain, and we simply set the material space coordinates
to the world coordinates.
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We incorporate Dirichlet boundary conditions that are axis-
aligned by eliminating the affected variables from the linear sys-
tem. For non-aligned Dirichlet boundary conditions we rotate the
nodes’ degrees of freedom to match the constraint [Chentanez et al.
2009]. Otherwise, we use implicit penalty forces to enforce con-
straints.

Eq. 2 assumes a linear relationship between the stress and the
strain tensor, which can cause unacceptable errors for large defor-
mations. To remove these nonlinearities, we use the corotational
linear finite element method to compute and assemble the stiffness
matrix K. This method, which has become a standard for simula-
tions of large elastic deformations, factors the strain into rotation
and extension/compression parts, computes the stresses from the
second, rotation-invariant part, and rotates the stresses back into
the proper coordinate frame [Etzmuss et al. 2003; Müller and Gross
2004; Parker and O’Brien 2009].

5.1 Choosing a Time Step

For overly large time steps, the world-space configuration of ele-
ments may become degenerate or inverted. Because the linear sys-
tem (12) depends on ∆t, there is no simple way to compute an
admissible time step that would not cause inversion. Instead our in-
tegrator tries a target ∆t and halves ∆t if inversion occurs. This
procedure iterates until an admissible step is found or ∆t falls be-
low a threshold ∆tmin. In the latter case, we treat inverted elements
by other means. We remove most inverted elements whose vol-
umes are small (below a specified threshold) by contracting their
shortest edges. We permit the larger inverted elements to remain,
but we treat them numerically with isotropic strain limiting [Wang
et al. 2010] to maintain the stability of the simulation: we iteratively
move the nodes of the world-space mesh to minimize a deformation
energy function with respect to the material mesh that penalizes el-
ements undergoing excessive strains. These operations introduce
small errors into the solution, but they are rarely necessary and we
have not observed undesirable visual artifacts from their use.

5.2 Incompressibility and Volume Conservation

We define a piecewise linear pressure field whose degrees of free-
dom lie at the mesh nodes and we enforce per-node incompress-
ibility constraints, following Irving et al. [2007]. Although the con-
straints guarantee that the velocity field will be divergence-free at
the beginning of the time step, they do not guarantee that the inte-
gral motion will be divergence-free. Irving et al. explicitly correct
for volume loss or gain arising from discretization error by adding
a correction term for each node Ex,i on the right-hand side of the
discretized continuity equation Eq. 6. Doing so assures that volume
lost or added due to numerical inaccuracies is recovered over time.

Similarly, we store the rest volume for each element. The pro-
cess for maintaining correct element volumes during remeshing is
described in Sec. 6. As Irving et al. point out, recovering all the
volume at once in the next step can cause instabilities in the simu-
lation. We therefore clamp the volume recovered per time step to a
fraction of the true element volume.

Enforcing node-based incompressibility by incorporating pres-
sure terms in Eq. 12 can cause linear tetrahedral elements to lock
because there are insufficient local degrees of freedom to repre-
sent a reasonable approximate solution. The most egregious form
of locking occurs in a single tetrahedron whose volume cannot
change. Such elements appear on the surface of the domain, es-
pecially in the presence of positional constraints and sharp cor-
ners. Fig. 3 illustrates such a circumstance in two dimensions. We
use edge, face, and tetrahedron split operations to explicitly re-

(a) (b)

(c) (d)

Fig. 3: (a) An example of a locking configuration in a two-dimensional tri-
angular mesh. The red nodes are constrained not to move, and the volume
preservation constraints keep the unconstrained nodes from moving verti-
cally. No mass can be transferred between the two elements. (b), (c) After a
split, the new node provides the necessary degree of freedom. (d) After the
split is undone, volume has been transferred.

move all elements with four vertices on the boundary, as well as
all edges that connect surface vertices but are not themselves on
the surface. This procedure introduces additional degrees of free-
dom where necessary to improve the flow of the material through
the object. After each simulation step, we undo these splitting op-
erations. Although this splitting locally reduces the mesh quality,
we split edges, faces, and tetrahedra only at their barycenters and
therefore still preserve a lower bound on the element quality.

6. DYNAMIC LOCAL REMESHING

The main difficulty in Lagrangian fluid simulation is maintaining
a high-quality mesh. This problem is significantly easier in two di-
mensions, where simulations of fluids have been performed with
Lagrangian meshes [Cardoze et al. 2004; Cremonesi et al. 2011].
In three dimensions, global remeshing has been used to recreate a
good mesh after Lagrangian advection [Bargteil et al. 2007; Chen-
tanez et al. 2007; Wojtan and Turk 2008; Wojtan et al. 2009]. Un-
fortunately, global remeshing requires resampling of the velocity
and strain fields after each time step, negating one of the greatest
advantages of Lagrangian methods: their ability to maintain field
values without smoothing by repeated interpolation. Local remesh-
ing remedies this problem; Mauch et al. [2006] use it to model
ballistic penetration in which materials undergo large plastic flows.
However, state-of-the-art implementations of local remeshing have
not performed well enough to simulate turbulent inviscid flow.

We build on the Pulsar implementation of local tetrahedral
remeshing [Klingner and Shewchuk 2007; Wicke et al. 2010], and
retain its paradigm of only repairing the mesh where it has degraded
too much, while changing it as little as possible. To accommodate
inviscid flowing liquids, we make a number of improvements, en-
abling local repair of meshes degraded by flow. In particular, while
the previous implementation considered the surface to be piecewise
linear, we consider it to be a smooth surface (potentially with sharp
features), which the mesh approximates. This change in representa-
tion gives us more freedom in remeshing and also better preserves
the surface. We also add new local improvement operations: the
face and tetrahedron collapse operations.

6.1 Vertex Movement on Smooth Surfaces

The most challenging aspect of local tetrahedral remeshing is re-
pairing the poor-quality elements close to the surface. Because we
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Fig. 4: New operations to remove a bad tetrahedron. Left: A face contrac-
tion. A new vertex is inserted on an edge, splitting the tetrahedron in two,
and a newly created edge is immediately contracted, eliminating the tetra-
hedron. Right: A tetrahedron contraction. A new vertex is inserted on a face,
splitting the tetrahedron in three, and the new interior edge is contracted.

(a) (b) (c)

Fig. 5: Resampling can cause loss of momentum. (a) If only the red node
has nonzero velocity, its momentum is lost when (b) the node is deleted
from the mesh. (c) A compensating force is applied to the nodes for one
time step, preserving the total momentum.

would like to change the surface of the object as little as possible, a
much smaller set of operations is available to the remesher near the
surface. Conversely, the more we allow the surface to change, the
easier it is to mesh a domain, or repair a bad mesh.

We assume that the domain boundary is a piecewise smooth sur-
face, and that the vertices of the tetrahedral mesh boundary are
samples taken from the true boundary. We reconstruct a piecewise
smooth surface from the samples with a method of Guennebaud
and Gross [2007]. When surface vertices are moved to improve the
quality of adjoining tetrahedra, their movement is constrained to
a narrow band near the reconstructed smooth surface. We do not
constrain vertices to lie precisely on the surface because a small
amount of play sometimes yields significant improvements in the
performance of the mesh improvement operations; see Section 4.3
of Wicke et al. [2010] for details.

We detect nonsmooth parts (feature edges and points) of the sur-
face with a normal cone criterion (see [Kobbelt et al. 2001]; we use
a scalar product threshold of 0.3). A vertex that lies on a feature
edge can be moved during mesh improvement, but it is constrained
to remain on or near the curve where the two surface patches inter-
sect each other. A vertex that lies on a feature point, where three
or more patches meet, is constrained to remain in a small region
around its original position.

6.2 Face and Tetrahedron Collapse Operations

To supplement Pulsar’s mesh improvement operations, we imple-
mented two new compound remeshing operations, illustrated in
Fig. 4. These operations consist of an edge split or face split, fol-
lowed by an edge contraction. In our experiments, these two oper-
ations greatly improve the performance of the mesh improvement

algorithm; they are often the only operations that can successfully
remove bad tetrahedra close to the surface.

The building blocks of these operations, edge/face splits and
edge contractions, were available to Pulsar before. However, Pul-
sar performs mesh improvement by assigning each mesh a quality
score and performing hill-climbing in a search space of meshes. A
compound operation that performs two basic operations before de-
manding a quality improvement can often traverse a valley in the
search space to get out of a local maximum and reach a higher peak.

6.3 Volume and Momentum Conservation

After the simulation mesh is repaired, physical field values must be
resampled from the old mesh to the new. We transfer properties as
Wicke et al. [2010] do: variables stored at nodes are reinterpolated
with the piecewise linear basis, and piecewise constant quantities
stored per element (including the rest volume of each element) are
resampled as weighted sums over overlapping elements, with the
weights proportional to the overlap volume.

Changes made to the surface by the remesher can add or re-
move volume. Even in the interior, remeshing can change the to-
tal momentum—especially coarsening, as Fig. 5 illustrates. We en-
force strict momentum and volume conservation by adding a cor-
rection term to the resampled values.

Consider a set E of source elements and a set E ′ of target ele-
ments. Let Vi be the volume of a source element ei ∈ E, and let
Vij be the overlap volume between ei and a target element e′j ∈ E ′.
Given a piecewise constant fieldCi defined on the source elements,
we resample a valueC ′j for a target element e′j as the weighted sum

C ′j =
1∑
i Vij

∑
i

VijC̃i, where (14)

C̃i =
Vi∑
k Vik

Ci (15)

and the summations are over all overlapping elements. Observe that
C̃i = Ci if the source tetrahedron is fully covered by target tetrahe-
dra; otherwise, Eq. 15 scalesCi so that

∑
j C

′
j =

∑
i Ci. One field

we treat this way is the rest volume of each element (see Sec. 5.2),
so the true total rest volume is conserved.

The same technique preserves momentum, although momentum
is a piecewise linear field derived from nodal velocity values. We
compute the momentum mi of each source element i as its mass
times its average nodal velocity, and likewise the momentum m′

j

of each target element j. We resample m with Eq. 14, giving a
desired momentum mj for each target element. To compensate for
lost momentum, we apply for one time step a force to each node of
element j; the force is

fj =
(mj −m′

j)

4 ∆t
. (16)

This correction preserves linear momentum exactly, but not angu-
lar momentum. In our experiments, the angular momentum error
induced by remeshing is less than the angular momentum error in-
troduced by the corotational formulation, and neither is apparent in
our results.

7. TOPOLOGICAL CHANGES

One of the main reasons why implicit representations are popu-
lar for surfaces of liquids is that splitting and merging operations
require little or no extra implementation effort. Our Lagrangian

ACM Transactions on Graphics, Vol. 32, No. 2, Article XXX, Publication date: March 2013.



Simulating Liquids and Solid-Liquid Interactions with Lagrangian Meshes • XXX:7

meshes require explicit treatment of these operations, but the ef-
fort is compensated by reduced numerical viscosity, better vol-
ume preservation, and greater accuracy of surface evolution and
collision detection. We use a local tetrahedron splitting operation
modeled after fracture algorithms for solids [O’Brien and Hodgins
1999] and merging operations based on tetrahedron subdivision.
Our method supports all the operations necessary to represent a
flowing liquid undergoing topological changes.

7.1 Mesh Splitting and Material Fracture

Splitting has been extensively studied in the context of fracture and
cutting of elastic materials [Bielser et al. 1999; Smith et al. 2001;
Müller et al. 2001; O’Brien et al. 2002; Molino et al. 2004; Steine-
mann et al. 2006]. In fracture simulations, a material is typically
split where the stress exceeds a specified threshold.

We use a combination of physical and geometric criteria to deter-
mine whether a material can split. For liquid elements, we initiate
topological separation only at surface elements and only in concave
regions—where at least one of the two surface curvatures is nega-
tive. Moreover, we require that there be a tensile principal stress
whose magnitude is higher than a threshold γlg · ζ where ζ is the
capillary threshold and γlg the surface tension. Where both criteria
are met, we fracture the material with a splitting plane perpendicu-
lar to the direction of highest principal stress.

Fracture can be triggered in inappropriate locations by field fluc-
tuations caused by discretization, especially when it is driven by
viscous stresses in turbulent liquids; these stresses can vary wildly
between elements. To obtain physically plausible splitting, we have
found it necessary to compute viscous stresses from a velocity field
that has been smoothed over the 2-ring neighborhood of each vertex
by a moving least squares approximation.

If the largest principal stress in an element e exceeds a speci-
fied threshold, we split it in three stages. 1) We compute a split-
ting plane from the stress field and split e with a sequence of edge
split operations, thereby creating triangular split faces lying in the
splitting plane. 2) We turn the split faces into boundary faces by
duplicating vertices and split faces where appropriate, thereby ini-
tiating or propagating a crack through e. 3) Finally, we ensure that
the mesh is manifold. Discussion of steps 1 and 2 follows; step 3 is
described in Sec. 7.3.

Computing split faces. We choose a splitting plane that passes
through the barycenter of e and is normal to the direction of largest
principal stress. If any edge of e is on the material surface and the
surface is highly concave at the edge, we assume that such an edge
is the tip of a fracture surface that is propagating through the mate-
rial, and call it a snap edge. How split faces are created depends on
how many snap edges e has.

If e has no snap edge, we split each edge of e where it intersects
the splitting plane, one edge at a time. An edge split cuts every ad-
joining tetrahedron into two. Afterward, the new vertices are con-
nected by one or two split faces inside e, as illustrated in Fig. 6(a).

If e has exactly one snap edge, we modify the splitting plane so
that it contains the edge, while changing the normal of the splitting
plane as little as possible. A single edge split introduces a new node
where the modified splitting plane intersects the edge of e opposite
the snap edge, and cuts e into two elements that share a split face
illustrated in Fig. 6(b).

Two snap edges fully determine a splitting plane that usually co-
incides with an existing face of the tetrahedron, which becomes
the split face, as illustrated in Fig. 6(c). If e has more than two snap
edges, or two disjoint snap edges, we choose as split faces two faces

(a) (b) (c)

Fig. 6: Creating split faces (red) in the splitting plane. (a) Two split faces
propagate through an element having no snap edge. (b) This element has
one snap edge, from which a split face propagates. (c) Two snap edges. A
preexisting face becomes a split face.

(a) (b)

Fig. 7: Merging operations. (a) A tetrahedron split inserts a node of one
mesh (red) into an element of the other. (b) An intersection between an
edge of one mesh and a face of the other is treated by inserting a new node
(red) into both.

of e which together contain all the snap edges, and whose normals
deviate least from the original principal stress direction.

Creating surfaces. To propagate the fracture, the split faces
must become surface faces. For each node, we check whether the
split faces separate its adjoining elements into two or more face-
connected components. If so, we duplicate the node, assigning one
copy to each face-connected component. The adjoining split faces
are also duplicated, become boundary faces, and are no longer con-
sidered split faces.

After treating the nodes this way, we perform a similar test for
all the edges of the split faces that remain. If split faces separate
the elements adjoining an edge’s interior into two or more face-
connected components, we insert a new node at the midpoint of the
edge, splitting the adjoining faces and elements. As above, this new
node and the split faces that adjoin it are duplicated, and those split
faces become boundary faces.

If any split face survives after these operations, we trisect it with
a new node at its barycenter and treat it as above. Now, every split
face has been transformed into two surface faces.

To ensure that cracks continue to propagate, we distribute resid-
ual stresses to every element that shares an edge with a split face
and intersects the splitting plane. Following O’Brien and Hodgins
[1999], the residual is added to the stress when determining which
element to split next.

7.2 Merging Materials and Meshes

When collisions and self-collisions occur in a material that permits
merging, as most fluids do, we locally stitch tetrahedra together
in a manner that minimizes the changes. Previous work has used
global remeshing to treat colliding tetrahedral meshes [Bargteil
et al. 2007; Brochu and Bridson 2009; Wojtan et al. 2010], but,
to the best of our knowledge, nobody has attempted conservative
local stitching of tetrahedra.
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Our merging algorithm identifies overlapping tetrahedra; subdi-
vides them by inserting new nodes at edge-face intersections and
inserting duplicate nodes in overlapping tetrahedra, as illustrated
in Fig. 7, until the boundary of the overlap region is represented
by mesh faces; deletes one of the two layers of tetrahedra cover-
ing the overlap region; and merges colocated nodes. The merging
algorithm proceeds as follows.

1 Compute for each element e a set E(e) of elements that overlap
e. Let T = {e : E(e) 6= ∅} be the set of elements that overlap
at least one other element.

2 We perform a contraction pass that contracts every edge of an
element in T shorter than a threshold h, which is initialized to
one fifth of the mean edge length in the mesh. We also contract
any triangular face or tetrahedral element that has an altitude
less than h as described in Sec. 6.2. If this pass changes the
mesh, we recompute the overlap sets for the changed elements.

3 We perform an element splitting pass: if any element e ∈ T
contains a node v of an overlapping element, we split e into
four new tetrahedra at vertex v as illustrated in Fig. 7(a). After-
ward, there are overlapping tetrahedra that share the vertex v.
When an element is split, we restart the algorithm and return
to the contraction pass. If v is close to a node, edge, or face
of e, the split creates a short edge or a face or element with
a short altitude that is removed in the subsequent contraction
pass, moving v in the process.

4 When no nodes remain inside elements, we perform an edge-
face splitting pass. If we find an edge-face intersection, we split
both the edge and the face with a new node at the intersection
point; see Fig. 7(b). After each edge-face split, we restart the
algorithm and return to the contraction pass.

Edge-face splits can create new edge-face intersections, so it is
not obvious whether this procedure terminates. A packing argu-
ment and our experience show that it always does. Each edge-face
split inserts a new node which is common to the two overlapping
regions. Intersections are only possible between an edge and a face
that together have at least one non-common node. Because we en-
force a minimum distance between nodes, only a finite number
of nodes can be in the overlap region. Common nodes are never
deleted: an edge contraction between a common node and a non-
common node yields a common node, and face and element col-
lapses leave the number of common nodes unchanged. Therefore,
the overlapping region will eventually be packed with common
nodes, removing the possibility of further edge-face intersections.

Once the unified mesh is created, quantities from the old mesh
are resampled onto the new discretization. Piecewise linear field
variables, which are defined per node, are taken to be the average
of the linearly interpolated fields. We use the procedure described
in Sec. 6.3 to transfer piecewise constant field variables, which are
defined per element. This method accurately preserves the rest vol-
ume of the mesh. Consider a new element fully inside the overlap
region. It overlaps exactly twice its own volume in old elements.
If the rest volume of every source element is equal to its current
volume, the new element is assigned a rest volume of exactly twice
its current volume. Over time, the elements in the overlap region
will expand and the original volume will be recovered. Typically
the overlap region is thin and this adjustment happens quickly.

7.3 Enforcing Manifold Mesh Boundaries

After splitting or merging, the mesh might have a nonmanifold
boundary. Abusing terminology, we call an edge or node nonmani-
fold if the tetrahedra having it for an edge or node do not form a sin-
gle face-connected component. We also call a node nonmanifold if

(a) (b) (c)

Fig. 8: (a) Removing a face-type nonmanifold vertex. The vertex is split
into one vertex for each face-connected component of the adjoining ele-
ments. (b) Removing a nonmanifold edge by splitting it. The new vertex
is a face-type nonmanifold vertex, and can be removed. (c) Removing an
edge-type nonmanifold vertex. The shortest face-path (yellow) connecting
the two separate surface regions (red and blue) is found. These faces are
designated as split faces and are forced onto the surface as in Sec. 7.1 (in
this case, splitting the yellow edges), connecting the red and blue surfaces.

the adjoining boundary faces form more than one edge-connected
component. The former kind of node we call face-type nonmani-
fold, and the latter kind we call edge-type nonmanifold. Fig. 8 illus-
trates the three kinds of nonmanifold simplex and the procedures
for treating them. The example in Fig. 8(c) is difficult to visualize;
think of it as the complement of the circumstance in Fig. 8(a), with
empty space replaced by material and material replaced by empty
space.

A face-type nonmanifold vertex is easily fixed. For each face-
connected component of the elements adjoining it, we create a copy
of the vertex, which we assign to the elements of that component.

Once the vertices are fixed, we fix each nonmanifold edge by
splitting it with a new vertex at its midpoint. This vertex is a face-
type nonmanifold vertex, which we remove as described above.
The new edges are no longer nonmanifold.

Edge-type nonmanifold vertices are the hardest to remove. They
are pinch vertices where two surfaces meet—red and blue in
Fig. 8(c). To remove them, we search for the shortest path of in-
ternal faces connecting an edge of the red surface to an edge of the
blue surface. This path is yellow in Fig. 8(c). We use the method
of Sec. 7.1 to turn these faces into boundary faces, thereby creating
a tunnel connecting the two surfaces and removing the pinch. In
Fig. 8(c), forcing the yellow face onto the surface involves splitting
each yellow edge with a new vertex at its midpoint, duplicating the
new midpoint vertices, and creating a tunnel connecting the blue
and red surfaces.

8. SIMULATION RESULTS

To demonstrate the capabilities of our simulator, we ran several
numerical experiments and example simulations. We first discuss
measurements of numerical viscosity and comparisons with theory;
then we turn to more complex, phenomenologically interesting ex-
amples. Table I shows information and timing data for all the sim-
ulations in the paper. Please also refer to the accompanying video
for a better impression of the dynamic behavior.
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Figure ∆t τtotal τsimulate τplasticity τremesh τsubdiv τsolve V Nt Nn havg

4.97 12.6 0.55 4.64 0.56 0.76 520.47 6,425 1,826 0.879
Hydrophilic Drip 1.25 14 6.7 0.32 2.52 0.31 0.26 510.85 5,201 1,464 0.789

5.00 69.7 1.02 57.48 1.12 3.14 523.74 8,104 2,304 0.953
4.96 12.6 0.56 4.73 0.51 0.84 520.28 6,628 1,853 0.87

Hydrophobic Drip 1.25 14 6.7 0.33 2.53 0.31 0.26 510.70 5,201 1,464 0.78
5.00 39.4 1.17 25.92 1.05 4.90 523.74 8,668 2,403 0.95
0.99 40.1 2.21 1.36 1.74 3.53 48.518 21,412 6,923 0.27

Droplet Pinch-Off 0.12 55 29.3 1.61 1.07 1.36 1.45 37.215 17,175 5,505 0.25
1.00 118.8 2.72 1.57 2.07 15.48 54.162 24,919 7,946 0.30
0.98 49.3 2.53 21.05 2.06 4.73 51.639 25,518 8,074 0.26

Stream Breakup 0.50 34 29.2 1.59 12.24 1.44 1.46 43.800 19,167 6,579 0.22
1.00 197.9 3.28 133.28 2.65 34.23 54.161 30,477 9,284 0.30

10 17.1 0.39 5.74 5.16 0.81 0.0948 5,965 1,854 0.0507
Dam Break 10 48 4.2 0.18 1.35 0.23 0.20 0.0924 3,365 976 0.0367

10 171.2 0.94 95.58 73.53 5.67 0.1060 11,828 4,279 0.0620
49.9 285.3 4.71 213.62 4.1 22.59 0.0240 54,340 9,864 0.0139

Pipe 12.5 129 74.8 2.10 32.73 2.48 11.91 0.0231 42,498 8,063 0.0132
50.0 4,888.3 7.33 4,819.80 6.88 55.62 0.0250 64,074 11,528 0.0162

48.60 30.6 4.76 10.63 2.03 1.27 48.32 10,005 2,876 0.347
Melting Bunny 6.25 84 14.9 0.57 4.37 0.71 0.81 48.17 7,140 2,062 0.299

50.00 138.0 18.82 86.49 5.97 7.25 48.58 13,266 3,880 0.402
0.001 290.2 46.19 112.57 20.77 37.45 13.14 48,616 15,090 0.135

Lead Bullet 0.001 191 19.4 3.33 5.55 0.66 0.56 12.92 10,943 2,650 0.095
0.001 1,105.3 289.53 555.57 80.69 218.10 13.41 127,904 41,410 0.214

Table I. : Timings and statistics for the simulations shown in this paper. All entries are mean/min/max except total simulation time. Total time is expressed
in hours, time steps in 10−4 s, other times in s. ∆t: time step; τtotal: total simulation time; τsimulate: total simulation time per step; τplasticity: time per
step for plasticity simulation; τremesh: time per step for remeshing; τsubdiv: time per step for surface element subdivision; τsolve: time per step to solve the
linear system. Additional statistics: V : total volume in world space; Nt: number of tetrahedra; Nn: number of nodes; havg: average edge length. Lengths and
volumes are in mm and mm3 for the drip examples, cm and cm3 for the melting bunny and the lead bullet, and m and m3 for the dam break and the pipe.

(a)

(i)

(ii)

(b)

(i)

(ii)

Fig. 9: Conservation of volume and momentum for an oscillating droplet.
(a) Relative change in volume with respect to the rest volume, with (i) and
without (ii) volume compensation. (b) Relative distance from center of mass
to initial center of mass with respect to the equivalent radiusR0, with (i) and
without (ii) linear momentum compensation. Time step was ∆t = 0.1 ms;
average element size was h = 0.5 mm.

8.1 Comparisons with Theory: Oscillating Droplets

To measure the numerical viscosity intrinsic to our method, we sim-
ulated a single oscillating inviscid spherical droplet for a number of
element sizes and time steps. Because the experiment has a known
analytic solution, this allows us to calculate the numerical viscos-
ity of our method. The measured numerical viscosity is around
µ = 10−5 Pa·s, or two orders of magnitude below the viscosity
of water. The numerical viscosity of an Eulerian simulation (based
on Caboussat et al. [2010], with 2.5 times smaller mesh elements)
is µ = 6× 10−5 Pa·s.

The relative change in total volume with respect to the rest
volume over the course of the simulations never exceeds 0.5%
(Fig. 9(a)). Similarly, the relative distance from the center of mass
to the initial center of mass with respect to the drop’s nominal ra-

dius stays below 0.5%, which shows good conservation of momen-
tum (Fig. 9(b)).

For these experiments we varied the time-step size and mesh
resolution, and also compared with results from an Eulerian grid-
based simulator. Detailed discussion and measurement data can be
found in Appendix A.

8.2 Liquid Behavior at Small and Large Scales

Here we present two simulations of liquid behavior on the scale of
millimeters and meters, respectively. Both examples demonstrate
our method’s handling of topological changes and ability to resolve
fine details such as thin sheets, tendrils, and small droplets.

The first simulation models water dripping from a vertical pipette
with a 4 mm inner diameter in the presence of gravity and surface
tension, as illustrated in Figs. 1 and 10. The fluid descends through
the pipette with a fixed velocity of 5 mm/s and drips onto a surface
20 mm below the pipette tip. The water has density ρ = 997 kg/m3,
surface tension γ = 70.38 × 10−3 N/m, viscosity µ = 10−3 Pa·s,
and capillary fracture threshold ζ = 0.003. The two figures show
simulations with hydrophobic and hydrophilic surfaces, respec-
tively. The hydrophilic surface has a liquid-solid surface tension
energy of γls = 0 N/m, inducing a rest contact angle of 90◦. The
hydrophobic surface has an adhesion energy of γls = 70.38 N/m,
inducing a rest contact angle of 0◦. We model drag friction on the
surface, with a friction coefficient of 10−5 kg/s. The time step is
∆t = 5× 10−4 s.

Both simulations exhibit fracture and merging events. The con-
tact angles at which the liquid meets the surface are 90◦ and 0◦ for
the hydrophilic and hydrophobic surfaces, as expected. These an-
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Images copyright Clausen, Wicke, Shewchuk, and O’Brien.

Fig. 10: A simulation of liquid dripping onto a hydrophilic surface.

Top images courtesy of Gopi Krishnan;copyright 2010 by Gñāna Imaging and used with permission.
Bottom images copyright Clausen, Wicke, Shewchuk, and O’Brien.

Fig. 11: Frames from a droplet pinch-off. We compare real video (top) with
a simulated flow velocity of 0.11 mm/s (bottom).

Top images courtesy of Gopi Krishnan; copyright 2010 by Gñāna Imaging and used with permission.
Bottom images copyright Clausen, Wicke, Shewchuk, and O’Brien.

Fig. 12: Frames from a stream breaking up. We compare real video (top)
with a simulated flow velocity of 0.6 mm/s (bottom).

gles arise naturally as consequences of the surface tension energy;
we did not impose any explicit constraints on contact angles.

We compared two simulations with real video of dripping wa-
ter. We tuned the material parameters to visually match the video,
but we do not know the flow rate and our simulation neglects some
important effects such as adhesive forces perpendicular to the flow
due to finite wall thickness of the pipette, so the material parame-
ters we chose are not close to those of water. The tube diameter is
1 mm, the liquid density is ρ = 1.46 kg/m3, the surface tension is
γ = 13.6 × 10−3 N/m, and the viscosity is µ = 3.6 × 10−3 Pa·s.
The first simulation was performed with a tube flow velocity of
0.11 mm/s. There are observable similarities between the real video
and the simulation. The simulated drops have a shape similar to the
real drops at the tube outlet. The effect of surface tension produces

a growing droplet with a reduction of the radius of the upper part
until breaking occurs. Afterward, a wave bounces back in the di-
rection of the tube outlet. However, the real and simulated drips
have different shapes when breaking (Fig. 11). In particular, the
simulated drops are nearly spherical upon breaking, whereas in the
real video the drops are more oblong. Another marked difference
is that the real liquid oscillates at the surface of the liquid remain-
ing at the tube outlet and on the surface of the detached droplet
after breaking. Even with a very fine mesh, we could not repro-
duce these oscillations. We speculate that this difference might be
related to our use of slip boundary conditions inside the simulated
tube. Similar differences and similarities appear between the real
and simulated breakup of a liquid stream with a flow velocity of
0.6 mm/s (Fig. 12).

The macroscopic behavior of water is illustrated by a dam-break
simulation which releases a rectangular 1 m × 0.5 m × 0.2 m pool
of liquid to flow into a rectangular 2 m × 2 m × 0.4 m container
(Fig. 13). We use the same material parameters for water listed
above, and a time step of 1 ms. Observe that the remesher resizes
the tetrahedra according to the surface curvature, enabling finely re-
solved details without unnecessarily many elements. Features such
as small drops, tendrils, and thin sheets are well resolved, as are
interesting behaviors such as splashing, merging, and sheet break-
up. A crucial benefit of our method is that it maintains thin sheets
without volume loss, which is difficult for Eulerian methods.

Fig. 14 shows an example of a more turbulent flow. A fluid of
density ρ = 997 kg/m3 and viscosity µ = 10−6 Pa·s is injected
with a velocity of vinlet = 0.02 m/s into a cylindrical pipe of radius
rh = 0.1 m and length 0.75 m, whereupon it strikes a spherical ob-
stacle of radius 0.03 m. The Reynolds number for this experiment
is 4 × 106. We apply no-slip boundary conditions to the spheri-
cal obstacle. As the simulation proceeds, we generate new tetrahe-
dra at the pipe inlet and remove tetrahedra past the pipe outlet. A
postprocess uses the computed flow velocities to advect particles
for visualization. The motion of the particles helps to reveal that
clouds of fluid detach themselves at regular intervals in a manner
characteristic of this scenario.

8.3 Melting

Two examples demonstrate our algorithm’s ability to cope with liq-
uid and solid elements in a single mesh, as well as phase transi-
tions between them. In Fig. 15, the Stanford Bunny is heated by
a ground plate with a temperature of 353.5 K and a heat transfer
coefficient of hT = 221 W/(m2K). The bunny is roughly 7 cm tall
with an initial temperature of 253.5 K. Below the melting temper-
ature Tm = 273.5 K, we model the material as perfectly elastic
with an elastic modulus of 105 Pa. The plasticity of the bunny in-
creases as the temperature rises. Above Tm, we model the material
as a liquid with viscosity µ = 30 × 10−3 Pa·s and a surface ten-
sion of γ = 70.38 × 10−3 N/m. We simulate heat diffusion with
a heat capacity of ξ = 1,960 J/K and a thermal conductivity of
κT = 35 W/(m·K). The melted liquid fills the square container and
naturally settles at a 90◦ contact angle. All the material in the sim-
ulation is part of a single mesh, although the material parameters
vary throughout the mesh. No coupling terms or special interface
code is needed for the solid-fluid interaction.

Fig. 16 depicts a simulation of a 5 cm long lead bullet striking
a perfectly rigid wall with a velocity of 200 m/s. Nodes in con-
tact with the wall have the normal components of their velocities
set to zero. As the bullet advances, the large strain rate causes its
tip to melt. It has an initial temperature of 298.5 K, a thermal ex-
pansion coefficient of αT = 29 × 10−6 K−1, a heat capacity of
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Fig. 13: Frames from a dam-break simulation.

ξ = 130 J/K, and a thermal conductivity of κT = 35 W/(m·K).
Below the melting temperature of 600 K, we model the material
as elastoplastic with a tensile modulus of 16 GPa and a density of
ρ = 11,300 kg/m3. Above the melting temperature, the material
is considered to be liquid with a density of ρ = 10,210 kg/m3,
a viscosity of µ = 20 × 10−3 Pa·s, and a surface tension of
430 × 10−3 N/m. The time step is ∆t = 10−7 s. To model the
deformation of the steel plate and create a more interesting melt
pattern, we placed a small conical dent on the plate, centered on
the point of impact. The molten lead is pushed outward and forms
a thin sheet.

9. DISCUSSION AND CONCLUSIONS

By using fully Lagrangian tetrahedral meshes, we can simulate
materials ranging from stiff solids to viscoplastic metals to invis-
cid fluids, as well as interactions and phase changes among them,
within a single framework and without explicitly coupling different
materials or phases.

Our numerical results demonstrate that a Lagrangian discretiza-
tion of fluids yields high accuracy even in simulations with moder-
ate resolutions. Perhaps the most telling result is that the measured
numerical viscosity is two orders of magnitude less than that of wa-
ter. What little numerical viscosity arises is caused by resampling;
our dynamic meshing algorithms help us do as little of that as pos-
sible. In contrast, simulators employing Eulerian discretizations, or
even Lagrangian discretizations coupled with global remeshing, re-
sample all the velocity values at every time step, introducing high
numerical viscosity.

The Lagrangian mesh provides an explicit, physically meaning-
ful, triangulated surface. Its value is demonstrated by the accuracy
with which our method can model surface tension effects—as the
oscillating droplet simulations show—and our ability to reproduce
emergent behavior such as liquid-solid contact angles.

Our method guarantees perfect long-term preservation of vol-
ume, locally and globally with only minor short-lived fluctuations,
by doing careful bookkeeping of the rest volume, especially during
remeshing operations. We are able to do this because our method
does not maintain a traditional material-space mesh that dictates
the rest volumes; rather, it uses the more flexible representation of
Bargteil et al. [2007], as modified by Wicke et al. [2010], that stores
an independent rest configuration for each element. In stark con-
tract to Eulerian approaches, our volume preservation works flaw-
lessly even for large thin liquid sheets. By similar means, we pre-
serve linear momentum.

Our element subdivision scheme removes the threat of element
locking from simulations of incompressible liquids, even around
thin sheets and tendrils.

9.1 Limitations

Perhaps the biggest limitation of Lagrangian meshes is that the per-
missible time step is limited by the threat of element inversions.
While the restrictions on the time step are not as onerous as those
imposed by the Courant–Friedrichs–Lewy condition for explicit
time integration in a finite difference setting, they can be signifi-
cant. We address this problem by occasionally allowing inversions
to occur, and fixing them afterward. This procedure surely incurs
errors, but the errors have been too small to notice visually. Their
numerical effects are hard to quantify, as simulations with known
analytical solutions are too simple to cause this problem.

Explicit treatment of splitting and merging events is a burden for
the programmer, although their running time is only a small fraction
of the total simulation time. We believe that for simulations where
accuracy matters, the effort is worth it—especially for simulations
where surface effects or preservation of thin features are essential.

The cost and programming effort of maintaining a high-quality
tetrahedral mesh are high. We are distributing the updated Pulsar
dynamic mesher, which we hope will enable many researchers to
implement Lagrangian fluid simulations. Yet, even the most ad-
vanced remeshing tool cannot repair meshes whose surfaces have
dihedral angles close to zero. Such circumstances occur in the sim-
ulations that appear in this paper; fortunately, implicit time integra-
tion is not sensitive to small angles, and we observed no artifacts
because of these problems. Surface tension quickly resolves such
surface configurations. However, while they persist, they substan-
tially increase the running time of mesh repair.

Finally, although our method never forgets volume (the rest
volume stays constant to machine precision), the current vol-
ume can vary somewhat. These fluctuations are greatest follow-
ing collisions; our collision handler deforms the mesh surfaces to
a collision-free state. The element rest volumes do not change, so
the mesh gradually recovers the lost volume over time. We could
drastically reduce the volume fluctuations by reversing time steps
in which collisions occur, then repeating them while enforcing con-
straints.

We are excited about the new avenues of research opened up by
Lagrangian mesh simulations. We believe they create opportunities
for more accurate fluid-solid and fluid-fluid interface simulations,
because multiple materials and the interfaces between them can be
represented within a single mesh. We would like to accurately re-
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Fig. 14: Liquid is injected with a velocity of 0.02 m/s into a pipe of radius 0.1 m. The flow hits a spherical obstacle (with no-slip boundary conditions) and
becomes turbulent. The simulation recreates smoke packets detaching at regular intervals, as expected. The initial mesh is shown at left. The mesh moves with
the flow and is adaptively refined to have higher resolution around the obstacle.

produce phenomena such as gases bubbling through fluids and the
mixing of petroleum and water, and to simulate interactions be-
tween viscous fluids and elastic solids as in a beating heart or a
surgical procedure.
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Fig. 15: The Stanford Bunny melts on a hot plate.
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Fig. 16: A simulation of the impact of a lead bullet against a rigid wall. Thermoelastic heating causes the bullet to melt and spread into a thin sheet. The
frames in the bottom row show the dynamically changing tetrahedral mesh.
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APPENDIX
A. OSCILLATING DROPLETS

We simulated a single oscillating inviscid spherical droplet. We use
a surface tension coefficient of γ = 70.38 × 10−3 N/m and den-
sity ρ = 997 kg/m3 in the absence of gravity and viscosity. This
test is one way to quantify the physical accuracy of our simula-
tion, because we can compare it with known theory. It also allows
us to measure the numerical viscosity introduced by resampling
errors. We performed the simulation for three different time steps
(∆t = 0.1 ms, ∆t = 0.05 ms, ∆t = 0.01 ms) and two different
meshes (272–667 tetrahedra and 2,918–6,801 tetrahedra). The ini-
tial liquid droplet is an ellipsoid with radius 4 mm in the x-direction
and a cross-sectional radius of 2 mm in the y-z plane. The radius
of the sphere of equal volume at equilibrium is R0 = 2.5198 mm.

For low-viscosity liquids (e. g. water, ethanol) and relatively
large droplets (R0 ≥ 50 µm) in quiescent surroundings, the de-
scription derived by Rayleigh [1879] simplifies and the so-called
irrotational approximation holds [Lamb 1932]. We consider only
the fundamental mode. For a three-dimensional liquid droplet in
vacuum, the period is Ω2 = 2π((ρR3

0)/(8γ))1/2 and the decay
time Γ2 = (ρR3

0)/ (5µ), which allows us to infer the magnitude of
the numerical viscosity produced by interpolation errors.

Surface tension produces oscillations of the droplet with decay-
ing amplitude. Fig. 17 charts the maximum elongation as a function
of time. We fitted the oscillation maxima to obtain the oscillation
period and decay time. The simulated oscillation period is about 5%
longer than the theoretical value (Table II). The decay of the oscil-
lations implies a viscosity of roughly µ = 10−5 Pa·s, which we take
to be the baseline numerical viscosity inherent in the method. It is
two orders of magnitude less than the viscosity of water, 10−3 Pa·s.
As expected, a decrease of the time step or element size induces a
decrease of the numerical viscosity (Fig. 18).

We conducted the same experiment with an Eulerian method
based on Caboussat et al. [2010] and a time step of ∆t = 0.05 ms.
At 6 × 10−5 Pa·s, numerical viscosity is roughly six times higher
in this setting, as compared to the Lagrangian simulation with
668–1,385 nodes, even though the mesh of the Eulerian simu-
lation is finer (3,492 liquid nodes on average, element size of
h = 0.17 mm). The calculated oscillating period is 35.3 ms; com-
pare with the exact (analytical) oscillation period of 33.44 ms and
the periods for our simulations in Table II. While the details may
differ for different Eulerian simulators, the general finding should
hold irrespective of implementation: because only a small fraction
of variables are reinterpolated in each time step, numerical viscos-
ity will be lower in Lagrangian methods than it is in Eulerian ones.
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∆t (ms) Nn (Nt) R0 (mm) τcomp (ms)
0.1 85–155 (272–607) 2.443 ± 0.001 34.6 ± 0.6
0.05 87–166 (272–660) 2.444 ± 0.002 34.9 ± 0.7
0.01 87–168 (272–667) 2.447 ± 0.003 35.0 ± 0.4
0.1 727–1298 (3281–6304) 2.5055 ± 0.0004 36.0 ± 0.4
0.05 668–1385 (2918–6798) 2.5057 ± 0.0003 36.3 ± 0.4
0.01 703–1392 (3107–6801) 2.5072 ± 0.0007 36.2 ± 0.7

Table II. : Time step ∆t, number of verticesNn, number of tetrahedraNt,
equilibrium radius R0, and computed period of oscillation τcomp for the
simulation of an oscillating water droplet. The theoretical oscillation period
for an equivalent radius of R0 = 2.5198 mm is τ2 = 33.44 ms.
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Fig. 17: Oscillations of a droplet. The mesh has 668–1392 nodes (aver-
age element size h = 0.5 mm). The time steps are (a) ∆t = 0.1 ms,
(b) ∆t = 0.05 ms, (c) ∆t = 0.01 ms. (d) Corresponding Eulerian sim-
ulation with time step ∆t = 0.05 ms. The x-axis is time, and the y-axis
graphs the maximum radial distance from the center of mass to the surface
of the droplet. The small peaks represent the maximal length of the y-, and
z-axes when the droplet is shortened in the x-direction.

0.1

1.0

0.01 0.08

"a
rt

if
ic

ia
l"

 v
is

co
si

ty
 (

1
0

-5
P

a
.s

)

time step (ms) (a)

0.1

1.0

0.2 2

"a
rt

if
ic

ia
l"

 v
is

co
si

ty
 (

1
0

-5
P

a
.s

)

element size (mm)(b)

Fig. 18: (a) Numerical viscosity as a function of the time step for a mesh
with 668–1,392 nodes (average element size h = 0.5 mm), computed
from the oscillations’ decay. Values are 0.56, 0.83, and 1.13 (×10−5 Pa·s).
(b) Numerical viscosity as a function of the element size for a time step of
∆t = 0.1 ms. Values are 1.10, 1.13, and 2.3 (×10−5 Pa·s).
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