Star Splaying

Jonathan Shewchuk
University of California at Berkeley
Application: 3D Dynamic Meshing
Application: 3D Dynamic Meshing
Application: 3D Dynamic Meshing

Delaunay repair
Application: 3D Dynamic Meshing

Delaunay repair → Mesh improvement
The Flip Algorithm
The Delaunay Triangulation

An edge is *locally Delaunay* if the two triangles sharing it have no vertex in each others’ circumcircles.
The Delaunay Triangulation

An edge is *locally Delaunay* if the two triangles sharing it have no vertex in each others’ circumcircles.

A triangular face is *locally Delaunay* if the two tetrahedra sharing it have no vertex in each others’ circumspheres.
A *Delaunay triangulation* is a triangulation of a point set in which every edge (face in 3D) is locally Delaunay.
Lawson’s Flip Algorithm
Lawson’s Flip Algorithm

Not locally Delaunay
Lawson’s Flip Algorithm
Lawson’s Flip Algorithm

Delaunay
Lawson’s Flip Algorithm

Delaunay
Lawson’s flip algorithm performs hill−climbing optimization on the flip graph.
Flip Graph

2D: Only one local optimum (Delaunay).
Flip Graph

2D: Only one local optimum (Delaunay).

3D: Many local optima – flipping gets stuck!
Flip Graph

2D: Only one local optimum (Delaunay).

3D: Many local optima – flipping gets stuck!

5D: Flip graph not connected! [Santos 2004]
2D: Only one local optimum (Delaunay).

3D: Many local optima – flipping gets stuck!

5D: Flip graph not connected! [Santos 2004]

Open problem: Is it connected in 3D or 4D?
3D Delaunay Flips Can Get “Stuck”

We want to flip this non-Delaunay face.

vertex inside circumscribing sphere.
3D Delaunay Flips Can Get “Stuck”

We want to flip this non-Delaunay face. Sometimes we can.
We want to flip this non-Delaunay face.

Sometimes we can. Sometimes we can’t.
Application: 3D Dynamic Meshing

- Delaunay repair
- Mesh improvement
3D Delaunay Repair

Guibas and Russel [2004]: It’s faster to flip than to recompute the 3D Delaunay triangulation from scratch...
3D Delaunay Repair

Guibas and Russel [2004]: It’s faster to flip than to recompute the 3D Delaunay triangulation from scratch...

...when flipping doesn’t get stuck.
My Question

How much more is possible if we bend the usual rules of flipping?
Star Splaying

⭐ A hill-climbing optimization algorithm for Delaunay repair (in any dimension) that never gets stuck.
Star Splaying

★ A hill–climbing optimization algorithm for Delaunay repair (in any dimension) that never gets stuck.

★ Recommendation: try flipping first; let star splaying take over if flipping gets stuck.
Stars, Rays, & Cones
Definition: The Star of a Vertex

star of v
Definition: The Star of a Vertex

star of v

star of v
Seidel’s Parabolic Lifting Map

The 3D DT matches the lower convex hull of the vertices lifted onto a paraboloid in E^4.
Stars, Rays, and Cones
3 Equivalent Computations

★ The star of \(v \) on a 4D convex hull of points.

★ The 4D cone \(H_v \) (convex hull of rays).

★ The 3D polytope \(P \) (convex hull of points).
Computing the Convex Hull

SLOW
Give Each Vertex a Good Starting Set
Give Each Vertex a Good Starting Set

Linear Time!
Star Splaying
Idea #1

The representation is a collection of stars.
Idea #2

Stars may be *inconsistent* with each other.
Idea #2

Stars may be *inconsistent* with each other.

(A simplex appears in the star of one of its vertices, but not in the stars of all its vertices.)
Computing the Convex Hull with Incomplete Starting Sets
Computing the Convex Hull with Incomplete Starting Sets
Consistency Resolution
Consistency Resolution
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Kallay’s Beneath–Beyond Algorithm for Incremental Update of Convex Hulls
Consistency Resolution
Consistency Resolution
Consistency Resolution
Consistency Resolution
Consistency Resolution
Consistency Resolution
Computing the Convex Hull with Star Splaying
Termination Guarantee

★ Stars splay open – they never get smaller.
★ Consistency resolution always splays a star.
Star Splaying as Hill–Climbing

★ Objective: maximize the sum of solid angles of the cones.

★ Worst–case time: $O(n^3)$.
Repairing “Nearly Delaunay” Triangulations

★ Suppose vertex degree is bounded by a constant.
Repairing “Nearly Delaunay” Triangulations

- Suppose vertex degree is bounded by a constant.
- Suppose every circumsphere encloses at most a constant number of vertices.
Repairing “Nearly Delaunay” Triangulations

- Suppose vertex degree is bounded by a constant.
- Suppose every circumsphere encloses at most a constant number of vertices.

- Worst-case time: \(O(n)\).
Repairing "Nearly Delaunay" Triangulations

★ Suppose vertex degree is bounded by a constant.
★ Suppose every circumsphere encloses at most a constant number of vertices.
★ Worst-case time: $O(n)$.

MAIN RESULT
Constrained Triangulations
Constrained Delaunay Repair

Delaunay triangulations are convex. We really want to repair a *constrained* Delaunay triangulation.
Some Polyhedra Have No Tetrahedralization

Schönhardt’s polyhedron
Some Polyhedra Have No Tetrahedralization

Any four vertices of Schönhardt’s polyhedron yield a tetrahedron that sticks out a bit.
Idea #1

The representation is a collection of stars.

Idea #2

Stars may be *inconsistent* with each other.
The View from One Vertex

Ignore vertices not visible from \(v \), faces not connected to \(v \).
Find a star tetrahedralization for \(v \). May disrespect faces not adjoining \(v \).
The View from One Vertex

\(v \)’s star tetrahedralization is really a 2D constrained triangulation.
Star Representation of Schönhardt

The constrained vertex stars are inconsistent with each other.
The constrained vertex stars are inconsistent with each other.
Constrained Delaunay Triangulations
Constrained Delaunay Triangulations (CDTs)

A tetrahedralization of a polyhedron is **constrained Delaunay** if every triangular face is locally Delaunay.
CDT Repair

A “tangulation” represents a CDT if

1 Each vertex’s star respects the polyhedron faces adjoining that vertex.
A “tangulation” represents a CDT if

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.
2. Every triangular face in every star is locally Delaunay.
CDT Repair

A “tangulation” represents a CDT if

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.
2. Every triangular face in every star is locally Delaunay.
3. The stars are consistent with each other.
CDT Repair

A “tangulation” represents a CDT if

1 ★ Each vertex’s star respects the polyhedron faces adjoining that vertex.

2 ★ Every triangular face in every star is locally Delaunay.

3 ★ The stars are consistent with each other.

A 3D star is really a 2D polygon triangulation. Every polygon has a triangulation.
A “tangulation” represents a CDT if:

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.
2. Every triangular face in every star is locally Delaunay.
3. The stars are consistent with each other.

Use 2D flip algorithm in stars; makes most stars Delaunay.
A “tangulation” represents a CDT if:

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.
2. Every triangular face in every star is locally Delaunay.
3. The stars are consistent with each other.

This face is not locally Delaunay, but it can’t be flipped because of this reflex edge of the polygon.
A “tangulation” represents a CDT if

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.

2. Every triangular face in every star is locally Delaunay.

3. The stars are consistent with each other.

This face is not locally Delaunay, but it can’t be flipped because of this reflex edge of the polygon.

The tangulation diagnoses why the polygon has no CDT.
CDT Repair

A “tangulation” represents a CDT if:

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.
2. Every triangular face in every star is locally Delaunay.
3. The stars are consistent with each other.

Possible solution: insert new vertex.
CDT Repair

A “tangulation” represents a CDT if

★1 ★ Each vertex’s star respects the polyhedron faces adjoining that vertex.

★2 ★ Every triangular face in every star is locally Delaunay.

★3 ★ The stars are consistent with each other.

The hard part! Use consistency resolution, but...
A “tangulation” represents a CDT if

★1★ Each vertex’s star respects the polyhedron faces adjoining that vertex.

★2★ Every triangular face in every star is locally Delaunay.

★3★ The stars are consistent with each other.

The hard part! Use consistency resolution, but...

★ If two vertices can’t see each other in the polyhedron, they can’t be in each others’ stars!
CDT Repair

A “tangulation” represents a CDT if

1. Each vertex’s star respects the polyhedron faces adjoining that vertex.

2. Every triangular face in every star is locally Delaunay.

3. The stars are consistent with each other.

The hard part! Use consistency resolution, but...

If two vertices can’t see each other in the polyhedron, they can’t be in each others’ stars!

Two vertices that should be connected by an edge might fail to find each other. Global search...
Incremental CDT Update
Insert one vertex at a time.
Remove all triangles/tetrahedra that are no longer Delaunay.
Retriangulate the cavity with a fan around the new vertex.
Inserting Vertices into 3D CDTs

reflex edges

has a CDT

does not have a CDT

has a CDT
Inserting Vertices into 3D CDTs

reflex edges

CDT

lazy insertion of both vertices (bisection)

flipping?
Inserting Vertices into 3D CDTs

reflex edges

CDT

lazy insertion of both vertices (bisection)

flipping?

stuck!
Inserting Vertices into 3D CDTs

reflex edges

CDT → tangulation → CDT
Inserting Vertices into 3D CDTs

Idea: maintain two copies of the triangulation.

★ Use the last internally consistent triangulation for visibility & Bowyer–Watson tests.

★ Perform updates on the tangulation; use it to decide where to add new vertices.
Actually, just maintain the last consistent triangulation, plus copies of the stars that have changed.
Inserting Vertices into 3D CDTs

Incrementally insert vertices. Loop:

★ New stars decide where to insert a vertex.
★ Old stars tests visibility & which stars change.
★ Insert new vertex into affected new stars.
Conclusions

★ Star splaying performs Delaunay repair without getting stuck – sometimes in linear time.

★ Star splaying enables incremental vertex insertion in 3D CDTs, even through intermediate states where no CDT exists.

★ Unfortunately, CDT repair seems much harder to do “locally” than Delaunay repair.
Open Problem

★ Repair only the parts of the mesh where the quality is bad.
Star Flipping
Each Vertex Has a Starting Cone
In a 2D triangulation, v’s link is a 1D triangulation.
In a 2D triangulation, v’s link is a 1D triangulation.

In a 3D triangulation, v’s link is a 2D triangulation.
Idea #3

Instead of computing convex cones from scratch, compute them from the starting cones by running star flipping *recursively*, one dimension down.

- In a 2D triangulation, v’s link is a 1D triangulation.
- In a 3D triangulation, v’s link is a 2D triangulation.
Idea #3

The representation is recursive as well. Each link triangulation is a collection of stars.

In a 2D triangulation, v’s link is a 1D triangulation.

In a 3D triangulation, v’s link is a 2D triangulation.
Idea #4

Do as much classic flipping as possible before resorting to star flipping – at every level of the recursion.
Each Vertex Has a Starting Cone
Why Star Flipping?

★ Might be faster than star splaying when initial triangulation is “nearly Delaunay.”
Why Star Flipping?

★ Might be faster than star splaying when initial triangulation is "nearly Delaunay."

★ Can deal with constrained triangulations (upcoming).
Tangulations
Recursive Representation
Recursive Representation
Recursive Representation

star of v
Recursive Representation

star of x in the link triangulation of v
Recursive Representation (Trie)

ordered tetrahedron: \textit{wxzv}
If all stars are consistent, each simplex appears in every permutation.

Unordered tetrahedron $vwxy$ is represented by the 24 ordered tetrahedra above.
Tangulation (Definition)

☆ A set of ordered simplices.
Tangulation (Definition)

★ A set of ordered simplices.

★ If a tangulation contains a simplex, it contains every prefix of that simplex.

i.e. if a tangulation contains ordered tetrahedron vwx, it also contains v, vw, vwx.
Flips in Tangulations

Traditional flip replaces unordered triangles vwx, vwy with vxy, wxy.
Flips in Tangulations

 Traditional flip replaces unordered triangles vwx, vwy with vxy, wxy.

 Tangulation flip replaces vwx, vxw, xvw, xwv, wvx, wxv, vwy, vyw, wvy, wyv, yvw, ywv with vxy, vyx, xvy, xyv, yvx, yxv, wxy, wyx, xwy, xyw, ywx, yxw.
Flips in Tangulations

★ Traditional flip replaces unordered triangles vwx, wvy with vxy, wxy.

★ Tangulation flip replaces $vwx, vxw, xvw, xwv, wvx, wxv, vwy, vyw, wvy, wyv, yvw, ywv$ with $vxy, vyx, xvy, xyv, yvx, yxv, wxy, wyx, xwy, xyw, ywx, yxw$.
Flips in Tangulations

★ Traditional flip replaces unordered triangles \(vwx, vwy\) with \(vxy, wxy\).

★ Tangulation flip replaces
 \(vwx, vxw, xxx, xxx, wxx, wxx, vwv, vvy, vwy, wvy, wvy, yvx, yvx\)
 with
 \(vxy, vyx, xvy, xvy, yxx, yxx, wxy, wyx, xwy, xwy, ywx, ywx\).
Flips in Tangulations

★ Traditional flip replaces unordered triangles vwx, vwy with vxy, wxy.

★ Flip in v’s star replaces ordered triangles vwx, vwx, vwy, vyw with vxy, vyx.
Storage optimizations take advantage of symmetry.

Proposed data structure reduces to Blandford, Blelloch, Cardoze, and Kadow [IMR 2003] when all stars are mutually & internally consistent.

Unordered tetrahedron $vwxy$
Constrained Tangulations
Lower convex hull is a triangle.
Weighted CDT (constrained Delaunay triangulation) → nonexistent
Weighted CDT (constrained Delaunay triangulation)
Constrained Tangulations

Every (weighted) domain has a constrained "Delaunay" tangulation.
Incremental CDT Update