Natural Language Processing Berkeley N L P Parsing II Dan Klein – UC Berkeley

Learning PCFGs

Structural Annotation

Efficient Parsing for Structural Annotation

Lexicalization

Efficient Parsing for Lexical Grammars

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic (and in practice is more like linear!)
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Results

- Some results
 - Collins 99 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 90.7 F1 (generative unlexical)
 - McClosky et al 06 92.1 F1 (gen + rerank + self-train)
- However
 - Bilexical counts rarely make a difference (why?)
 - Gildea 01 Removing bilexical counts costs < 0.5 F1

Latent Variable PCFGs

Efficient Parsing for Hierarchical Grammars

