Natural Language Processing

Lecture 1: Introduction

Dan Klein - UC Berkeley

Other Announcements

Enrollment: We'll try to take everyone who meets the

• You will want more compute power than the instructional labs • Experiments can take up to hours, even with efficient code

Course Contacts:

requirements

• Questions?

Computing Resources

· Piazza: discussion forum

· Webpage: materials and announcements

• Recommendation: start assignments early

Course Requirements

- Prerequisites:
 - CS 188 (CS 281a) and preferably CS170 (A-level mastery)
 - Strong skills in Java or equivalent Deep interest in language

 - Successful completion of the first project
 There will be a lot of math and programming

- Work and Grading:
 Six assignments (individual, jars + write-ups)
 This course is a major time-commitment!

 - Books:
 - Primary text: Jurafsky and Martin, Speech and Language Processing, 2nd Edition (not 1st)
 - Also: Manning and Schuetze, Foundations of Statistical NLP

AI: Where Do We Stand? 90 Early statistical Rule based Modern stat approaches approaches

What is this Class?

- Three aspects to the course:
 - Linguistic Issues
 - What are the range of language phenomena?
 - What are the knowledge sources that let us disambiguate?
 - What representations are appropriate?
 - How do you know what to model and what not to model?
 - Statistical Modeling Methods
 - Increasingly complex model structures
 - Learning and parameter estimation
 - Efficient inference: dynamic programming, search, sampling
 - Engineering Methods
 - Issues of scale
- Where the theory breaks down (and what to do about it)
- We'll focus on what makes the problems hard, and what works in practice...

Class Requirements and Goals

- Class requirements

 - Uses a variety of skills / knowledge:
 Probability and statistics, graphical models (parts of cs281a)
 - Basic linguistics background (ling100)
 Strong coding skills (Java), well beyond cs61b

 - Most people are probably missing one of the above
 - · You will often have to work on your own to fill the gaps
- Class goals
 - Learn the issues and techniques of statistical NLP
 - Build realistic NLP tools
 - Be able to read current research papers in the field
 - See where the holes in the field still are!
- This semester: new projects (speech, translation, analysis)

Some BIG Disclaimers

- The purpose of this class is to train NLP researchers
 - Some people will put in a LOT of time this course is more work than most classes (grad or undergrad)
 - There will be a LOT of reading, some required, some not you will have to be strategic about what reading enables your goals
 - There will be a LOT of coding and running systems on substantial amounts of real data
 - There will be a LOT of machine learning / math
 - There will be discussion and questions in class that will push past what I present in lecture, and I'll answer them
 - Not everything will be spelled out for you in the projects
 - Especially this term: new projects will have hiccups
- Don't say I didn't warn you!

Some Early NLP History

- - Foundational work: automata, information theory, etc
 - First speech systems
 - Machine translation (MT) hugely funded by military
 Toy models: MT using basically word-substitution
 Optimism!
- 1960's and 1970's: NLP Winter
 - Bar-Hillel (FAHOT) and ALPAC reports kills MT
 - Work shifts to deeper models, syntax
 ... but toy domains / grammars (SHRDLU, LUNAR)
- 1980's and 1990's: The Empirical Revolution

- Expectations get reset

 Corpus-based methods become central

 Deep analysis often traded for robust and simple approximations
- Evaluate everything
- 2000+: Richer Statistical Methods
- Models increasingly merge linguistically sophisticated representations with statistical methods, confluence and clean-up
 Begin to get both breadth and depth

Problem: Structure

- Headlines:
 - Enraged Cow Injures Farmer with Ax
 - Teacher Strikes Idle Kids
 - Hospitals Are Sued by 7 Foot Doctors
 - Ban on Nude Dancing on Governor's Desk
 - Iraqi Head Seeks Arms
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half
- Why are these funny?

Problem: Scale

- People did know that language was ambiguous!
 - ...but they hoped that all interpretations would be "good" ones (or ruled out pragmatically)
 - ...they didn't realize how bad it would be

Outline of Topics

- Words and Sequences
 - Speech recognition

 - N-gram modelsWorking with a lot of data
- Structured Classification
- - Syntax and semantics

 - Syntactic MTQuestion answering
- Machine Translation
- Other TopicsReference resolutionSummarizationDiachronics

A Puzzle

- You have already seen N words of text, containing a bunch of different word types (some once, some twice...)
- What is the chance that the N+1st word is a new one?